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Abstract: In the work by Li (J. Combin. Theory Ser. B, 99 (2009), 447–454.), the author characterized
the classification of vertex transitive embeddings of complete graphs, and proposed how to enumerate
such maps. In this paper, we study the counting problem of orientable vertex imprimitive complete maps,
which is the automorphism group of this map acts imprimitively on its vertex set. Moreover, we obtain
the number of non-isomorphic embeddings when the vertex-stabilizer subgroups of the automorphism
groups of maps are isomorphic to Zp−1 with odd prime p.
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1. Introduction

If a graph can be embedded in a surface, then naturally there will be a problem: How many non-
isomorphic ways can it be done? One of the main aims of topological graph theory is to enumerate
all the symmetrical embeddings of a given class of graphs in closed surfaces, see [1–3]. As one of
a series of papers toward solving the problem of counting the number vertex transitive embeddings
of complete graphs, we restrict our attention here to the orientable vertex imprimitive embeddings of
complete graphs.

LetM = (V, E, F) be an orientable map with vertex set V , edge set E, and face set F, that is,M is
a 2-cell embedding of the finite underlying graph Γ = (V, E) in an orientable surface. For convenience,
a mapM is called a complete map if its underlying graph is a complete graph.

An automorphism of a map M is a permutation of V ∪ E ∪ F, which preserves V , E, F, and
their incidence relations, so it is exactly an automorphism of the underlying graph which preserves the
supporting surface. All automorphisms ofM form the automorphism group Aut(M) under composition.

A mapM is said to be G-vertex-imprimitive (or a vertex-imprimitive embedding of its underlying
graph) if G = Aut(M) acts imprimitively (but transitively) on the vertex set V . Furthermore, if G also
preserves the orientation of the supporting surface, thenM is called orientable vertex-imprimitive. Here,
a permutation group G acting transitively on a set Ω is imprimitive, which means that G preserves a
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nontrivial partition of Ω.
Recent development concerning the theory of maps was closely related to the theory of map colorings,

with the topic of highly ‘symmetrical’ maps always at the center of interest, and recent investigation
began with Biggs [4, 5]. In the past fifty years, plenty of results about ‘symmetrical’ maps have been
obtained, see [2,6,7] and the references therein. In particular, see [2,3,5] for arc transitive complete maps,
see [8–10] for vertex transitive complete maps, and see [11, 12] for edge transitive complete maps. Very
recently, some special families of edge-transitive embeddings of complete bipartite graphs are classified
in [13–18]. Additionally, the Cayley map of the quaternion group Q8 constructed in [19, Figure 7] is a
complete 4-partite map with arcs colored i, j, k; the map constructed has the property that removing the
arcs colored i creates an imprimitive map whose automorphism group action preserves the partition
of the edges into those colored j and those colored k. For more information about the embeddings of
complete graphs, see [20–22].

The purpose of this paper is to enumerate the number of orientable vertex imprimitive maps with
underlying graphs being complete graphs. Recall that ϕ(n) is the Euler phi-function, i.e. the number of
positive integers which is less than and co-prime to n, where n is a positive integer. The main result of
this paper is now stated as follows.

Theorem 1.1. LetM be an orientable, vertex imprimitive, complete map with automorphism group
G = Aut(M), and let Gα be the stabilizer of a vertex α ofM. ThenM is a Cayley map of Zd

p for some
integer d ≥ 2 and odd prime p. In addition, the group G � Zd

p:Gα is a Frobenius group whenever
Gα is a cyclic group. Furthermore, if Gα � Zp−1 acting on the neighborhood of α has λ orbits with
λ(p−1) = pd −1 and λ ≥ 4 is a prime, then the number of non-isomorphic orientable vertex imprimitive
complete maps equals

|Aλ| − |A1|

|SL(d, p)|
,

where |Aλ| = (λ − 1)!(p − 1)λ−1ϕ(p − 1) and |A1| = ϕ(pd − 1).

As a by-product of the Theorem 1.1, we can deduce the following conclusions when λ is a
composite integer.

Corollary 1.2. Let p1 and p2 be two different primes.

(i) If λ = p1 p2, then the number of non-isomorphic orientable vertex imprimitive complete maps
equals

|Ap1 p2 |−|Ap1 |−|Ap2 |+|A1 |

|SL(d,p)| .

(ii) If λ = p2
1 p2, then the number of non-isomorphic orientable vertex imprimitive complete maps

equals
|Ap2

1 p2
|−|Ap1 p2 |−|Ap2

1
|+|Ap1 |

|SL(d,p)| .

This paper is organized as follows. After this introductory section, some preliminary results are given
in Section 2, then the enumeration of different and non-isomorphic orientable vertex imprimitive complete
maps is given in Sections 3 and 4, respectively. Finally, we give the complete proof of Theorem 1.1 in
Section 5.

2. Preliminaries

In this section, we need some notations for convenience and give some results that will be used in
the following discussion.
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Let p be an odd prime and let d ≥ 2 be an integer. The elementary abelian p-group of order pd

will be denoted by Zd
p. We use o(a) and ⟨a⟩ to denote the order of a and the group generated by a,

respectively. We use Zp−1 and D2p to denote the cyclic group of order p − 1 and the dihedral group
of order 2p, respectively. The general linear group and the special linear group of the field Fpd are
denoted by GL(d, p) and SL(d, p), respectively. The centralizer and the normalizer of Zp−1 in GL(d, p)
are denoted by CGL(d,p)(Zp−1) and NGL(d,p)(Zp−1), respectively. Let H and K be two groups. Then we
use H:K to denote a semi-direct product of H by K, in which H is a normal subgroup. We use Z(H),
Aut(H), and Inn(H) to denote the center, the automorphism group, and the inner automorphism group
of H, respectively.

Let F = Fpd be the field of order pd. Let F+ = F+pd and F× = F×pd be the additive group and the
multiplicative group of F, respectively. It follows that

F+ � Zd
p, F× � Zpd−1.

Let 0 be the identity of the F+. Let F# be the set of all nonidentity elements of F+, namely,
F# = F+ \ {0}. Then the complete graph Kpd may be represented as a Cayley graph

Kpd = Cay(F+, F#).

A Cayley map M is an embedding of a Cayley graph Σ = Cay(H, S ) into a surface, such that
Aut(M) contains a subgroup N acting regularly on the vertices andM is called a Cayley map of N (or a
Cayley embedding of Σ with respect to N). Moreover, Cayley maps form a very interesting family of
vertex-transitive maps [6, 9].

For a vertex v, a cyclic permutation of the neighbour set Γ(v) of v is called a rotation at v and denoted
by Rv. A rotation system R(Γ) of a graph Γ is the set of rotations at all vertices, that is, R(Γ) = {Rv}v∈V .
Hence, each rotation system R(Γ) defines an orientable embedding of Γ, refer to [23, pp.104–108].

Noting that the vertex rotations Rv can be regarded as permutations not only of the set Γ(v) but also of
the generating set S , the Cayley maps have another equivalent definition [24]. A map with an underlying
graph being Cayley graph Σ = Cay(H, S ) is a Cayley map if the induced local cyclic permutations of S
are all the same. Moreover, each cyclic permutation ρ of F# gives rise to a unique orientable Cayley
embedding of Kpd with the underlying graph Γ = Cay(F+, F#). Thus, if two cyclic permutations ρ1 and
ρ2 of F# are different, then the orientable vertex imprimitive complete maps generated by them are also
considered to be different.

3. Enumeration of different embeddings

In this section, we determine enumeration of different vertex imprimitive embeddings of a complete
graph. Now, we begin by citing the well-known conclusion about vertex transitive maps.

Lemma 3.1. ( [8, Lemma 2.2]) Let M be a vertex-transitive map and let G = Aut(M). Then the
stabilizer Gα � Zk or D2k for a vertex α, and each orbit of Gα acting on the neighborhood of α has
length k.

Next, from [8, Theorem 1.1] and [23, Lemma 5.4.1], we can directly obtain the following lemma.

Lemma 3.2. LetM be an orientable vertex imprimitive complete map. Let G = Aut(M). ThenM is a
Cayley map of Zd

p, G � Zd
p:Zk is a Frobenius group, and Gα � Zk such that (k, p) = 1.
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Assume that Gα := ⟨a⟩ with o(a) ≥ 2. Then G � F+:⟨a⟩ is a Frobenius group by Lemma 3.2. It
follows that ⟨a⟩ is half-transitive on F+, and |⟨a⟩| = k is a divisor of |F+| − 1 = pd − 1. Specially, if
|⟨a⟩| = p − 1, thus, Gα acting on Γ(α) has λ orbits with λ = (pd − 1)/(p − 1) ≥ 4, then we get the lemma
as follows.

Lemma 3.3. If G � F+:Zp−1, then there are exactly (λ− 1)!(p− 1)λ−1ϕ(p− 1) different orientable vertex
imprimitive complete maps.

Proof. Taking α = 0 for convenience with 0 the identity element of F+. It follows that G0 partitions the
neighborhood Γ(0) of 0 into λ orbits with λ ≥ 4, and the length of each orbit is p− 1 in view of Lemma 3.1.
Since F# is the set of all nonidentity elements of F+, then |F#| = pd − 1, and, further, we have

F# = ∆1∪̇∆2∪̇ · · · ∪̇∆λ,

where ∆i is an orbit of G0 acting on Γ(0), and |∆i| = p − 1 with 1 ≤ i ≤ λ.
Note that the vertex 0 and the neighbors can be lied on a disc such that 0 is in the center and the

neighbors of 0 are around 0. Without loss of generality, we may assume that the pd − 1 neighbors of 0
(i.e. all the elements of F# ) are in clockwise order around 0 and denoted by β1, β2, · · · , βpd−1, then

ρ := (β1, β2, · · · , βpd−1)

is a cyclic permutation of F#. Further, we can obtain that the number of the cyclic permutations
of F# equals the number of arrangements of βi, and it follows that to determine the number of the
orientable vertex imprimitive complete maps, we only need to determine the different choices of βi with
1 ≤ i ≤ pd − 1.

Set β1 = 1 and β1 ∈ ∆1 for convenience, where 1 is the identity element of F×. If β2 ∈ ∆1, then
1al
= β2 for some al, where 0 < l ≤ p − 2. It follows that al : β2 7→ β3 7→ β4 7→ · · · 7→ 1. Thus,

(l, p − 1) = 1 and G0 = ⟨al⟩ acting on Γ(0) has only one orbit, which is a contradiction, so β2 < ∆1 and
β2 ∈ ∆i with 2 ≤ i ≤ λ. Without loss of generality, set β2 ∈ ∆2 for convenience, then β2 has (λ− 1)(p− 1)
different choices.

If β3 ∈ ∆2, then βa j

2 = β3 for some a j, where 0 < j ≤ p − 2. Furthermore, there is a j : β2 7→ β3 7→

β4 7→ · · · 7→ 1. It follows that ( j, p − 1) = 1, β1 ∈ ∆2 and G0 acting on Γ(0) has only one orbit, which is
a contradiction. Thus, β3 < ∆2.

If β3 ∈ ∆1, then 1a j′

= β3 for some a j′ , where 0 < j′ ≤ p − 2. It follows that there are a j′ : 1 7→ β3 7→

β5 7→ · · · 7→ 1 and a j′ : β2 7→ β4 7→ β6 7→ · · · 7→ β2. Thus, G0 = ⟨a j′⟩ acting on Γ(0) has two orbits,
which is a contradiction. It follows that β3 < ∆1 and β3 ∈ ∆i with 3 ≤ i ≤ λ. Without loss of generality,
set β3 ∈ ∆3 for convenience, so β3 has (λ − 2)(p − 1) different choices.

If β4 ∈ ∆3, then βat

3 = β4 for some at, where 0 < t ≤ p − 2. Moreover, there has at : β3 7→ β4 7→

β5 7→ · · · 7→ 1. Thus, (t, p − 1) = 1, 1 ∈ ∆3 and G0 = ⟨at⟩ acting on Γ(0) has only one orbit, which is a
contradiction. so β4 < ∆3.

If β4 ∈ ∆2, then βat′

2 = β4 for some at′ , where 0 < t′ ≤ p − 2. It follows that there are at′ : β2 7→ β4 7→

β6 7→ · · · 7→ β2, and at′ : β3 7→ β5 7→ β7 7→ · · · 7→ 1. Thus, G0 = ⟨at′⟩ acting on Γ(0) has two orbits,
which is a contradiction, so β4 < ∆2.

If β4 ∈ ∆1, then 1at′′

= β4 for some at′′ , where 0 < t′′ ≤ p−2. Further, there are at′′ : 1 7→ β4 7→ β7 7→

· · · 7→ 1, at′′ : β2 7→ β5 7→ β8 7→ · · · 7→ β2, and at′′ : β3 7→ β6 7→ β9 7→ · · · 7→ β3. Thus, G0 = ⟨at′′⟩ acting
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on Γ(0) has three orbits, which is a contradiction, so β4 < ∆1 and β4 ∈ ∆i with 4 ≤ i ≤ λ. Without loss of
generality, set β4 ∈ ∆4 for convenience, and we deduce that β4 has (λ − 3)(p − 1) different choices.

If β5 ∈ ∆4, then βak

4 = β5 for some ak, where 0 < k ≤ p − 2. It follows that there is ak : β4 7→ β5 7→

β6 7→ · · · 7→ 1. Thus, (k, p − 1) = 1, 1 ∈ ∆4, and G0 = ⟨ak⟩ acting on Γ(0) has only one orbit, which is a
contradiction, so β5 < ∆4.

If β5 ∈ ∆3, then βak′

3 = β5 for some ak′ , where 0 < k′ ≤ p − 2. Correspondingly, there are
ak′ : β2 7→ β4 7→ β6 7→ · · · 7→ β2 and at′ : 1 7→ β3 7→ β5 7→ · · · 7→ 1. Thus, G0 = ⟨ak′⟩ acting on Γ(0) has
two orbits, which is a contradiction, so β5 < ∆3.

If β5 ∈ ∆2, then βak′′

2 = β5 for some ak′′ , where 0 < k′′ ≤ p − 2. Further, there are ak′′ : 1 7→ β4 7→

β7 7→ · · · 7→ 1, ak′′ : β2 7→ β5 7→ β8 7→ · · · 7→ β2 and ak′′ : β3 7→ β6 7→ β9 7→ · · · 7→ β3. Thus, G0 = ⟨ak′′⟩

acting on Γ(0) has three orbits, which is a contradiction, so β5 < ∆2.
If β5 ∈ ∆1, then 1am

= β5 for some am, where 0 < m ≤ p − 2. It follows that there are am : 1 7→
β5 7→ β9 7→ · · · 7→ 1, am : β2 7→ β6 7→ β10 7→ · · · 7→ β2, am : β3 7→ β7 7→ β11 7→ · · · 7→ β3, and
am : β4 7→ β8 7→ β12 7→ · · · 7→ β4. Thus, G0 = ⟨am⟩ = ⟨a⟩ acting on Γ(0) has four orbits, namely, λ = 4.
Since the number of generators of G0 is ϕ(p − 1), we obtain that am has ϕ(p − 1) different choices.
Noting that G0 is cyclic, besides 1, β2, β3, and β4, the remaining vertices of ∆1, ∆2, ∆3, and ∆4 can be
obtained by 1, β2, β3, and β4 through the conjugate action of a, a2, a3, · · · , ap−2, respectively. So

ρ|λ=4 := (1, β2, β3, β4, 1a, βa
2, β

a
3, β

a
4, · · · , 1

ap−2
, βap−2

2 , β
ap−2

3 , β
ap−2

4 )

is a cyclic permutation of F#. It follows that the number of ρ is determined by the choices of 1, β2, β3,
β4, and a. Further, the number of ρ|λ=4 equals

(λ − 1)(p − 1) · (λ − 2)(p − 1) · (λ − 3)(p − 1) · ϕ(p − 1)

= (4 − 1)!(p − 1)3ϕ(p − 1).

Let the corresponding maps generated by ρ|λ=4 be

M4 :=M4(1, β2, β3, β4, a).

Thus, the number of different orientable vertex imprimitive complete maps equals 3!(p − 1)3ϕ(p − 1) if
λ = 4.

Next, suppose that λ ≥ 6 as λ , 5. According to the above derivation, we can obtain that β5 < ∆i

with 1 ≤ i ≤ 4, and β5 ∈ ∆ j with 5 ≤ j ≤ λ. Without loss of generality, set β5 ∈ ∆5 for convenience, and
further, β5 has (λ − 4)(p − 1) different choices. Similarly, β6 ∈ ∆i with 6 ≤ i ≤ λ. It follows that λ = 6
and β6 has (λ − 5)(p − 1) different choices. Note that a has ϕ(p − 1) different choices, then

ρ|λ=6 := (1, β2, · · · , β6, 1a, βa
2, · · · , β

a
6, · · · , 1

ap−2
, βap−2

2 , · · · , β
ap−2

6 )

is a cyclic permutation of F#. Thus, the number of ρ|λ=6 equals

(λ − 1)(p − 1) · (λ − 2)(p − 1) · · · (λ − 5)(p − 1) · ϕ(p − 1)

= (6 − 1)!(p − 1)5ϕ(p − 1).

Let the corresponding maps generated by ρ|λ=6 be

M6 :=M6(1, β2, β3, β4, β5, β6, a).
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Thus the number of different orientable vertex imprimitive complete maps equals 5!(p − 1)5ϕ(p − 1) if
λ = 6.

In fact, λ can be generalized. If Gα = ⟨a⟩ acting on Γ(α) has λ orbits, then βi ∈ ∆i such that β1 = 1
and 1 ≤ i ≤ λ, and

ρ|λ := (1, β2, · · · , βλ, 1a, βa
2, · · · , β

a
λ, · · · , 1

ap−2
, βap−2

2 , · · · , β
ap−2

λ )

is a cyclic permutation of F# (see Figure 1). Since βi has (λ− i+ 1)(p− 1) different choices with 2 ≤ i ≤ λ,
and a has ϕ(p − 1) different choices, it follows that the number of ρ|λ equals

(λ − 1)(p − 1) · (λ − 2)(p − 1) · · · (λ − λ + 1)(p − 1) · ϕ(p − 1)

= (λ − 1)!(p − 1)λ−1ϕ(p − 1).

Let the corresponding maps generated by ρ|λ be

Mλ :=Mλ(1, β2, β3, · · · , βλ, a).

Hence if Gα � Zp−1, then there are exactly (λ − 1)!(p − 1)λ−1ϕ(p − 1) different orientable vertex
imprimitive complete maps. □

βpd−1 ∈ ∆λ

β1 = 1 ∈ ∆1

β2 ∈ ∆2

β3 ∈ ∆3
β4 ∈ ∆4

βλ ∈ ∆λ

. .
.

. . .

Figure 1. Cyclic permutations of F#.

Remark. The proof of Lemma 3.3 provides a general construction for orientable vertex imprimitive
embeddings of complete graphs.

Recall that a Cayley map CayM(G, S ) is called balanced if s and −s are placed on the antipodal
points for all elements s ∈ S , see [7]. Let η be the unique involution of GL(1, pd). Since the mapMλ is
a Cayley map of the group F+ by Lemma 3.2, then

η : x 7→ −x, for all x ∈ F+

is an automorphism ofMλ.

Lemma 3.4. A mapMλ is balanced if and only if β−1
i = βi+ pd−1

2
with 1 ≤ i ≤ λ.
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Proof. Assume thatMλ is balanced, then the vertex β−1
i is placed at the antipodal position of the vertex

βi with p as an odd prime and 1 ≤ i ≤ λ. Thus, β−1
i = βi+ pd−1

2
.

Conversely, assume that β−1
i = βi+ pd−1

2
, then for any 1 ≤ l ≤ p − 2, we can obtain that

β−1
i+lλ = (β−1

i )al
= (β

i+ pd−1
2

)al
= β pd−1

2 +i+lλ
,

reading the subscripts modulo (pd − 1). So, β−1
j = β pd−1

2 + j
is at the antipodal position of β j for all j with

1 ≤ j ≤ pd−1
2 , and, therefore,Mλ is balanced. □

4. Enumeration of non-isomorphic embeddings

We notice that many different orientable vertex imprimitive complete maps may be isomorphic. To
determine the number of non-isomorphic complete maps, we prepare the following lemmas, and we
first give the well-known Clifford’s theorem.

Lemma 4.1. ( [25, Theorem 5.9]) Let V be an irreducible FH-module and let N be a normal subgroup
of H. Then the following statements are true:

(i) V is a completely reducible FN-module, and

V = Wn
1 ⊕Wn

2 ⊕ · · · ⊕Wn
r ,

where Wi(i = 1, 2, ..., r) are all non-isomorphic irreducible FN-submodules of V.
(ii) H permutes {Wn

1 ,W
n
2 , · · · ,W

n
r } transitively.

(iii) If K is the stabilizer of H on Wn
1 , then H is irreducible on Wn

1 .

According to Lemma 4.1, we can get the next following lemma which will determine the normalizer
of Zp−1 in GL(d, p).

Lemma 4.2. Let G � Zd
p:Zp−1. Then NGL(d,p)(Zp−1) � GL(d, p) and Aut(G) � Zd

p:GL(d, p).

Proof. Let V = Zd
p, namely, consider Zd

p as a d-dimensional linear space over field Fp. By [26, Theorem 7.3
of Chapter 2], we can obtain that GL(d, p) has a cyclic subgroup Zpd−1. Since Zp−1 is a normal subgroup
of Zpd−1, and Zp−1 acting on Zd

p is reducible, equivalently, p − 1 is not a primitive divisor of pd, then due
to Lemma 4.1, we have

Zd
p = V1 ⊕ V2,

where dim(Vi) = d
2 and Vi is a faithful irreducible FpZp−1-module with i = 1, 2. By [27, 27.14(3)], it

follows that CGL(d,p)(Zp−1) = GL(d, p). Since

CGL(d,p)(Zp−1) ≤ NGL(d,p)(Zp−1) ≤ GL(d, p),

it is easy to see that NGL(d,p)(Zp−1) � GL(d, p). Furthermore, by [28, Lemma 4.5], we have

Aut(G) � Zd
p:NGL(d,p)(Zp−1) � Zd

p:GL(d, p).

□
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Two mapsM1 andM2 are isomorphic if there is a one-to-one correspondence from the vertices
ofM1 to the vertices ofM2 that maps flags to flags, and it is denoted byM1 � M2. It follows that
AutM1 � AutM2 ifM1 �M2. A complete map is a complete Cayley map if its automorphism group
is regular on the vertices. Moreover, the complete Cayley maps of non-isomorphic groups are not
isomorphic, and we have the following lemma.

Lemma 4.3. Mσλ �Mλ for each σ ∈ Aut(G). On the contrary, σ ∈ Aut(G) ifMσλ �Mλ.

Proof. Since G = Aut(Mλ) � Zd
p:Zp−1, then Gα � Zp−1 is a cyclic group for any α ∈ V . Suppose

that σ fixes α for each σ ∈ Aut(G) � Zd
p:GL(d, p). Note that Zd

p is a regular and normal subgroup
of Aut(G), then for any 1 , x ∈ Zd

p, we have αx = αx or x−1α if x is the right or left multiplication,
respectively. Thus, αx , α, namely, x does not fix α. Hence, σ ∈ GL(d, p). It follows that Zσp−1 � Zp−1

since Zp−1 ◁ GL(d, p). Note that for each τ ∈ Aut(G),

Mτλ =M
xσ
λ =M

σ
λ �Mλ

such that τ = xσ, where x ∈ Zd
p and σ ∈ GL(d, p). Moreover, we can obtain Mσλ � Mλ for each

σ ∈ Aut(G) by arbitrariness of x.
On the contrary, ifMσλ �Mλ, then Aut(Mσλ ) � Aut(Mλ) = G. It follows that for each σ ∈ Aut(Mλ),

(Aut(Mλ))σ = Gσ = G � Aut(Mσλ ).

Since G is a Frobenius group, it is easy to see that the center Z(G) = 1, then G � G/Z(G) �
Inn(G) ◁ Aut(G). Hence, σ ∈ Aut(G). □

Now, we determine the number of non-isomorphic orientable vertex imprimitive complete maps if
Gα � Zp−1.

Let
Aλ = {Mλ(1, β2, β3, · · · , βλ, a)|β1 = 1, βi ∈ ∆i, β

a
i = βi+λ,

where 1 ≤ i ≤ λ, o(a) = p − 1 ≥ 2, and read the subscripts modulo pd − 1}.

Then Aλ is a finite nonempty set and |Aλ| = (λ − 1)!(p − 1)λ−1ϕ(p − 1). Let X = Aut(G). Thus, by
Lemma 4.2, we have

X � Zd
p:NGL(d,p)(Zp−1) � Zd

p:GL(d, p).

Note that Zd
p ◁ X and Zd

p acts on V regularly, and, thus, by [29, Exercise 1.4.1], we have Xα � GL(d, p),
G ◁ X, and Gα ◁ Xα. Further, by [26, Theorem 7.3 of Chapter 2], we can obtain that GL(d, p) has a
cyclic subgroup Zpd−1 and, for convenience, ⟨z⟩ := Zpd−1.

Lemma 4.4. If G � F+:Zp−1 and λ is a prime, then there are (λ−1)!(p−1)λ−1ϕ(p−1)−ϕ(pd−1)
|SL(d,p)| non-isomorphic

orientable vertex imprimitive complete maps.

Proof. Since o(a) = p − 1 = pd−1
λ

, it follows that zλ = a. Let

(1, β2, β3, · · · , βλ, 1a, βa
2, β

a
3, · · · , β

a
λ, · · · , 1

ap−2
, βap−2

2 , β
ap−2

3 , · · · , β
ap−2

λ )

be a cyclic permutation of F# such that βi = 1zi
and 2 ≤ i < λ.
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Thus, we have
zi : 1 7→ βi 7→ β2i−1 7→ · · · 7→ 1,

zi : β2 7→ βi+1 7→ β2i 7→ · · · 7→ β2,

· · ·

zi : βi−1 7→ β2i−2 7→ β3i−3 7→ · · · 7→ βi−1.

That is, zi can be identified with the permutation

zi = (1βiβ2i−1 · · · βpd−i+1)(β2βi+1β2i · · · βpd−i+2) · · · (βi−1β2i−2β3i−3 · · · βpd−1).

Thus, Gα = ⟨zi⟩ and a = zλ ∈ ⟨zi⟩. Further, i|λ, which is a contradiction, as λ is a prime.
Let (1, β2, β3, · · · , βλ, 1a, βa

2, β
a
3, · · · , β

a
λ, · · · , 1

ap−2
, βap−2

2 , β
ap−2

3 , · · · , β
ap−2

λ ) be a cyclic permutation of F#

such that β2 = 1z, and it gives rise to a unique orientable complete mapM1. We have

z : 1 7→ β2 7→ β3 7→ · · · 7→ βλ 7→ 1a
7→ βa

2 7→ · · · 7→ β
a
λ 7→ · · · 7→ 1,

namely, z can be identified with the permutation

z = (1, β2, · · · , βλ, 1a, βa
2, · · · , β

a
λ, · · · , 1

ap−2
, βap−2

2 , · · · , β
ap−2

λ ).

It follows that Aut(M1) = F+:⟨z⟩ = G.λ > G andM1 is arc transitive. Thus,M1 ∈ A1,A1 ⊂ Aλ and

|Aλ \ A1| = |Aλ| − |A1| = (λ − 1)!(p − 1)λ−1ϕ(p − 1) − ϕ(pd − 1).

So, X \G contains no element, which is an automorphism ofM′λ forM′λ ∈ Aλ \ A1. Since G ◁ X and

(X/G)M′λ = {xG ∈ X/G|(M′λ)
xG = (M′λ)

Gx = (M′λ)
x =M′λ} = G,

then we have that X/G acting onAλ \ A1 is semi-regular.
Let X act on Aλ \ A1. It follows that (M′λ)

X is an orbit of this action, and the length of this orbit
equals

|(M′λ)
X | =

|X|
|XM′λ |

=
|X|

|Aut(M′λ)|
=
|X|
|G|
=
|Zd

p:GL(d, p)|

|Zd
p:Zp−1|

= |SL(d, p)|.

Thus, by Lemma 4.3, there are

|Aλ \ A1|

|SL(d, p)|
=
|Aλ| − |A1|

|SL(d, p)|
=

(λ − 1)!(p − 1)λ−1ϕ(p − 1) − ϕ(pd − 1)
|SL(d, p)|

non-isomorphic orientable vertex imprimitive complete maps. □

Below, we give an example to show existence of the orientable vertex imprimitive complete maps.

Example 4.5. LetM be a Cayley map of Z3
3 with p = 3 and d = 3. Then G � Z3

3:Z2 is a Frobenius
group and Gα � Z2 acting on Z3

3 is half-transitive. Since 2 is not a primitive divisor of 33 − 1, it follows
thatM is an orientable vertex imprimitive embedding of K27, and Gα acting on Γ(α) has λ = 13 orbits.
Furthermore, by Lemma 4.4, we can obtain that there are |A13 |−|A1 |

|SL(3,3)| non-isomorphic such maps.
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Next, we can obtain the following results by the proof of Lemma 4.4.

Corollary 4.6. If λ = p1 p2 with pi different primes and i = 1, 2, then the number of non-isomorphic
orientable vertex imprimitive complete maps equals

|Ap1 p2 \ (Ap1 ∪Ap2)|
|SL(d, p)|

=
|Ap1 p2 | − |Ap1 | − |Ap2 | + |A1|

|SL(d, p)|
.

Corollary 4.7. If λ = p2
1 p2 with pi different primes and i = 1, 2, then the number of non-isomorphic

orientable vertex imprimitive complete maps equals

|Ap2
1 p2
\ (Ap1 p2 ∪Ap2

1
)|

|SL(d, p)|
=
|Ap2

1 p2
| − |Ap1 p2 | − |Ap2

1
| + |Ap1 |

|SL(d, p)|
.

It is an open problem to generalize the above corollaries for the general case in which λ = pl1
1 pl2

2 · · · p
lt
t ,

where pi(1 ≤ i ≤ t) are pairwise different primes and li ≥ 1 are arbitrary positive integers.

5. Proof of the main results

In this section, we complete the proof of Theorem 1.1 in view of the above series of results.
Proof of Theorem 1.1. LetM = (V, E, F) be an orientable vertex imprimitive complete map. Let
G = Aut(M). By Lemma 3.2, we have thatM is a Cayley map of Zd

p and G � Zd
p:Gα is a Frobenius

group, where Gα is a cyclic group for each α ∈ V , p is an odd prime, and d ≥ 2. Further, if Gα � Zp−1

acting on the neighborhood of α has λ orbits with λ(p − 1) = pd − 1 and λ ≥ 4 is a prime, then by
Lemma 3.3 and Lemma 4.4, there are exactly

[(λ − 1)!(p − 1)λ−1ϕ(p − 1) − ϕ(pd − 1)]/|SL(d, p)|

non-isomorphic orientable vertex imprimitive complete maps. □
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6. R. B. Richter, J. Širáň, R. Jajcay, T. W. Tucker, M. E. Watkins, Cayley maps, J. Combin. Theory Ser.
B, 95 (2005), 189–245. https://doi.org/10.1016/j.jctb.2005.04.007

7. M. Škoviera, J. Širáň, Regular maps from Cayley graphs, Part 1: balanced Cayley maps, Discrete
Math., 109 (1992), 265–276. https://doi.org/10.1016/0012-365X(92)90296-R

8. C. H. Li, Vertex transitive embeddings of complete graphs, J. Combin. Theory Ser. B, 99 (2009),
447–454. https://doi.org/10.1016/j.jctb.2008.09.002
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