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Abstract: Nonstandard numerical approximation for the study of a competition model for two species
that experience nonlocal diffusion, or dispersion, allows for faithful representation of the theoretical
solution to the system. Such a scheme may preserve positivity of solutions, be uniquely solvable, and
be completely stable. Under appropriate conditions, the error between the scheme and the theoretical
solution can be measured. We present such a scheme here and confirm its desirable properties as they
reflect the solution to the system.

Keywords: finite difference scheme; convergence; nonstandard scheme; competition model;
population dynamics

1. Introduction

In mathematical biology, predicting the time evolution of a biomass or a population over a spatial
domain is a very important problem. Often, Lotka-Voterra-type equations are used to describe pop-
ulation dynamics, whether studying competition or predator-prey models. Such systems have been
studied in many settings. Conditions under which two species can coexist have been treated theoreti-
cally. Numerical models have been developed that hope to mimic behavior of the system represented
in the models. In the case that dispersion is occurring to each species, biomass or population studies
over a domain ΩT = (0,T ) × Ω for some Ω ⊂ Rd, generally with d = 1, 2, or 3 may take the general
form 

ut = a1∆u + b1Lu + f1(u, v) in ΩT

vt = a2∆v + b2Lv + f2(u, v) in ΩT

u(0, x) = u0(x), v(0, x) = v0(x) in Ω

(1.1)
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where L is a linear operator on Ω, distinct from the Laplacian, that can take various forms. If a1, a2 > 0
in system (1.1), then some degree of local diffusion of each species is modeled by the equations. The
b1 = b2 = 0 case has been considered by multiple authors, such as in [1–4] and in their accompanying
references.

In real world settings, populations in competition may demonstrate diffusion, dispersion, or some
degree of both local and nonlocal behaviors. Competition for common resources may not only follow
in their immediate neighborhood, but also in the entire spatial domain. In addition, this competition is
not necessarily occurring only between individuals at the same location, but also between individuals
at different locations; see [5] and references therein for an excellent motivation for and summary of
models of nonlocal dispersion operators. Following similar reasoning, when b1 = b2 = 1, the operator
L given by

Lu(t, x) =
∫
Ω

J(x − y)u(t, y) dy −
∫
Ω

J(x − y) dy · u(t, x) (1.2)

has been motivated as an accurate reflection of dispersion between species for suitable J, and will be
used here. The authors in [6] show the derivation of the nonlinear dispersion operator as J ∗ u − (J ∗
1)u, but then point out that it is unrealistic to use a convolution term to model biological species in
bounded domains. Further, the restriction L in (1.2) of J ∗ u − (J ∗ 1)u arises naturally in cases of
hostile surroundings, a periodic environment, or under reflected boundary conditions. In [7], these
assumptions are shown to be unnecessary, where the dispersion operator L in (1.2) is used to model
nonlocal interaction. There, the authors show that for L, total internal energy is conserved and free
energy decreases along trajectories so that L a suitable choice to reflect dispersion as a replacement for
local dispersion modeled by the Laplacian for a symmetric interaction kernel J. Thus, operator L is
also used both in nonlocal Allen-Cahn-type equations (c.f. [8]) or when describing population changes
with nonlocal dispersion in biological systems (as in [9] and references therein).

Indeed, when restricted to ΩT ⊂ (0,T ) × Rd, kernel function J in (1.2) becomes a measure of the
probability that population members at all positions x affect those at y ∈ Rd, and vice-versa. Hence,

−ut(t, x) = −Lu(t, x)

may be used to describe the rate at which members of a species are leaving x ∈ Ω at time t to travel
to all other sites y ∈ Rd. Thus, for b1 = b2 = 1, various forms of system (1.1) using L in (1.2) have
also been studied in depth, including traveling wave solutions, spreading speed, stability of traveling
waves, and of entire solutions as in [10–12], and references therein.

There has been a good deal of work on Lotka-Volterra models that include local diffusion, and more
recently, nonlocal dispersion has been treated in such systems (see [1–4,13, 14], along with references
therein). In [15], an implicit approach to the numerical analysis of the system is introduced that mimics
the dynamical properties of the true solution. In addition, it is proven that the scheme introduced there
is uniquely solvable and unconditionally stable. The asymptotic behavior of the difference scheme is
studied by constructing upper and lower solutions for the difference scheme. The convergence rate of
the numerical solution to the true solution of the system is also given.
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Following notation in (1.1) and (1.2) is
ut = Lu + u(K1 − u − av) in ΩT

vt = Lu + v(K2 − v − bu) in ΩT

u(0, x) = u0(x), v(0, x) = v0(x) in Ω

(1.3)

where Ω, ΩT , and L are defined previously. Here, u(t, x) ≥ 0 and v(t, x) ≥ 0 denote the population
densities of the competing species for time t ≥ 0 and x ∈ Ω ⊂ Rd for d = 1, 2. In addition, we assume
that the system whose solutions describe the density of each species that began with (1.1) has been
nondimensionalized, so that in (1.3), a, b,K1,K2 > 0 depend on the initial choice of constants in (1.1).
To our knowledge, this system has not been analyzed with an unconditionally stable, nonstandard
numerical method whose convergence rate can be given. This is the goal of this contribution.

As described previously, the system is used to model the two species competing with each other for
the same prey, where both species are continuously distributed in time t throughout a region Ω, with
each exhibiting free movement in the form of nonlocal dispersion. The method introduced to discretize
(1.3) and the study of its properties will follow a similar development to the one used in [16], where
properties of a single integro-differential equation that models an Ising spin system, with a convolution
term that involves the Kac potential, are discussed in detail (see [17–20]).

In Section 2, we introduce the difference scheme used for the approximation of (1.3) over ΩT ⊂

(0,T ) × R. We prove existence of the numerical solution to the scheme and that this solution is stable,
independent of the choice of ∆t and ∆x. We give the convergence rate of the numerical scheme to the
true solution. In Section 3, we present some results of numerical experiments that confirm the stability
and convergence of the proposed difference scheme in one- and two-dimensional spatial domains Ω.
In Section 4, we provide a summary of the results.

2. A nonstandard numerical scheme

Analysis will be carried out over a domain Ω in one-dimensional space. All results carry over
naturally to higher-dimensional space. For t > 0 we introduce time step tk = k∆t for k = 0, 1, 2, . . . ,
where ∆t is of fixed size to be determined later. On the intervalΩ = (−L, L) ⊂ R we define the partition

Ωx = {xi | xi = −L + i△x, i = 1, 2, . . . ,N − 1}, where ∆x = 2L/N.

Using uk
i and vk

i to represent the numerical approximation to the true solutions u and v to (1.3) at
(tk, xi), our choice of difference scheme for n = 1 in (1.3) is nonstandard to invoke desirable properties
that will be established later, namely

uk+1
i −uk

i
△t = (J ∗ uk)i − (J ∗ 1)iuk+1

i + K1uk
i − uk

i u
k+1
i − auk+1

i vk
i

vk+1
i −vk

i
△t = (J ∗ vk)i − (J ∗ 1)ivk+1

i + K2vk
i − vk

i v
k+1
i − buk

i v
k+1
i

(2.1)

for k = 0, 1, 2, . . . and for 0 ≤ i ≤ N. Throughout, for convenience, the discretization of Lu as given in
(1.2) for (2.1) will be denoted by

(J ∗ uk)i = ∆x

12 J(x0 − xi)uk
0 +

N−1∑
m=1

J(xm − xi)uk
m +

1
2

J(xN − xi)uk
N

 ;
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a similar expression is used for Lv. We also introduce the initial conditions in (1.3) as

u0
i = u0(xi) and v0

i = v0(xi)

for i = 0, 1, 2, . . . ,N, where for all i, u0(xi), v0(xi) ≥ 0.
Solving (2.1) for uk+1

i and vk+1
i gives the iteration scheme for n = 1 as

uk+1
i =

(J∗uk)i ∆t+ (1+K1∆t)uk
i

1+ (J∗1)i ∆t+ uk
i ∆t+ avk

i ∆t

vk+1
i =

(J∗vk)i ∆t+ (1+K2∆t)vk
i

1+ (J∗1)i ∆t+ vk
i ∆t+ buk

i ∆t

(2.2)

for k = 0, 1, 2, . . . and i = 0, 1, 2, . . . ,N.
Although we present and prove theorems for n = 1, it is useful for programming numerical models

to show the method of approximating (1.3) for n = 2 as well. In this case, we choose Ω = (−L, L) ×
(−W,W) ⊂ R2, and partitions

Ωxy = {(xi, y j)| xi = −L + i△x, y j = −W + j△y, 0 ≤ i ≤ M, 0 ≤ j ≤ N}

and
Ωt = {tk| tk = k△t, 0 ≤ t ≤ K},

where △x = 2L/M and △y = 2W/N.
The difference scheme for (1.3) includes

u0
i, j = u0(xi, y j) and v0

i, j = v0(xi, y j), (2.3)

together with 
uk+1

i, j −uk
i, j

△t = (J ∗ uk)i, j − (J ∗ 1)i, juk+1
i, j + K1uk

i, j − uk
i, ju

k+1
i, j − auk+1

i, j vk
i, j

vk+1
i, j −vk

i, j

△t = (J ∗ vk)i, j − (J ∗ 1)i, jvk+1
i, j + K2vk

i, j − vk
i, jv

k+1
i, j − bvk+1

i, j uk
i, j

(2.4)

all for i = 0, 1, . . . ,M and j = 0, 1, . . . ,N, where in (2.4),

(J ∗ uk)i, j = △x△y

M−1∑
m=1

N−1∑
n=1

J(xm − xi, yn − y j)uk
m, n

+
1
2

M−1∑
m=1

(
J(xm − xi, y0 − y j)uk

m, 0 + J(xm − xi, yN − y j)uk
m,N

)

+
1
2

N−1∑
n=1

(
J(x0 − xi, yn − y j)uk

0, n + J(xM − xi, yn − y j)uk
M, n

)
+

1
4

(
J(x0 − xi, y0 − y j)uk

0, 0 + J(xM − xi, y0 − y j)uk
M, 0

+J(x0 − xi, yN − y j)uk
0,N + J(xM − xi, yN − y j)uk

M,N

)]
.
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From (2.3) and (2.4), we arrive at the explicit finite difference scheme
[
1 +
(
uk

i, j + avk
i, j + (J ∗ 1)i, j

)
∆t
]

uk+1
i, j =

[
(J ∗ uk)i, j + K1uk

i, j

]
∆t + uk

i, j[
1 +
(
vk

i, j + buk
i, j + (J ∗ 1)i, j

)
∆t
]

vk+1
i, j =

[
(J ∗ vk)i, j + K2vk

i, j

]
∆t + vk

i, j

(2.5)

for i = 0, 1, . . . ,M, j = 0, 1, . . . ,N, and k = 0, 1, 2, . . . .

Theorem 2.1. For n = 1 and for the initial conditions in (1.3), let m1 = max u0(x), m2 = max v0(x),
M1 = max{K1,m1}, and M2 = max{K2,m2}. Then for all k = 0, 1, 2, . . . and for i = 0, 1, 2, . . . ,N,

0 ≤ uk
i ≤ M1 and 0 ≤ vk

i ≤ M2. (2.6)

Hence, the numerical scheme (2.2) is unconditionally nonnegative and unconditionally stable.

Proof. We proceed by induction. For k = 0,

0 ≤ u0
i ≤ m1 ≤ M1 and 0 ≤ v0

i ≤ m2 ≤ M2

for i = 0, 1, 2, . . . ,N, so that (2.6) holds.
Assume now that (2.6) holds for some k ∈ N. Then for k + 1,

uk+1
i =

(J ∗ uk)i ∆t + (1 + K1∆t) uk
i

1 + (J ∗ 1)i ∆t + uk
i∆t + avk

i∆t

≤
(J ∗ 1)i M1∆t +

(
uk

i + K1uk
i∆t
)

1 + (J ∗ 1)i ∆t + uk
i∆t + avk

i∆t

≤
(J ∗ 1)i M1∆t +

(
M1 + M1uk

i∆t
)

1 + (J ∗ 1)i ∆t + uk
i∆t + avk

i∆t

≤
M1

[
(J ∗ 1)i∆t + 1 + uk

i∆t
]

1 + (J ∗ 1)i ∆t + uk
i∆t + avk

i∆t

≤ M1.

Similarly, vk+1
i ≤ M2, so the result holds for k+1 if it holds for k. Therefore, by mathematical induction,

(2.6) is valid for all k = 0, 1, 2 . . . and for i = 0, 1, 2, . . . ,N. □

We now turn to the question of convergence of the difference equations (2.2) to the true solution of
(1.3).

Theorem 2.2. If u, v ∈ C1,2([0,T ] × Ω) are solutions to (1.3), then the solution of (2.2) converges to u
and v as ∆t,∆x→ 0, uniformly on [0,T ], with rate O(∆t + ∆x2).

Proof. Let (u(t, x), v(t, x)) represent the solution pair to (1.3), where u, v ∈ C1,2([0,T ] ×Ω). Set

U0
i = u0(xi), V0

i = v0(xi),Uk
i = u(tk, xi), and Vk

i = v(tk, xi).
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We will prove the convergence claim based on u, then the same will follow for v by the symmetry of
equations in (1.3). Let ∆t = T/K, so that tk = k∆t for k = 0, 1, 2, . . . ,K. From (1.3) and (2.1) we have

Uk+1
i − Uk

i

∆t
= (J ∗ Uk)i − (J ∗ 1)iUk

i + K1Uk
i

−
(
U i

k

)2
− aUk

i Vk
i + Ru(∆t,∆x),

(2.7)

where Ru is a function with Ru(∆t,∆x) = O(∆t + ∆x2). Let

Xk
i = Uk

i − uk
i , Yk

i = Vk
i − vk

i

for k = 0, 1, 2, . . . ,K and i = 0, 1, 2, . . . ,N. Then X0
i = 0, Y0

i = 0, for i = 0, 1, 2, . . . ,N. Using (2.1) in
conjunction with (2.7),

Xk+1
i = Uk

i − uk
i + ∆t

[
(J ∗ Uk)i − (J ∗ uk)i − (J ∗ 1)i

(
Uk

i − uk
i

)
− (J ∗ 1)i

(
uk+1

i − uk
i

)]
+ ∆t
[
K1

(
Uk

i − uk
i

)
−

((
Uk

i

)2
− uk

i u
k+1
i

)
− a
(
Uk

i Vk
i − uk+1

i vk
i

)]
+ ∆t Ru(∆t,∆x),

(2.8)

so that from (2.8), ∣∣∣Xk+1
i

∣∣∣ ≤ ∣∣∣Uk
i − uk

i

∣∣∣ + ∆t
∣∣∣∣(J ∗ Uk

)
i
−
(
J ∗ uk

)
i

∣∣∣∣
+ ∆t
∣∣∣∣(J ∗ 1)i

(
Uk

i − uk
i

)∣∣∣∣ + ∆t
∣∣∣∣(J ∗ 1)i

(
uk+1

i − uk
i

)∣∣∣∣
+ K1∆t

∣∣∣Uk
i − uk

i

∣∣∣ + ∆t
∣∣∣∣(Uk

i

)2
− uk

i u
k+1
i

∣∣∣∣
+ a∆t

∣∣∣Uk
i Vk

i − uk+1
i vk

i

∣∣∣ + ∆t Ru(∆t,∆x).

(2.9)

We turn to upper bounds on each of the terms in (2.9). To accomplish this, for each k, k = 0, 1, 2, . . . ,K,
we will use Wk

u = maxi

∣∣∣Uk
i − uk

i

∣∣∣ and Wk
v = maxi

∣∣∣Vk
i − vk

i

∣∣∣. Setting C1 = maxi(J ∗ 1)i,∣∣∣(J ∗ Uk)i − (J ∗ uk)i)
∣∣∣

≤
∆x
2

J(x0 − xi)
∣∣∣Uk

0 − uk
0

∣∣∣ + ∆x
N−1∑
m=1

J(xm − xi)
∣∣∣Uk

m − uk
m

∣∣∣
+
∆x
2

J(xN − xi)
∣∣∣Uk

N − uk
N

∣∣∣
≤ ∆x

12 J(x0 − xi) +
N−1∑
m=1

J(xm − xi) +
1
2

J(xN − xi)

Wk
u

≤ C1Wk
u ,

(2.10)
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2484∣∣∣∣(J ∗ 1)i

(
Uk

i − uk
i

)∣∣∣∣ = (J ∗ 1)i

∣∣∣Uk
i − uk

i

∣∣∣ ≤ C1Wk
u ,

and ∣∣∣∣(J ∗ 1)i

(
uk+1

i − uk
i

)∣∣∣∣ ≤ C1

∣∣∣uk+1
i − uk

i

∣∣∣ .
Now, since

∣∣∣uk
i

∣∣∣ and
∣∣∣vk

i

∣∣∣ are uniformly bounded by M1 and M2, from (2.1),∣∣∣uk+1
i − uk

i

∣∣∣ ≤ C(M1,M2,C1)△t,

where C(M1,M2,C1) is a constant that depends only on M1, M2, and C1. Hence there exists C2 such
that ∣∣∣∣(J ∗ 1)i

(
uk+1

i − uk
i

)∣∣∣∣ ≤ C1

∣∣∣uk+1
i − uk

i

∣∣∣
≤ C1C(M1,M2,C1)△t

= C2△t

and
K1

∣∣∣Uk
i − uk

i

∣∣∣ ≤ K1Wk
u ,

where K1 is that constant related to carrying capacity in (1.3), so that for some constants C3, C4, and
C5, ∣∣∣(Uk

i )2 − uk
i u

k+1
i

∣∣∣
=
∣∣∣Uk

i Uk
i − Uk

i uk
i + Uk

i uk
i − uk+1

i Uk
i + uk+1

i Uk
i − uk

i u
k+1
i

∣∣∣
≤
∣∣∣Uk

i Uk
i − Uk

i uk
i

∣∣∣ + ∣∣∣Uk
i uk

i − uk+1
i Uk

i

∣∣∣ + ∣∣∣uk+1
i Uk

i − uk
i u

k+1
i

∣∣∣
≤
∣∣∣Uk

i

∣∣∣ ∣∣∣Uk
i − uk

i

∣∣∣ + ∣∣∣Uk
i

∣∣∣ ∣∣∣uk
i − uk+1

i

∣∣∣ + ∣∣∣uk+1
i

∣∣∣ ∣∣∣Uk
i − uk

i

∣∣∣
≤ C3Wk

u +C3C(M1,M2,C1)△t +C(M1,M2,C1)Wk
u

= C4△t +C5Wk
u ,

and thus there exist constants C6, C7, and C8 with

a
∣∣∣Uk

i Vk
i − uk+1

i vk
i

∣∣∣
= a
∣∣∣Uk

i Vk
i − Vk

i uk
i + Vk

i uk
i − uk+1

i Vk
i + uk+1

i Vk
i − uk+1

i vk
i

∣∣∣
≤ a
(∣∣∣Vk

i

∣∣∣ ∣∣∣Uk
i − uk

i

∣∣∣ + ∣∣∣Vk
i

∣∣∣ ∣∣∣uk
i − uk+1

i

∣∣∣ + ∣∣∣uk+1
i

∣∣∣ ∣∣∣Vk
i − vk

i

∣∣∣)
≤ C6Wk

u +C7△t +C8Wk
v .

(2.11)

Substituting (2.10) and (2.11) into (2.9), we obtain∣∣∣Xk+1
i

∣∣∣ ≤ (1 +C8△t) Wk
u +C9△tWk

v + ∆t Ru(∆t,∆x) (2.12)

for i = 0, 1, . . . ,N, where C8 and C9 are constants independent of i and k, and where △t2-terms are
absorbed into ∆t Ru(∆t,∆x). Therefore, for each k, k = 0, 1, 2, . . . ,K,

Wk+1
u ≤ (1 +C8△t) Wk

u +C9△tWk
v + ∆t Ru(∆t,∆x). (2.13)

Similarly, there exist C10 and C11 with

Wk+1
v ≤ (1 +C10△t) Wk

v +C11△t Wk
u + ∆t Rv(∆t,∆x), (2.14)

Electronic Research Archive Volume 32, Issue 4, 2478–2490.



2485

where, as with Ru, Rv is a function with Rv(∆t,∆x) = O(∆t + ∆x2). Now setting Zk = Wk
u +Wk

v , from
(2.13) and (2.14), there exists a constant C0 with

Zk+1 ≤ (1 +C0△t) Zk + ∆t Ru(∆t,∆x) (2.15)

for k = 0, 1, 2, . . . ,K. Set

D = 1 +C0∆t ≥ 1. (2.16)

Then since Z0 = 0, using (2.15) and (2.16) and iterating,

Zk+1 ≤ Dk+1Z0 +
[
1 + D + D2 + . . . + Dk

]
∆t Ru(∆t,∆x)

≤ Dk+1−1
C0△t ∆t Ru(∆t,∆x)

for k = 0, 1, 2, . . . ,K − 1. Since ex ≥ 1 + x, it follows that eKx ≥ (1 + x)K , so that for all k, k =
0, 1, 2, . . . ,K − 1, and again using D from (2.16),

Dk+1 − 1 ≤ DK − 1 ≤ eC0K△t − 1 = eC0T − 1.

Thus, for k = 0, 1, 2, . . . ,K − 1,

Zk+1 ≤
(
eC0T − 1

)
Ru(∆t,∆x),

so that Zk → 0 for k = 0, 1, 2, . . . ,K as ∆t → 0, ∆x→ 0. This completes the proof. □

Remark. Similar results hold for n = 2 in Theorems 2.1 and 2.2, and their proofs.

3. Numerical results

In this section we finish by presenting some results of computational experiments that verify the
stability and convergence of the proposed difference scheme, confirming that the numerical solutions
preserve the properties of the theoretical solution as well as those guaranteed by Theorem 2.2. Since
there is no exact solution to compare with the approximation generated by the difference scheme, we
use fix △x and compute for various △t values, then vice-versa. We compare the results in tables. We
also present graphical results for dimensions n = 1 in (2.2) and n = 2 in (2.5).

Case I. For n = 1, we test method (2.1) for Ω = (−1, 1), ϵ = 0.1, a = 0.4, b = 0.6, K1 = K2 = 1,
u0(x) = 0.2 cos(2πx) + 1, and v0(x) = 0.3 sin(2πx) + 1, where J(x) = (ϵ

√
π)−1 exp

(
−x2/ϵ2

)
. We call

these approximations (u(t, x), v(t, x)). Their convergence to steady state solutions is demonstrated in
Figures 1 and 2 for ∆t = ∆x = 0.05, as an example, since convergence is independent of time and
space steps and graphs look much the same for any reasonable choices of small ∆t and ∆x.
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Figure 1. The graphs of u(0, x), u(2, x), u(4, x), and u(6, x).

Figure 2. The graphs of v(0, x), v(2, x), v(4, x), and v(6, x).

Case Ia: Hold △x = 0.05. Let (u(t, x), v(t, x)) denote the numerical solution under the parameters
as chosen above corresponding to △t, while (u1(t, x), v1(t, x)) corresponds to △t1. Table 1 shows the
maximum absolute errors, max |u(t, x) − u1(t, x)| and max |v(t, x) − v1(t, x)|, at t = 5 across Ω.

Table 1. The difference between approximations to u and v for fixed ∆x = 0.05 correspond-
ing to △t and △t1.

△t △t1 max|u(5, x) − u1(5, x)| max|v(5, x) − v1(5, x)|
0.1 0.05 0.0040 0.00670
0.01 0.005 0.0004 0.00067

We note that the reduction of ∆t by a factor of 0.5 reduces the error by O(∆t), as predicted by
Theorem 2.2.
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Case Ib: We fix △t = 0.1 and vary △x. As before, we let (u(t, x), v(t, x)) represent the numerical so-
lutions corresponding to △x, and let (u1(t, x), v1(t, x)) represent the numerical solutions corresponding
to △x1. We compare the error differences max |u(t, x)−u1(t, x)| and max |v(t, x)−v1(t, x)| at t = 5 across
Ω.

Table 2. The difference between approximations u(5, x) and u1(5, x) corresponding to △x
and △x1.

△x △x1 max|u(5, x) − u1(5, x)| max|v(5, x) − v1(5, x)|
0.05 0.025 0.000181 0.000277
0.025 0.0125 0.000044 0.000068

We note that the reduction of ∆x by a factor of 0.5 reduces the error by a factor of O(∆x2), or about
0.25, as stated in Theorem 2.2.

Case II. For n = 2, let Ω = (−1, 1) × (−1, 1), and let ϵ = 0.1, a = 0.4, b = 0.6, u0(x, y) =
0.4+ 0.2 cos(2πx) cos(2πy), and v0(x, y) = 0.5+ 0.3 sin(2πx) sin(2πy), where Jϵ(x, y) = 1

ϵ2π
exp(− x2+y2

ϵ2
).

We first show graphs of some approximate solutions generated by the two-dimensional method
(2.5) for ∆t = 0.25, and ∆x = ∆y = 0.2 in Figures 3 and 4. As in the one-dimensional case, since
convergence is independent of time and space steps and graphs look much the same for any reasonable
choices of small ∆t and ∆x, we have chosen these values as a representative of any such reasonable
choice.

Figure 3. The graphs of u(0, x, y), u(2, x, y), u(3.5, x, y), and u(5, x, y).
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Figure 4. The graphs of v(0, x, y), v(2, x, y), v(3.5, x, y), and v(5, x, y).

Case IIa: We hold △x = △y = 0.1 and compare accuracy for various △t-values in (2.5). De-
note the numerical solution (u(t, x, y), v(t, x, y)) as the one generated by (2.5) corresponding to △t and
(u1(t, x, y), v1(t, x, y)) corresponding to △t1. We compare the differences max |u(t, x, y) − u1(t, x, y)| and
max |v(t, x, y) − v1(t, x, y)| at t = 5 across Ω in Table 3.

Table 3. The difference between approximations to u and v for ∆x = ∆y = 0.1 corresponding
to △t and △t1.

△t △t1 max|u(5, x, y) − u1(5, x, y)| max|v(5, x, y) − v1(5, x, y)|
0.1 0.05 0.011975 0.009556
0.05 0.025 0.005879 0.004991

Case IIb: Finally, we carry out the same accuracy test for fixed ∆t = 0.25 and various ∆x = ∆y and
∆x1 = ∆y1 values at time t = 5. The results are displayed in Table 4.

Table 4. The difference between approximations to u and v for ∆t = 0.25 corresponding to
△x = △y and △x1 = ∆y1.

△x △x1 max|u(5, x, y) − u1(5, x, y)| max|v(5, x, y) − v1(5, x, y)|
0.1 0.05 0.0022898 0.0027063
0.05 0.025 0.0005250 0.0006352

All approximations in the tables show convergence at the rates predicted by Theorem 2.2.
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4. Conclusions

The foregoing results have motivated the use of a Lotka-Volterra-type equation with operator L
that reflects intra-species dispersion, or nonlocal interaction, with competition between species whose
populations are given by u and v. A nonstandard numerical scheme was introduced that is stable,
independent of the choice of time step, and that yields biologically sensible (nonnegative) numerical
approximations to populations u and v of this system. Moreover, this nonstandard scheme was shown
to be convergent to the solution of the proposed system and the order of convergence given. Because
its convergence was established, it is possible to state with confidence that accurate solutions to the
system are shown in the numerical experiments that were offered to confirm the results.
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