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Abstract: This paper presents a novel hybrid algorithm that combines the Butterfly Optimization
Algorithm (BOA) and Quantum-behavior Particle Swarm Optimization (QPSO) algorithms, leveraging
gbest to establish an algorithm communication channel for cooperation. Initially, the population is split
into two equal subgroups optimized by BOA and QPSO respectively, with the latter incorporating the
Lévy flight for enhanced performance. Subsequently, a hybrid mechanism comprising a weight hybrid
mechanism, a elite strategy, and a diversification mechanism is introduced to blend the two algorithms.
Experimental evaluation on 12 benchmark test functions and the Muskin model demonstrates that
the synergy between BOA and QPSO significantly enhances algorithm performance. The hybrid
mechanism further boosts algorithm performance, positioning the new algorithm as a high-performance
method. In the Muskingum model experiment, the algorithm proposed in this article can give the best
sum of the square of deviation (SSQ) and is superior in the comparison of other indicators. Overall,
through benchmark test function experiments and Muskin model evaluations, it is evident that the
algorithm proposed in this paper exhibits strong optimization capabilities and is effective in addressing
practical problems.

Keywords: Quantum-behavior Particle Swarm Optimization; Butterfly Optimization Algorithm;
hybrid algorithm; NL5 Muskingum model

1. Introduction

Intelligent optimization algorithms are random search algorithms based on biological habits and natural
phenomena. In recent years, intelligent optimization algorithms have been applied in many fields, such
as medicine, engineering, and so on. Metanephritic algorithms can be classified into three main types:
biological evolution, natural phenomena, and species’ living habits. Biological evolution methods, like
Genetic Algorithms (GA) [1] and Differential Evolution (DE) [2], are inspired by biological genetics,
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mutation, and evolution strategies. Natural phenomenon algorithms are based on the physical laws
of nature, such as Sine Cosine Algorithm (SCA) [3] and Biogeography-Based Optimizer (BBO) [4].
Population life habits algorithms are inspired by the relationship between population individuals, including
Particle Swarm Optimization (PSO) [5], Cuckoo Search Algorithm (CSA) [6], and Butterfly Optimization
Algorithm (BOA) [7]. Scholars continue to develop new or improved algorithms despite the existence of
many algorithms already because the No Free Lunch Theory [8] argues logically that there is currently
no optimization technique capable of solving all optimization problems. Additionally, when dealing
with high-dimensional complex problems, metaheuristic algorithms tend to have slower convergence
speeds and lower accuracy, making them susceptible to getting stuck in local optima [9]. Therefore,
scientists persistently work on enhancing algorithms with superior performance to address experimental
requirements such as modeling simulation [10], path planning [11], and robot frameworks [12].

BOA [7] is an intelligent optimization algorithm that imitates the foraging and courtship behavior of
butterflies, and it has gained popularity among scientists and has been successfully applied in various
fields. For example, Aygül et al. [13] applied BOA to calculate maximum power point tracking in PV
systems under partial shadowing conditions. Arora and Anand [14] also used BOA to create learning
automata. Li et al. [15] developed an updated version of BOA based on the cross-entropy technique
to balance exploration and exploitation. However, its optimization performance significantly declines
when faced with complex problems. This can be attributed to two main factors. First, there needs to be a
balanced ratio between algorithmic exploration and search behavior exploitation throughout the search
process. Second, the optimization process heavily relies on individual butterfly communication. When
the optimal butterfly gets trapped in a local optimum, it attracts other butterflies, leading to premature
convergence. In order to overcome these problems, scholars have taken some measures to improve the
algorithm. Some scholars have rewritten the fragrance formula in the algorithm [16, 17], which have
some extent improved the convergence speed of the algorithm. However, the convergence accuracy and
robustness still need to be improved. Assiri [18] attempted to incorporate the logistic mapping into the
algorithm, but did not converge to the theoretical optimal value in function testing. Li et al. [19] applied
quantum bits, quantum spiral gates, and quantum non-gates to the algorithm in a non-stage manner,
improving its performance, but still having certain limitations when dealing high dimension problems.
BOA also has been hybridized with other metaheuristics, such as Hybrid Butterfly Flower Pollination
Algortihtm (HBFPA) [20] and Butterfly Artificial Bee Colony (BABC) [21].

Besides, the emergence of quantum computation theory has greatly influenced the field of computa-
tional science. Research focusing on incorporating quantum behavior into intelligent algorithms, such as
the quantum genetic algorithm [22], the quantum PSO [23], and other new metaheuristic algorithms [24],
has garnered significant interest. These advancements have successfully enhanced the efficiency and
performance of these algorithms and helped scholars solve practical problems [25]. One notable applica-
tion is the integration of quantum computation theory into optimization methods, with QPSO [26] being
a popular example. The algorithm’s ability to generate particles in a probabilistic manner throughout the
solution space helps it avoid getting stuck in local optima, making researchers favor this, and often using
QPSO as a tool for hybrid algorithms. Kumar et al. [27] proposed Cuckoo Search Adaptive Gaussian
Quantum-behavior Particle Optimization (CSAGQPSO), which combines CSA and Adaptive Gaussian
Quantum-behavior Particle Optimization (AGQPSO), a hybrid of two improved versions of QPSO,
and applied it to ordinary differential equations. In CSAGQPSO, CSA and AGQPSO respectively
undertake development and exploration tasks, which makes the algorithm simpler while having good
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performance. Mai et al. [28] combined QPSO and CSA, designing hybrid mechanisms to create a new
hybrid Cuckoo-Quantum-behavior Particle Swarm Optimization (C-QPSO), successfully estimating
the parameters of the Muskingum model. C-QPSO performs well and stands out in comparison with
several improved algorithms, but the running cost of the algorithm is relatively high because there are
many improvements in it. Wang et al. [29] introduced a novel QPSO variant by guiding it with the
length of the potential well (LPW) and assisting it with Adam (abbreviated as Adam-LGQPSO), a
combination of QPSO and Adam that enhances the algorithm’s efficiency. The algorithm introduces
the Adam algorithm in the initialization stage to improve the quality of the population and improve the
optimization quality, but the effect is not very good in benchmark function experiments.

Despite its effectiveness, there is still room for improvement in terms of convergence accuracy.
One tool that has shown promise in enhancing algorithm optimization performance is the concept
of Lévy flight. Lévy flight is a random walk process that combines both local and global search
strategies. In nature, many animals employ a mix of short and long distance searches to find food
in unpredictable environments. Inspired by this, researchers have been attracted to the Lévy flight
strategy and incorporated the idea of Lévy flight into swarm intelligence algorithms. Ling et al. [30]
proposed an enhancement to the Wolf Optimization Algorithm method by integrating Lévy flight, which
improved the global optimization capability of Lévy Wolf Optimization Algorithm. Zhong et al. [31]
introduced the opposition-based learning Equilibrium Optimizer algorithm, which combines Lévy flight
and evolutionary population dynamics to tackle high-dimensional global optimization problems. They
have found that by allowing the algorithms to explore candidate solutions that are far away from the
current optimal solution, the search space expands and the global search capability is enhanced, resulting
in improved performance.

The hybrid algorithm resulting from the combination is more likely to incorporate the strengths of
the two original algorithms while mitigating their weaknesses. Apart from HBFPA [20], BABC [21],
CSAGQPSO [27], C-QPSO [28], and Adam-LGQPSO [29] mentioned previously, there are other
successful instances as well [32, 33]. By examining these successful cases, it is argued that the design
of hybrid algorithms should emphasize the cooperative work between algorithms, with a key focus on
inter-algorithm communication. The update mechanism of QPSO and BOA is simple and effective,
which has a certain advantage in the design of hybrid algorithms. Second, in the update mechanisms
of QPSO and BOA, the individual’s position update is influenced by the gbest point, promoting the
cooperative work between the two algorithms and enabling them to leverage each other’s strengths
while minimizing their limitations. In addition, to maintain the computational speed of the algorithm,
we divide the population into two equally large subgroups during the initialization phase, and design a
hybrid mechanism to fuse the population during the update phase to further strengthen communication
between algorithms.

Therefore, in this article, we propose a new hybrid algorithm that combines BOA and QPSO and
uses Lévy flight, and we apply it to evaluate the parameters of the Muskingum model. BOA is an
algorithm with a fast convergence rate, but it is prone to local optima, while QPSO is an algorithm with
good global search ability, and the two can form functional complementarity. Specifically, the algorithm
divides the population into two equally sized subgroups during the initialization phase, optimizes them
through two algorithms, and then mixes the subgroups through a weight mixing mechanism during the
optimization phase. In brief, the contributions of this paper are as follows:

• We propose a hybrid algorithm to estimate the parameters of the nonlinear five parameters Musk-
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ingum model, by combining both advantages of QPSO and BOA.
• We conduct extensive simulation experiments to evaluate our proposed algorithm, and the results

show that our algorithm has better performance than some classic and recent offloading algorithms.
• We formulate the Muskinian model as parameter estimation problems of numerical solution to

a differential equation, use new algorithms to evaluate model parameters, and improve the fit
between evaluation values and observed values.

It should be pointed out that there has tremendous interest in developing hybrid intelligent algorithms
to estimate the parameters of Muskingum models [34]. For example, Ouyang et al. [35] proposed a
hybrid approach that combined PSO with the Nelder-Mead simplex (NMS) algorithm to optimize the
parameters of the Muskingum model. Unlike traditional methods, the hybrid PSO-NMS approach does
not require initial values for each parameter. Okkan and Kirdemir [36] combined the PSO algorithm with
the Levenberg-Marquardt (LM) algorithm to estimate the parameters of a nonlinear Muskingum model
with three parameters. Akbari and Hessami-Kermani [37] utilized the PSO-GA algorithm to optimize
Muskingum parameters. It is important to note that the parameter optimization of the Muskingum model
with four parameters (NL4) [28] is still in its early stages, and research on the Muskingum model with
five parameters (NL5) [38] is even more limited. Thus, we will apply the proposed L-QBOA to estimate
the parameters of the NL5 Muskingum model and hope to provide an effective new method for the study
of the Muskingum model.

This article will describe L-QBOA in detail in Section 2, verify the performance of the algorithm
through benchmark function testing in Section 3 and apply it to the NL5 Muskingum model, and finally
summarize the full text in Section 4.

2. A new hybrid algorithm

The main purpose of this paper is to present a new algorithm called L-QBOA, which is based on
QPSO and BOA. The QPSO algorithm was modified and combined with BOA to create L-QBOA. To
better understand L-QBOA, we will first provide a detailed description of BOA and QPSO.

2.1. Butterfly Optimization Algorithm

Butterfly Optimization Algorithm (BOA) [7] is an intelligent algorithm that simulates the feeding
behavior of butterflies. In this algorithm, there are N butterflies.

X= [X1, X2, · · · , XN] , (2.1)

where each butterfly Xi represents a solution, i = 1, · · · ,N. The fitness of the butterfly is related to
the solution vector of the butterfly. Butterflies can emit specific fragrances, communicate, and attract
each other through the fragrances scattered in the air. Let c, I, and a be the perception coefficient, the
stimulus intensity, and the power exponent, respectively. The general value of the power exponent a
is 0.01. The equation of fragrance f is given by

f = cIa, (2.2)

and then c is given by

ct+1 = ct +
b

ct × MaxIT
, (2.3)
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where b is a constant with a value of 0.025, and MaxIT is the maximum number of iterations. Each
butterfly will fly randomly or move towards the one that emits a stronger fragrance. During the search
process, butterflies have two modes of movement.

First, one of the butterflies emits the strongest fragrance and attracts them by being perceived by
other butterflies. This is the global search stage for butterflies:

Xt+1
i = Xt

i +
(
r2 × gbest (t) − Xt

i

)
× fi. (2.4)

Second, when the scent in the air cannot be accurately perceived, they will be randomly attracted by
a fragrance and move randomly. At this point, butterflies perform a local search:

Xt+1
i = Xt

i +
(
r2 × Xt

j − Xt
k

)
× fi. (2.5)

Finally, butterflies will choose one of the modes for optimization in a probabilistic manner:{
Global search, r ≤ p
Local search, r > p

. (2.6)

In above equations, r is a random number [0, 1], p is usually set to 0.8, gbest is the optimal solution
in the current iteration, fi is the fragrance of the ith butterfly, and Xt

j and Xt
k respectively represent the

solution vector of the jth and kth butterfly in the t iterations.

2.2. Modified Quantum-behavior Particle Swarm Optimization (MQPSO)

To improve the performance of QPSO [26], we add Lévy flight into QPSO by using the idea of
reference [39]. Next, we give some details of the modification as follows.

In this algorithm, there are N particles:

Y= [Y1,Y2, . . . ,YN] . (2.7)

Each particle in the algorithm has corresponding local attractors Pi:

Pi = φ (t) × pbesti (t) +
[
1 − φ (t)

]
× gbest (t) , (2.8)

where pbesti (t) is the particle’s history optimal position, and φ (t) is a random number in [0, 1].
Here, Lévy flight, intensive short-range exploration and occasional long-range search, are used to

expand the algorithm’s search space and enrich the optimization methods of algorithms. Let m(t) represent
the mean of all particle’s history optimal position and u is a rand number in [0,1]. When u(t) > 0.5,
particles will update their positions in Lévy flight:

Y t+1
i = L(λ) ×

∣∣∣Y t
i − Pi

∣∣∣ ± α ∣∣∣m (t) − Y t
i

∣∣∣ × ln
(
1
u

)
, (2.9)

where α, called the contraction-expansion coefficient, decreases linearly from 1 to 0.5, and L(λ) is
Lévy flight:

L(λ) = 0.01 ×
ra × σ

|rb|
1
β

, (2.10)
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where ra and rb are two standard normally distributed random numbers, β is a constant equal to 1.5, and
σ is given by

σ =

Γ (1 + β) × sin
(
πβ

2

)
Γ
(

1+β
2

)
× β × 2

β−1
2


1
β

. (2.11)

Γ (x) denotes the Gamma function. When u(t) ≤ 0.5, the ith particle’s position is renewed by

Y t+1
i = Pi ± α ×

∣∣∣m (t) − Y t
i

∣∣∣ × ln
(
1
u

)
. (2.12)

2.3. Lévy Quantum-behavior Butterfly Optimization Algorithm

The butterfly optimization algorithm exhibits a strong evolutionary mechanism. However, it also
shares some limitations with other general metaheuristic algorithms. These include a slow rate of
convergence, low precision, and a tendency to get trapped in local optima. To address these shortcomings,
many hybrid algorithms have been developed to enhance performance by integrating the strengths
of different algorithms. In this study, we propose a new algorithm, the Lévy Quantum-behavior
Butterfly Optimization Algorithm (L-QBOA), by combining the above two algorithms and designing
hybrid mechanisms. The Lévy quantum-behavior butterfly optimization algorithm will be explained in
detail below.

In this method, the populations are updated by using BOA and MQPSO. First, the swarm is randomly
divided into two equally sized sub-swarms X and Y during the initialization phase, and will not be
re-divided thereafter. Then, swarm X is updated by BOA and swarm Y is updated using MQPSO,
and their membership relationships remain unchanged in the subsequent iteration process. Later, L-
QBOA performs the following mechanisms (weight hybrid mechanism, elite strategy and diversification
mechanism) to continue the optimization work in the optimization phase.

2.3.1. Weight hybrid mechanism

The algorithm divides the population into two subgroups during the initialization phase and optimizes
them through two algorithms. To enhance collaboration between algorithms, a combination method
is planned to be constructed during the optimization phase. Several combination ideas have been con-
sidered: first, sequentially performing different meta-heuristic algorithms overall; second, sequentially
performing different meta-heuristic algorithms in each iteration [40]; and third, combining basic ideas
of different meta-heuristic algorithms to design a new population updating strategy [41]. The second
approach is deemed more suitable for BOA and QPSO, we argue.

Different from literature [40], weights are calculated for the two algorithms before mixing, rather
than random mixing. Because the algorithm proposed in this article uses the basic BOA algorithm and
QPSO with Lévy flight, there may be some differences in the quality of particles optimized through the
two algorithms.

In each iteration, a new particle Z is produced

Zt
i = ηY × Y t

i + ηX × Xt
i , (2.13)

where
ηY =

fX

fX + fY
, ηX =

fY

fX + fY
, (2.14)
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or

ηY =
fY

fX + fY
, ηX =

fX

fX + fY
, (2.15)

and fX and fY are the fitness of Xt
i and Y t

i , respectively. The expressions in Eq (2.14) or (2.15) can assign
weights to X in BOA and Y in MQPSO to ensure that the new particle has a certain degree of randomness
while appearing in a relatively good position. For example, use Eq (2.14) in minimizing optimization
problems; if Y t

i is better, fY will be smaller and ηY will be larger, allowing the information of particles
with relatively good positions to be more fully retained in Z. If it is a maximization optimization
problem, use Eq (2.15); if Y t

i is better, fY will be larger and ηY will be larger.
Then, Z is compared with X and Y , keeping the better ones, and pbest and gbest in the MQPSO

are updated. Here, the quality of Z is not necessarily better than X and Y , so in order to ensure the
convergence of the algorithm, we can not blindly retain Z, so it is necessary to choose the best of Z,
X and Y particles. In addition, the existence of Z maintains the diversity of algorithm population to
a certain extent, so this mechanism is multi-functional. This can lead the algorithm to develop in a
positive direction.

2.3.2. Elite strategy

Whether it is BOA or MQPSO, gbest has always been utilized as a guiding factor in the algorithm’s
operation, thus the quality of its position greatly affects the algorithm’s performance. To enhance the
quality of gbest, we propose an elite strategy for its optimization. This strategy specifically targets the
improvement of this position and generates a new random position near it, following a normal distribution

gbestnew = gbest +
range
ξ
× randn (1,D) , (2.16)

where D represents the dimension of the problem, range = (randge1, randge2, . . . , randgeD), and
randged (d ∈ [1,D]) are the maximum distance values of the search space for each dimension, and ξ is
a larger positive number that can be adjusted according to different problems. Finally, we select the
superior particle out of the two.

2.3.3. Diversification mechanism

Population diversity is an important indicator that significantly affects algorithm performance. To
maintain diversity, a diversification mechanism that mixes the mechanisms of literature [39] and
literature [42] is employed in L-QBOA in the second half of the algorithm optimization work. The
mechanism uses NS , a counter for the number of individual stagnation generations, recording the
update of the best solution gbest. If gbest remains unchanged in a given iteration, NS is incremented
by one; otherwise, it is reset to zero. When the value of NS exceeds the set threshold NS MAX, the
algorithm determines that the population is overcrowded, resulting in a decrease in population diversity
and falling into local optima. At this point, it is necessary to re-initialize (ω%) of the poorer particles to
maintain population diversity. What needs to be considered is that re-initializing too many particles
will reduce the convergence speed of the algorithm, but re-initializing too few particles has little effect
on maintaining the diversity of the algorithm. So, we need to set the two parameters according to the
actual situation.
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Algorithm 1 L-QBOA
Input: Population size, Dimension, Perception coefficient, Stimulus intensity, Power exponent, Con-

version probability
Output: The best fitness

Initialize the population and divided into tow sub-swarms X and Y
while termination criterion satisfied do

Update swarm X in two stages: Global search and Local search (Eq (2.6)), by using Eqs (2.4)
and (2.5)

Update swarm Y by using Eqs (2.9) and (2.12)
Operate the weight hybrid mechanism, generate Z by using Eq (2.13)
Operate the elite strategy by using Eq (2.16) and retain the optimal
Operate the diversification mechanism
Keep the best solution gbest
Iterations + 1

end while

Start

Initializatie parameters and population

Divide the population into two identical 

subswarms X and Y

Termination criterion satisfied

Update X by BOA Update Y by MQPSO

Generate Z by the weight hybrid mechanism

Update gbest by the elite strategy

Using the diversification mechanism to maintain 

population diversity

End NO

YES

Figure 1. Flow chart of proposed L-QBOA.

In the proposed L-QBOA described in this article, two independent populations are optimized by
BOA and MQPSO separately. However, both algorithms jointly optimize one gbest, which represents
the optimal solution from the two populations. This gbest serves as a guiding factor for algorithm
optimization, allowing the two independent algorithms to converge in the same direction. Real-time
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updates to the gbest during the optimization process ensures algorithm convergence. Additionally, the
Z particles generated in the weight hybrid mechanism consist of X and Y particles. This inclusion helps
maintain population diversity to a certain extent while retaining some information from X and Y particles.
The algorithm establishes communication channels between the two algorithms using the gbest and Z
particles, enabling each algorithm to function independently while maintaining their synergy.

The pseudo code of L-QBOA is shown in Algorithm 1. Meanwhile, the flow chart of the proposed
L-QBOA algorithm is shown in Figure 1.

2.4. L-QBOA performance analysis

In this part, this paper analyzes the computational complexity and memory efficiency of L-QBOA.
These measure denote the time complexity and space complexity of the algorithm, respectively.

2.4.1. Computation complexity

Computational complexity is a crucial metric in computer science that measures the difficulty of
algorithms by assessing their efficiency and the computational resources they require. In general,
the computational complexity of an algorithm tends to increase as the problem size grows, even if
the algorithm remains the same. The complexity of algorithms plays a significant role in selecting
appropriate algorithms or problem solutions. Hence, conducting a computational complexity analysis is
essential to determine the feasibility and practicality of an algorithm for a given problem.

L-QBOA’s computational complexity consists of four main components: population initialization,
fitness value calculation, swarm location update, and the weight hybrid mechanism. We denote N
as the population size, D as the dimension, and T as the maximum number of iterations. During the
swarm initialization phase, a random initialization generates a matrix, which requires a time complexity
of O(ND). Then, the fitness value of the population is calculated with a time complexity of O(ND).
When starting the iteration, the time complexity is proportional to T . In this phase, both the temporal
complexity of fitness value calculation and location update are O(ND). Finally, the weight hybrid
mechanism requires a computational complexity of O(ND). So, L-QBOA’s computation procedure
is described as

O(ND) + O(ND) + O(T ND) + O(T ND) + O(T ND)
=O(T ND) .

(2.17)

The computational complexity of BOA and QPSO can be easily calculated as O(T ND). So, the
design of the new algorithm L-QBOA does not increase computational complexity.

2.4.2. Memory efficiency

Spatial complexity is a metric that measures the memory resources used by algorithms. It quantifies
the additional memory space needed during algorithm execution and how it increases with input size.
When analyzing spatial complexity, we mainly consider the memory occupied by data structures,
variables, pointers, and recursive calls. This analysis is essential in algorithm design and analysis as it
helps evaluate resource consumption, choose suitable data structures, and optimize memory usage.

It is worth noting that the space complexity of the parameter setting of the algorithm is constant, that
is, it is not affected by the complexity of the problem. The space complexity of L-QBOA is determined
to be O(N), where N is the size of the problem. This complexity is mainly caused by the update of the
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population during iteration. The time complexity of the population is O(N), so the space complexity of
BOA and QPSO is O(N).

In summary, based on the analysis, it can be concluded that L-QBOA and the two basic algorithms
(BOA and QPSO) have similar space complexity characteristics, that is, linear space complexity. This
means that the amount of additional memory space required by these algorithms grows proportionally
to the problem size.

3. Evaluation and experimental results

In this section, two class of numerical experiments are given to demonstrate the performance of our
proposed hybrid algorithms. The first is the benchmark function experiment, and the other part is the
NL5 Muskingum Model experiment.

3.1. Experimental results of benchmark functions

All these algorithms are implemented by MATLAB R2016a and all runs are performed on a laptop
with and an Intel(R) Core(TM) i5-7300HQ CPU @ 2.50 GHz, with 2*8 GB of RAM and with
Windows 10 as the operating system. In the following experiments, the population size is set as 100,
and the maximum number of iterations is 1000, and each operation is independently run 30 times. The
parameter settings of BOA [7], MQPSO, QPSO + BOA, QSSA (2022) [43], HBA (2022) [44] and
L-QBOA are shown in Table 1.

Table 1. Parametric settings of algorithms.

Algorithm Parameters

BOA a = 0.01, b = 0.025, c = 0.01
MQPSO α linear decrease from 1 to 0.5
QPSO + BOA a = 0.01, b = 0.025, c = 0.01, α linear decrease from 1 to 0.5
QSSA ω1 = 0.6, ω2 = 0.9, c1 = 0.6, c2 = 0.9, Pdp = 0.2, P = 0.5, s f = 32.8
HBA β = 6, C = 2
L-QBOA a = 0.01, b = 0.025, c = 0.01, α linear decrease from 1 to 0.5, ξ = 1000, NS MAX= 5 [42], ω= 10 [39]

Before explaining the experiment, let us first explain an algorithm: QPSO + BOA. Compared to
L-QBOA, this algorithm does not have the weight hybrid mechanism, elite strategy, and diversification
mechanism. In QPSO + BOA, the gbest in Eqs (2.8) and (2.4) is optimized by MQPSO and BOA jointly
and BOA and MQPSO use gbest as the information exchange channel. The purpose of sorting out such
an algorithm is to more intuitively reflect the usefulness of our designed hybrid mechanism.

As is shown in Tables 2 and 3, we select 12 benchmark functions as the test set. F1–F6 are unimodal
functions, and F7–F12 are multimodal functions. The characteristics of the unimodal functions and
the multimodal functions are shown in these two tables, including the function name, expression of
functions, dimension, the search area, and the theoretical optimal value. In order to illustrate the
advantages of our proposed L-QBOA, we use different algorithms (BOA [7], MQPSO, QPSO + BOA,
QSSA (2022) [43], HBA (2022) [44] and L-QBOA) to solve the minimum value of these benchmark
functions. Here, in the following numerical experiments, we will analyze the performance of these
algorithms from the following five aspects: convergency accuracy comparison, convergency speed
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comparison, robustness comparison, high dimension, and average CPU time.

Table 2. The description of classical unimodal functions.

Function Name Expression D Rang Optimum

F1 Discus F(x) = 106 × x2
1 +

D∑
i=2

x2
i 30 [-100,100] 0

F2 Sphere F(x) =
D∑

i=1
x2

i 30 [-100,100] 0

F3 Sum Squares F(x) =
D∑

i=1
ix2

i 30 [-10,10] 0

F4 Bent Cigar F(x) = x2
1 +

D∑
i=2

106 × x2
i 30 [-1.28,1.28] 0

F5 Schwefel 2.22 F(x) =
D∑

i=1
|xi| +

D∏
i=1
|xi| 30 [-10,10] 0

F6 Schwefel 1.2 F(x) =
D∑

i=1

(
i∑

k=1
xk

)2

10 [-10,10] 0

Table 3. The description of classical multimodal functions.

Function Name Expression D Rang Optimum

F7 Rastrigin F(x) =
D∑

i=1
(x2

i − 10 cos(2πxi) + 10) 30 [-5.12,5.12] 0

F8 Schaffer F(x) = 0.5 +
sin2(
√

x2
1+x2

2)−0.5
(1+0.001(x2

1+x2
2))2 2 [-100,100] 0

F9 Boachevsky2 F(x) = x2
1 + 2x2

2 − 0.3 cos (3πx1) cos (4πx2) + 0.3 2 [-100,100] 0
F10 Boachevsky3 F(x) = x2

1 + 2x2
2 − 0.3 cos (3πx1 + 4πx2) + 0.3 2 [-100,100] 0

F11 Griewank
F(x) = 1

4000 (
D∑

i=1
(xi − 100)2)

−
D∏

i=1
cos( xi−100

√
i

) + 1
30 [-600,600] 0

F12 Ackley
F(x) = −20 exp(−0.2

√
1
D

D∑
i=1

x2
i )

− exp( 1
D

D∑
i=1

cos(2πxi)) + 20 + e

30 [-32,32] 0

3.1.1. Convergency accuracy comparison

All statistical results viz, mean values (AVE), standard deviation (STD), maximum (MAX), and
minimum (MIN) values of all benchmark functions and average CPU times are shown in Tables 4
and 5. The bold values in these tables represent the best values of the index in the function texts. Let
us first examine the experimental data comparison between QPSO + BOA and BOA and MQPSO.
The convergence accuracy of QPSO + BOA in F1–F8 is higher than that of BOA and MQPSO, which
demonstrates that the combination of BOA and MQPSO can enhance the algorithm’s performance.
Even though MQPSO itself may be superior to BOA, their combination can further optimize each
other’s performance. When comparing L-QBOA and QPSO + BOA, it becomes evident that the
performance of L-QBOA is significantly better. This proves that the hybrid mechanism can effectively
enhance the algorithm’s performance by balancing exploration and exploitation. Then we compare the
performance of algorithms L-QBOA, QSSA, and HBA. Among the three algorithms, QSSA had the

Electronic Research Archive Volume 32, Issue 4, 2380–2406.



2391

lowest performance, while HBA emerged as the winner in the F6 experiment. Interestingly, L-QBOA
performed the best in all experiments except for F6. In F12, MQPSSO, QPSO + BOA, QSSA, and
L-QBOA behaved the same. So, it can be concluded that L-QBOA has high convergence accuracy.

Table 4. Comparison of L-QBOA with different algorithms (F1–F6).

Function BOA MQPSO QPSO + BOA QSSA HBA L-QBOA

F1

AVE 4.8485e-16 5.5338e-122 3.6293e-165 1.1277e-193 1.0977e-269 0
STD 4.1044e-17 2.2906e-121 0 0 0 0
MAX 5.7260e-16 1.2477e-120 6.9485e-164 2.1418e-192 2.5657e-268 0
MIN 3.9228e-16 4.0628e-135 3.9729e-174 2.4595e-267 8.1545e-292 0

F2

AVE 4.5843e-16 6.2144e-121 1.0462e-169 1.7462e-202 1.3149e-272 0
STD 3.7739e-17 3.4037e-120 0 0 0 0
MAX 5.3457e-16 1.8643e-119 1.9612e-168 5.2386e-201 2.5720e-271 0
MIN 3.7792e-16 6.2858e-140 3.2071e-179 5.4300e-284 6.2961e-288 0

F3

AVE 4.9001e-16 5.4942e-122 8.9987e-167 1.7925e-195 2.6509e-270 0
STD 5.3072e-17 3.0065e-121 0 0 0 0
MAX 6.0399e-16 1.6468e-120 2.4517e-165 5.3774e-194 7.2587e-269 0
MIN 3.9072e-16 3.3441e-139 1.5572e-175 3.3906e-273 1.1139e-291 0

F4

AVE 5.1221e-16 5.9203e-116 9.8648e-160 6.1051e-196 9.2267e-267 0
STD 4.2817e-17 3.2425e-115 4.1096e-159 0 0 0
MAX 6.2509e-16 1.7760e-114 2.1231e-158 1.7774e-194 2.2114e-265 0
MIN 4.3181e-16 6.0132e-129 6.0412e-168 5.5357e-274 4.7684e-288 0

F5

AVE 1.2651e-02 3.5567e-25 4.1138e-96 6.3785e-133 1.2325e-140 0
STD 4.7360e-03 1.1399e-24 5.6488e-96 3.1551e-132 6.6602e-140 0
MAX 1.9514e-02 5.0722e-24 1.8074e-95 1.7242e-131 3.6496e-139 0
MIN 2.0397e-03 7.9370e-01 3.9894e-100 4.9501e-194 1.7922e-148 0

F6

AVE 2.9927e-04 1.5666e-45 2.5032e-107 1.3487e-06 0.0001e-309 1.7925e-197
STD 5.1149e-05 5.7580e-45 1.3709e-106 2.6657e-06 0 0
MAX 5.1316e-04 2.3407e-44 7.5086e-106 1.2390e-05 6.4229e-323 4.3437e-196
MIN 2.2260e-04 7.1556e-31 3.4746e-125 1.0382e-09 0 1.0408e-222

3.1.2. Convergence speed comparison

The simulation graphs of algorithm iteration curves for 12 experiments are displayed in Figures 2
and 3. The convergence speeds of QPSO + BOA, MQPSO, and BOA were compared in 12 experiments.
QPSO + BOA exhibited the fastest convergence speed, attributed to the cooperative effect of QPSO and
BOA. It was observed that L-QBOA outperformed QPSO + BOA due to the enhanced convergence
speed facilitated by the hybrid mechanism. QPSO + BOA has a certain degree of performance
improvement compared to MQPSO and BOA, but due to the insufficient fine-grained optimization
ability of algorithms, the algorithms cannot converge. When facing multimodal functions, BOA is prone
to falling into local optima, making it difficult to converge to the optimal solution. In the initial eight
experiments, QSSA exhibited slower convergence compared to HBA and L-QBOA. HBA demonstrated
the fastest convergence in experiments F6 and F8, whereas L-QBOA outperformed in the remaining six
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experiments. The last four experiments showed comparable performance between the two algorithms.
L-QBOA converges the fastest in most experiments. Consequently, it can be concluded that L-QBOA
possesses a significant advantage in terms of convergence speed. (Notes: The algorithms appears to
do not converge in most of the test functions, but in reality, the data output from MATLAB shows
convergence (see Tables 4 and 5), which is a normal phenomenon [30, 31, 45, 46].)
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Figure 2. The convergence curves of all algorithms in unimodal benchmark functions.

3.1.3. Robustness comparison

In order to compare the robustness of L-QBOA with BOA, MQPSO, QPSO + BOA and QSSA, we
chose a search space of 30 dimensions with a maximum generation of 1000 for all test functions. The
accuracy of all function experiments is 0, except for the Ackley function. Due to the particularity of
the Ackley function, we set its corresponding experimental accuracy to 8.8818e-16. Each instance is
calculated 30 times, and the relevant success rates and average iteration times of the five algorithms are
shown in Table 6. The optimal values for each experiment are bold in this table. From the table, it can
be seen that for unimodal function testing, in F1–F5, only L-QBOA can converge to the optimum with a
success rate of 100%, while other algorithms have a success rate of 0, and only HBA can converge to the
best in F6, but with a success rate of only 33.33%. In the case of multi-modal functions, QPSO + BOA
has a higher success rate compared to BOA and MQPSO. Even when the success rate is the same,
QPSO + BOA has a smaller average number of iterations compared to MQPSO and BOA. This is
attributed to the synergistic effect of the two algorithms. The success rate of L-QBOA is the same as
QPSO + BOA, but L-BOA has fewer iterations. It seems that the hybrid mechanism has played a role.
Furthermore, for the multimodal functions, L-QBOA outperforms QSSA in terms of success rate and
average number of iterations. For the success rate, L-QBOA has a 100% success rate of six, while
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HBA has only five. Although HBA requires an average of 1 less number of times in F9 experiments
than L-QBOA, L-QBOA outperforms HBA in the remaining 5 experiments. Therefore, in terms of
robustness, L-QBOA is superior.
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Figure 3. The convergence curves of all algorithms in multimodal benchmark functions.

3.1.4. High dimensional testing

In order to test the performance of L-QBOA in solving high-dimensional optimization problems,
the dimensions of the F1, F2, F6, F7, F11, and F12 were set to 100, 500, and 1000, respectively for
experiments, while other parameters settings remain unchanged, listed in Tables 7–9.

Table 4 illustrates that the performance of the F6 using the L-QBOA algorithm is inferior to that
of HBA. However, when the dimension of function is increased to 100, 500, and 1000, L-QBOA
outperforms HBA. In experiments involving the F1 and F2, only the L-QBOA consistently computes the
theoretical optimal value. As the dimension increases from 100 to 1000, all algorithms show a certain
level of performance decline, except for L-QBOA which exhibits minimal decline.

When analyzing the data of the F7, F11, and F12 functions, combining Figures 4 and 5 can
facilitate the comparison of algorithms. Figures 4 and 5 display the simulation convergence curves of
three functions with dimensions of 500 and 1000, repectively. It is evident that L-QBOA algorithm
demonstrates a clear advantage in computing F7. For F11, the performance of L-QBOA is on par
with QSSA. However, in the case of F12, L-QBOA still has a slight advantage. Overall, L-QBOA has
demonstrated good performance in computing high-dimensional optimization problems.
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Table 5. Comparison of L-QBOA with different algorithms (F7–F12).

Function BOA MQPSO QPSO + BOA QSSA HBA L-QBOA

F7

AVE 4.6304e-14 1.1842e-16 0 0 0 0
STD 5.9728e-15 6.4863e-16 0 0 0 0
MAX 6.2172e-14 3.5527e-15 0 0 0 0
MIN 3.5527e-14 0 0 0 0 0

F8

AVE 1.6193e-03 4.4409e-17 0 1.2955e-03 0 0
STD 3.6828e-03 2.3297e-16 0 3.3592e-03 0 0
MAX 9.7160e-03 1.2768e-15 0 9.7159e-03 0 0
MIN 1.9984e-15 0 0 0 0 0

F9

AVE 6.2172e-16 0 0 6.5494e-02 0 0
STD 3.4294e-16 0 0 1.0175e-01 0 0
MAX 9.9920e-16 0 0 2.1831e-01 0 0
MIN 0 0 0 0 0 0

F10

AVE 7.7716e-17 0 0 2.0539e-16 0 0
STD 1.9428e-16 0 0 4.5756e-16 0 0
MAX 8.3267e-16 0 0 2.4980e-15 0 0
MIN 0 0 0 0 0 0

F11

AVE 2.5498e-15 0 0 0 0 0
STD 2.5163e-16 0 0 0 0 0
MAX 2.9976e-15 0 0 0 0 0
MIN 2.1094e-15 0 0 0 0 0

F12

AVE 1.8551e-13 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16
STD 7.1957e-15 0 0 0 0 0
MAX 2.0339e-13 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16
MIN 1.7497e-13 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16
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Figure 4. The convergence curves of algorithms in F7, F11, and F12 with 500 dimensions.
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Table 6. Success ratio and average iterations comparison.

Function Criteria BOA MQPSO QPSO + BOA QSSA HBA L-QBOA

F1 Success ratio 0 0 0 0 0 100%
Dsicus Average iterations - - - - - 461.5333
F2 Success ratio 0 0 0 0 0 100%
Sphere Average iterations - - - - - 459.2000
F3 Success ratio 0 0 0 0 0 100%
Sum Square Average iterations - - - - - 456.2333
F4 Success ratio 0 0 0 0 0 100%
Bent Cigar Average iterations - - - - - 462.2333
F5 Success ratio 0 0 0 0 0 100.00%
Schwefel 1.2 Average iterations - - - - - 764.1333
F6 Success ratio 0 0 0 0 33.33% 0
Schwefel 2.22 Average iterations - - - - 974.100 -
F7 Success ratio 0 96.67% 100% 100% 83.33% 100%
Rastrigin Average iterations - 183.4000 169.1379 116.0667 516.300 33.0690
F8 Success ratio 0 93.33% 100% 86.67% 100% 100%
Schaffer Average iterations - 480.6000 359.8333 561.6667 176.1667 65.4000
F9 Success ratio 10% 100% 100% 70% 100% 100%
Boachevsky2 Average iterations 980.6000 166.4667 66.6 368.2414 23.7333 24.7667
F10 Success ratio 70% 100% 100% 23.33% 100% 100%
Boachevsky3 Average iterations 469.8000 512.7000 177.4667 929.6667 42.3667 24.5333
F11 Success ratio 0 100% 100% 100% 100% 100%
Griewank Average iterations - 181.7667 67.3000 364.5667 53.4000 26.4000
F12 Success ratio 0 100% 100% 100% 100% 100%
Ackley Average iterations - 764.5000 102.5667 53.0667 85.6667 35.5333

3.1.5. Average CPU time comparison

For an intelligent algorithm, its intelligence is partly reflected in high optimization performance and
fast running time. Part of our work is checking the running time of each algorithm. The average CPU time
of all methods is shown in Table 10. It could be seen that QPSO + BOA runs in less time than MQPSO,
indicating that dividing the population into two subgroups during the initialization phase can reduce
algorithm running costs. While the hybrid mechanism may slightly increase runtime, in most experiments,
the algorithm’s execution time is still lower than that of the QSSA algorithm. Therefore, the design of
L-QBOA focuses on enhancing algorithm performance while keeping operating costs manageable.

3.2. Experimental results of the NL5 Muskingum model

To further verify the effectiveness and advantages of our presented algorithm, L-QBOA is applied to
the parameter estimation problem of the NL5 Muskingum model

dS (t)
dt
= I(t) − O(t), (3.1)

S (t) = K[xI(t)α1 + (1 − x)O(t)α2]m, (3.2)
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where S (t), I(t), and O(t) represent channel storage, inflow, and outflow at time t, respectively; K is the
storage-time constant; x is a weight factor; α1, α2 are flow parameters; and m is an exponent parameter.

Table 7. Results obtained by L-QBOA and compared algorithms with 100 dimensions.

Function BOA MQPSO QPSO + BOA QSSA HBA L-QBOA

F1

AVE 3.2611e-03 4.6528e-40 1.4488e-161 1.0948e-65 4.2255e-139 0
STD 2.6664e-04 2.5476e-39 7.5410e-161 5.9967e-65 2.2118e-138 0
MAX 3.7336e-03 1.3954e-38 4.1355e-160 3.2845e-64 1.2130e-137 0
MIN 2.7145e-03 9.6926e-60 7.9964e-170 0 4.8298e-155 0

F2

AVE 3.7530e-04 1.0997e-51 2.1714e-170 2.8116e-12 3.0805e-141 0
STD 3.5151e-05 5.0870e-51 0 1.5063e-11 1.6872e-140 0
MAX 4.5002e-04 2.7590e-50 3.5079e-169 8.2556e-11 9.2411e-140 0
MIN 2.9933e-04 1.4322e-62 2.2291e-177 1.7506e-291 3.5827e-159 0

F6

AVE 1.4651e-03 2.0973e-23 7.5115e-105 1.5832e+02 5.6416e-91 1.4673e-117
STD 1.1824e-04 7.7875e-23 3.9592e-104 3.1411e+01 3.0788e-90 7.7904e-117
MAX 1.6786e-03 3.2263e-22 2.1701e-103 2.3700e+02 1.6865e-89 4.2703e-116
MIN 1.2205e-03 3.1265e-36 3.7964e-119 1.1277e+02 5.8680e-115 6.5306e-133

F7

AVE 1.0447e+02 0 0 6.7733e+00 2.7303e-01 0
STD 1.6418e+01 0 0 2.2465e+01 1.0492e+00 0
MAX 1.3480e+02 0 0 9.9712e+01 5.0197e+00 0
MIN 6.9403e+01 0 0 0 0 0

F11

AVE 5.0613e-03 0 0 0 0 0
STD 2.8156e-04 0 0 0 0 0
MAX 5.4629e-03 0 0 0 0 0
MIN 4.2910e-03 0 0 0 0 0

F12

AVE 2.0349e+01 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16
STD 1.9773e-01 0 0 0 0 0
MAX 2.0591e+01 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16
MIN 1.9811e+01 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16

In order to estimate the parameters K, x, α1, α2, and m in Eq (3.2), we use the following steps to
construct an optimization problem:

Step 1: Assume I(ti) and O(ti) respectively represent the observed values of inflow and outflow,
where ti = i/NT is the time nodal in a given time interval [0,T ] for i = 0, 1, . . . ,N. Otherwise, let Ô(ti)
be the calculation values of outflow, and the initial value is considered to be the same as the initial
inflow: Ô(t0) = O(t0).

Step 2: For the time point ti−1, we calculate S (t) by using Eq (3.2).
Step 3: Use the backward difference formula to approximate the first-order derivative of Eq (3.1),

and combining with Eq (3.2), we obtain

∆S (ti)
∆ti

≈
dS (ti)

dti
= I(ti) −

 1
1 − x

(
S (ti)

K

) 1
m

−
x

1 − x
I(ti)α1


1
α2

, (3.3)

where ∆S (ti) = S (ti) − S (ti−1) and ∆ti = ti − ti−1.
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Table 8. Results obtained by L-QBOA and compared algorithms with 500 dimensions.

Function BOA MQPSO QPSO + BOA QSSA HBA L-QBOA

F1

AVE 4.2505e-03 1.0727e-40 5.7595e-163 1.8572e-63 4.9601e-95 0
STD 2.9673e-04 5.8151e-40 3.1435e-162 1.0172e-62 1.9811e-94 0
MAX 5.1401e-03 3.1860e-39 1.7035e-161 5.5715e-62 1.0309e-93 0
MIN 3.8314e-03 1.1430e-54 3.2085e-172 0 1.2684e-113 0

F2

AVE 1.0526e-03 4.3029e-49 2.3975e-165 4.5642e-13 3.0319e-98 0
STD 4.9680e-05 1.8842e-48 0 2.3529e-12 1.3122e-97 0
MAX 1.1767e-03 1.0235e-47 6.8515e-164 1.2890e-11 7.1607e-97 0
MIN 9.6180e-04 3.6124e-61 7.5190e-177 0 2.5930e-114 0

F6

AVE 2.8131e-03 1.7207e-08 2.7251e-103 4.8304e+03 7.7202e-62 3.2805e-106
STD 2.5592e-04 9.1005e-08 1.3355e-102 1.2195e+03 3.9047e-61 1.0114e-105
MAX 3.3493e-03 4.9878e-07 7.3078e-102 7.6269e+03 2.1376e-60 3.9039e-105
MIN 2.3951e-03 1.7383e-21 4.3358e-118 2.0455e+03 2.6941e-83 5.1107e-122

F7

AVE 3.9227e+03 0 5.9212e-17 2.8718e-12 7.2691e-01 0
STD 7.6776e+01 0 3.2432e-16 1.5160e-11 3.0849e+00 0
MAX 4.0821e+03 0 1.7764e-15 8.3094e-11 1.6103e+01 0
MIN 3.7804e+03 0 0 0 0 0

F11

AVE 4.1975e-03 0 0 0 0 0
STD 1.1361e-04 0 0 0 0 0
MAX 4.4227e-03 0 0 0 0 0
MIN 3.9695e-03 0 0 0 0 0

F12

AVE 2.4617e-02 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16
STD 1.0965e-03 0 0 0 0 0
MAX 2.6820e-02 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16
MIN 2.2735e-02 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16

Step 4: Calculate the outflow in the next time

Ô(ti+1) =

 1
1 − x

(
S (ti+1)

K

) 1
m

−
x

1 − x
I(ti+1)α1


1
α2

. (3.4)

Step 5: Use the presented L-QBOA algorithm to solve the above optimization problem with SSQ as
the objective function. The expression of SSQ will be given below (see Eq (3.5)).

In this paper, the performance of L-QBOA and the other parameter estimation procedures are
evaluated by using the following measures:
1) SSQ: the sum of the square of the deviation.

S S Q =
N∑

i=1

[
O(ti) − Ô(ti)

]2
. (3.5)
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Table 9. Results obtained by L-QBOA and compared algorithms with 1000 dimensions.

Function BOA MQPSO QPSO + BOA QSSA HBA L-QBOA

F1

AVE 4.7153e-03 1.9763e-41 8.5286e-163 2.8094e-26 4.6996e-84 0
STD 4.3260e-04 1.0810e-40 3.1435e-162 1.5388e-25 1.4884e-83 0
MAX 5.8403e-03 5.9211e-40 1.5560e-161 8.4282e-25 5.5976e-83 0
MIN 3.8830e-03 3.1507e-58 1.6047e-170 0 5.5469e-107 0

F2

AVE 1.2587e-03 4.3029e-49 2.3975e-165 4.5642e-13 3.0319e-98 0
STD 4.9680e-05 1.8842e-48 0 2.3529e-12 1.3122e-97 0
MAX 1.1767e-03 1.0235e-47 6.8515e-164 1.2890e-11 7.1607e-97 0
MIN 9.6180e-04 3.6124e-61 7.5190e-177 0 2.5930e-114 0

F6

AVE 3.5643e-03 1.5957e-06 7.5607e-104 1.8856e+04 3.5371e-58 6.8570e-106
STD 3.1514e-04 6.4568e-06 3.2559e-103 3.9362e+03 1.9349e-57 3.7386e-105
MAX 4.2011e-03 3.5250e-05 1.7485e-102 3.0045e+04 1.0598e-56 2.0480e-104
MIN 2.7165e-03 6.6767e-15 4.6963e-119 1.0988e+04 1.3191e-78 8.0186e-121

F7

AVE 8.5651e+03 0 1.1842e-16 7.4429e-14 1.3041e-01 0
STD 1.1275e+02 0 6.4863e-16 4.0599e-13 7.1426e-01 0
MAX 8.7820e+03 0 3.5527e-15 2.2240e-12 3.9122e+00 0
MIN 8.3482e+03 0 0 0 0 0

F11

AVE 3.5822e-03 0 0 0 0 0
STD 1.1716e-04 0 0 0 0 0
MAX 3.8137e-03 0 0 0 0 0
MIN 3.3334e-03 0 0 0 0 0

F12

AVE 2.0576e-02 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16
STD 4.8651e-04 0 0 0 0 0
MAX 2.1675e-02 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16
MIN 1.9342e-02 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16 8.8818e-16

2) SAD: sum of absolute values.

S AD =
N∑

i=1

∣∣∣Ô(ti) − O(ti)
∣∣∣. (3.6)

3) MARE: the mean absolute relative error.

MARE =
1
N

N∑
i=1

∣∣∣O(ti) − Ô(ti)
∣∣∣

O(ti)
. (3.7)

4) PBIAS: the percent bias.

PBIAS =

N∑
i=1

(
Ô(ti) − O(ti)

)
N∑

i=1
Ô(ti)

× 100. (3.8)
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Table 10. Average CPU time comparison of all methods.

Function BOA MQPSO QPSO + BOA QSSA HBA L-QBOA

F1 0.7792 9.5839 2.1831 14.9995 0.1608 6.2647
F2 0.9597 10.4209 2.5662 12.7189 0.2075 6.7518
F3 1.0975 10.3747 2.5274 13.7242 0.2632 6.9182
F4 0.7962 9.6228 2.1986 13.2340 0.2017 6.2599
F5 3.0168 4.2704 1.1875 7.9094 0.2696 3.0168
F6 0.3857 4.3345 1.2164 1.2681 0.2943 4.3345
F7 0.9498 10.0267 2.4020 10.5691 0.1642 6.6174
F8 0.8917 10.2886 2.0004 14.7565 0.1813 6.6610
F9 0.8987 10.0042 2.0174 15.5245 0.1190 6.5867
F10 0.7321 9.7914 1.7439 12.5426 0.1189 6.2293
F11 1.5599 11.1749 3.2801 15.8137 0.3214 8.1274
F12 1.0994 10.0511 2.7588 18.2873 0.2555 6.9165
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Figure 5. The convergence curves of algorithms in F7, F11, and F12 with 1000 dimensions.

These four indicators can all be used to represent the fit degree of calculated data and observed data,
and SSQ is generally used as the main reference indicator, which is also used as the objective function
in this paper. The smaller the value, the higher the degree of fit between the evaluation value and the
observed value.

This paper applied L-QBOA to three cases to verify the performance of our proposed method.
The data calculated by SFLA-NMS and GA-GRG comes from reference [37]. L-QBOA also will be
compared with C-QPSO, a new method once be applied to Muskingum model by Mai et al. [28] in 2023.

3.2.1. Case 1

This is an example of parameter estimation for a nonlinear Muskingum model that Wilson [47]
first considered. Table 11 shows the comparison of the SSQ, SAD, MARE and PBIAS for Wilson’s
data and optimal parameters obtained from L-QBOA and other methods (SFLA-NMS, GA-GRG and
C-QPSO). The bold values in the table represent the optimal values of a metric calculated by algorithms.
As demonstrated in Table 11, the SSQ = 5.442, SAD = 6.847, MARE = 0.253, and PBIAS = 0.29%
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calculated by L-QBOA in this case are all bolded in the table, which is the best value. In this case,
L-QBOA estimates the parameters as K = 0.837, x = 0.076, α1 = 0.695, α2 = 0.425, and m = 3.820.
As is noted, the computed optimal outflows by L-QBOA are better than those calculated by the other
algorithms. The comparison between calculated values from L-QBOA and observed values is shown in
Figure 6. It can be seen that L-QBOA performs significantly better than the other three algorithms.

Table 11. Comparison of different models in Case 1.

Algorithm Parameters value Statistic values
K x α1 α2 m SSQ SAD MARE PBIAS

SFLA-NMS [37] 0.809 0.078 0.716 0.449 3.642 5.773 7.897 0.280 0.30%
GA-GRG [48] 0.837 0.076 0.695 0.425 3.817 5.543 7.132 0.262 0.39%
C-QPSO [28] 0.816 0.087 0.647 0.406 4.014 5.553 6.927 0.260 0.30%
L-QBOA 0.837 0.076 0.695 0.425 3.820 5.442 6.847 0.253 0.29%
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Figure 6. Case 1.

3.2.2. Case 2

The second example is a real example. This case study is a flood event that occurred in the Wye River,
England. This flood event is a good example to validate the different processes of parameter estimation in
the calibration step of the nonlinear Muskingum model. Table 12 displays the comparison of the best statistic
values and corresponding parameters obtained from various algorithms. In this case, the PBIAS = 4.80%
calculated by L-QBOA is the same as that calculated by C-QPSO, and the optimal value of PBIAS is 3.15%
as calculated by FLA-NMS. However, the optimal values for SSQ, SAD and MARE are still provided by
L-QBOA with 27804.91, 602.723, and 2.584, respectively. The corresponding parameters are K = 0.466,
x = 0.687, α1 = 1.342, α2 = 1.049, and m = 1.493. The comparison between the outflow curve area and
the observed values is shown in Figure 7.
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Table 12. Comparison of different models in Case 2.

Algorithm Parameters value Statistic values
K x α1 α2 m SSQ SAD MARE PBIAS

GA-GRG [48] 0.424 0.210 1.272 1.138 1.354 29479.16 684.830 2.943 3.58%
SFLA-NMS [37] 0.600 0.609 1.056 1.163 1.398 28207.55 679.327 3.017 3.15%
C-QPSO [28] 0.979 0.704 0.992 1.152 1.395 28054.42 602.724 2.589 4.80%
L-QBOA 0.466 0.687 1.342 1.049 1.493 27804.91 602.723 2.584 4.80%
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Figure 7. Case 2.

3.2.3. Case 3

The last example is the case of a flood with a multi-peak discharge hydrograph introduced by
Viessman and Lewis in 2003 [49]. This particular case has a time interval ∆ of 12 hours. The outflow
hydrography exhibits two peaks occurring on the 10th and 17th days. The inflow ranges from 143 cms
to 1775.5 cms. The minimum and maximum outflow values are 118.4 and 1509.3 cms, respectively.
Table 13 presents the SSD, SAD, MARE, and PBIAS values for the NL5 Muskingum model by using
L-QBOA and other algorithms, respectively. The values in bold are the optimal values of the metric. In
this case, C-QPSO provides an optimal value of PBIAS of 0.07%, and the calculated SSQ and SAD are
better than that of SSFLA-NMS and GA-GRG. However, the optimal values for SSQ, SAD, and MARE
are again calculated by L-QBOA as 65699.17, 926.20, and 1.423, respectively. The corresponding
coefficients are K = 0.7954, x = 8.21 × 10−8, α1 = 3.364, α2 = 1.412, and m = 1.021. The graph of
outflow with the observed values is shown in Figure 8.

Table 13. Comparison of different models in Case 3.

Algorithm Parameters value Statistic values
K x α1 α2 m SSQ SAD MARE PBIAS

GA-GRG [48] 0.089 3×10−4 1.846 1.002 1.393 70738 1018 1.627 0.23%
SFLA-NMS [37] 0.078 5×10−7 3.121 1.420 1.000 69860 993 1.494 0.21%
C-QPSO [28] 0.752 5.57×10−4 1.896 1.131 1.278 66815.72 945.77 1.576 0.07%
L-QBOA 0.796 8.21×10−8 3.364 1.412 1.021 65699.17 926.20 1.423 0.22%
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Tables 11–13 use SSQ as the main indicator, which is an objective function. In fact, other indi-
cators derived from data may behave differently. When considering the impact of all four measures
simultaneously, SFLA-NMS and C-QPSO face challenges. SFLA-NMS achieves a smaller PBIAS in
Case 2, while C-QPSO achieves a smaller PBIAS in Case 3. However, both methods show a significant
difference in SSQ from the optimal solution compared to L-QBOA. In conclusion, the parameter
estimation performance of L-QBOA, as proposed in this paper for the NL5 Muskingum model, is as
good or better than other methods.
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Figure 8. Case 3.

4. Conclusions

This article proposes L-QBOA, a hybrid algorithm that combines QPSO and BOA while introducing
the Lévy flight mechanism. The algorithm divides the population into two subgroups during initialization
and employs a hybrid mechanism during optimization to enhance collaboration. Experimental results
on benchmark functions demonstrate that L-QBOA exhibits strong global optimization capabilities
and performs well in high-dimensional problems. At the same time, it has been proven that using
gbest points to establish algorithm cooperative effects and a hybrid mechanism can effectively improve
algorithm performance, which can serve as a reference for designing hybrid algorithms. To validate its
practical applicability, L-QBOA was tested on the NL5 Muskingum model, yielding the best SSQ in all
three cases. In conclusion, the proposed L-QBOA method shows advantages in the NL5 Muskingum
model. In the future, L-QBOA can be considered for application to updated Muskingum models or
other parameter estimation problems, numerical solutions of differential equations, and their inverse
problems, path planning, or similar issues.
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