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Abstract: In this paper, the existence of multiple solutions for a class of Klein–Gordon equations
coupled with Born–Infeld theory was investigated. The potential and the primitive of the nonlinearity
in this kind of elliptic equations are both allowed to be sign-changing. Besides, we assumed that
the nonlinearity satisfies the Berestycki–Lions type conditions. By employing Ekeland’s variational
principle, mountain pass theorem, Pohožaev identity, and various other techniques, two nontrivial
solutions were obtained under some suitable conditions.
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1. Introduction

This paper deals with the Klein–Gordon equation coupled with Born–Infeld theory{
−∆u + V(x)u − (2ω + ϕ)ϕu = g(u) + h(x), x ∈ R3;
∆ϕ + β∆4ϕ = 4π(ω + ϕ)u2, x ∈ R3,

(1.1)

where ∆4 =div(|∇ϕ|2∇ϕ), ω > 0, β > 0, u ,V , ϕ : R3 → R and g : R3 × R → R. The application of the
Klein–Gordon equation extends to the development of electrically charged field theory [1]. The energy
of the functional related to a point-charge source is infinite in the original Maxwell theory. To over-
come the problem of infinity, Born introduced the Born–Infeld (BI) electromagnetic theory [2–4]. The
fundamental concept behind this theory is the principle of finiteness [5], where the conventional the-
ory is modified to eliminate physical quantities involving infinities. Ensuring the finiteness of electric
fields, a square root form with a parameter replaced the original Lagrangian density for Maxwell elec-
trodynamics. Given its correlation in the realm of superstrings and membranes [6, 7], the Born–Infeld

https://www.aimspress.com/journal/era
https://dx.doi.org/10.3934/era.2024108


2364

nonlinear electromagnetism has attracted significant focus from both theoretical physicists and mathe-
maticians. For a more detailed exploration of the physical aspects, we recommend referring to [8–11].
To explore numerical techniques for constructing and approximating real solutions, reference [12]
developed a Haar wavelet collocation method for solving first-order and second-order nonlinear hy-
perbolic equations. Recent advancements and outcomes concerning elliptic equations governed by a
differential operator are succinctly summarized in reference [13].

First, when h ≡ 0, which is the homogeneous case, problem (1.1) has been widely analyzed. The
seminal work by d’Avenia and Pisani [14] investigates first the existence of an infinite number of
radially symmetric solutions for the following problem{

−∆u + [m2
0 − (ω + ϕ)2]u = |u|p−2u, in R3;

∆ϕ + β∆4ϕ = 4π(ω + ϕ)u2, in R3,
(1.2)

where m0 is the mass of a particle (i.e., a physical constant), and 4 < p < 6, |ω| < |m0|. When 2 < p ≤ 4

and 0 < ω <
√

1
2 p − 1|m0|, Mugnai [11] achieved an identical outcome. Subsequently, through the

application of Pohožaev identity, Wang [15] improved the results of [11, 12] and derived the solitary
wave solution by one of the following conditions:

(i) 3 < p < 6 and m0 > ω > 0; (ii) 2 < p ≤ 3 and (p − 2)(4 − p)m2
0 > ω

2 > 0.

Yu [16] obtained the existence of the least-action solitary wave. Later, Chen and Song [17] studied
the following Klein–Gordon equation with concave and convex nonlinearities coupled with BI theory:{

−∆u + V(x)u − (2ω + ϕ)ϕu = λk(x)|u|q−2u + g(x)|u|p−2u, x ∈ R3;
∆ϕ + β∆4ϕ = 4π(ω + ϕ)u2, x ∈ R3,

(1.3)

where 1 < q < 2 < p < 6. By Ekeland’s variational principle and mountain pass theorem within the
use of critical point theory, the existence of multiple nontrivial solutions for Eq (1.3) was demonstrated
by imposing suitable assumptions on λ, V(x), k(x), and g(x).

By replacing |u|p−2u with |u|p−2u + |u|2
∗−2u, a nontrivial solution for Eq (1.2) was obtained by Teng

and Zhang [18] under the conditions 4 ≤ q < 6 and m0 > ω. In this direction, He et al. [19] also
enhanced the existence findings of equation in [18] and investigated the presence of a ground state
solution for the system (1.2). For elliptic equations involving subcritical term and critical term, we can
refer to [20–23]; references [24–26] provide other relevant results concerning homogeneous Klein–
Gordon equations with Born–Infeld equations.

In this paper, we consider h . 0, which is the nonhomogeneous case. Liu and Wu [27] recently
investigated a kind of Klein–Gordon–Maxwell systems when the nonlinearity g ∈ C(R,R) and satisfies
the following Berestycki–Lions conditions:

(g1) −∞ < lim inf s→0+
g(s)

s ≤ lim sups→0+
g(s)

s = −m < 0;
(g2) lim|s|→+∞

g(s)
s5 = 0;

(g3) there exists ζ > 0 such that G(ζ) =
∫ ζ

0
g(s) ds > 0, where G(s) =

∫ s

0
g(t) dt.

Berestycki and Lions [28] introduced the above assumptions, highlighting the near indispensability
of (g1) and the necessity of (g2) and (g3) for proving the existence of nontrivial solutions. Liu et al. [29]
delved into the existence of positive solution and multiple solutions of the Klein–Gordon–Maxwell
system with Berestycki–Lions conditions. Within [30], the authors investigated standing waves for the
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pseudo-relativistic Hartree equation with Berestycki–Lions nonlinearity. Importantly, the Berestycki–
Lions conditions are less restrictive compared to the conditions associated with g in [31–35]. Luo
and Ahmed [36] concerned the Cauchy problem of nonlinear Klein–Gordon equations with general
nonlinearities, establishing the global existence and finite-time blow-up of solutions with low and
critical initial energy levels. It provides us some methods and insights. The assumptions mentioned
earlier for the function g are utilized in this paper.

Through the application of variational methods, numerous solutions have been discovered for prob-
lem (1.4) with a constant potential V(x) = m2

0 − ω
2,{

−∆u + V(x)u − (2ω + ϕ)ϕu = f (x, u) + h(x), x ∈ R3;
∆ϕ + β∆4ϕ = 4π(ω + ϕ)u2, x ∈ R3.

(1.4)

When V(x) = m2
0 − ω

2, f (x, u) = |u|p−2u and h(x) exhibits radial symmetry, by utilizing the moun-
tain pass theorem and the Ekeland’s variational principle, Chen and Li [37] obtained two nontrivial
solutions with radial symmetry for the nonhomogeneous problem (1.4), under one of the following
conditions:

(i) 4 < p < 6 and |m0| > ω; (ii) 2 < p ≤ 4 and
√

1
2 p − 1|m0| > ω.

By applying the variant fountain theorem, Wang and Xiong [38] were able to demonstrate the
existence of two solutions, when considering the specified assumptions on V:

(V) V ∈ C(R3,R) and V0 = infx∈R3 V(x) > 0;
(V2) there exists a constant r > 0 such that

lim
|y|→+∞

meas({x ∈ R3 : |x − y| ≤ r,V(x) ≤ M}) = 0, ∀M > 0.

In order to ensure the compactness of Sobolev embedding, condition (V) was introduced in [39].
Wen and Tang [26] recently investigated system (1.4) with a sign-changing potential, while simulta-
neously setting h(x) ≡ 0. Apart from the given conditions (V2), they further assumed the following
condition holds:

(V0) V ∈ C(R3,R) and infx∈R3 V(x) > −∞.

By considering condition (V0), it is implied that the potential V can be sign-changing. Inspired
by [37–40], our current research focuses on investigating system (1.1), which has non-constant external
potential and exhibits generalized superlinear growth conditions. Specifically, we are intrigued by the
double sign-changing case, where both the primitive of g and the potential V change sign. However,
this scenario poses a challenge as it prevents us from employing a conventional variational approach
directly. Due to these reasons, the investigation of the double sign-changing case for the problem (1.1)
has been limited in academic literature. Hence, the principal objective of this article is to discover a
new result about the existence of multiple solutions based on comparatively weaker conditions. To
express our conclusion, the following conditions on h and V are needed:

(V1) V ∈ C(R3,R) is radial and infx∈R3 V(x) > −∞;
(V3) (x · ∇V(x)) ∈ L2(R3), and there exists a constant ϱ > 0 such that (x · ∇V(x)) ≤ ϱ;
(h1) (x · ∇h) ∈ L

6
5 (R3), where ∇h denotes the derivative of h and is in the weak sense;

(h2) h ∈ L2(R3) is a radial function and h . 0.
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The main conclusion is stated here.

Theorem 1.1. Suppose that (V1)–(V3), (g1)–(g3) and (h1)–(h2) hold. Then system (1.1) has at least two
nontrivial solutions for ω and h, satisfying 0 < ω ≤ ω0 and |h|2 < Λ for some ω0, Λ > 0, respectively.

Remark 1.1. In this paper, one of the two obtained solutions is negative energy and the other is
positive energy. Moreover, under our assumptions, it seems difficult to obtain the second positive
energy solution by the mountain pass theorem. It should be noted that problem (1.1) does not have
a positive energy solution when ω > 0 is sufficiently large. To overcome the difficulty, we introduce
the cut-off function η and consider the modified function IT to ensure boundedness of (PS) sequences
with an additional property related to Pohožaev identity. Due to the appearance of the potential, the
modified functional IT (u) is more complicate compared with the IT (u) in [26]. To prove the bounded
(PS ) sequence, we need more computations on the assignment of bT (u). Additionally, the (PS) sequence
converges to a solution of problem (1.1). Finally, we get that problem (1.1) has a positive energy
solution with ω > 0 small enough.

2. The variational setting and preliminary results

In consideration of (V1), the potential V(x) is sign-changing in R3. As a result, the energy functional
associated with the system (1.1) becomes quite intricate, for the quadratic form

B(u, u) :=
∫
R3

[|∇u|2 + V(x)u2]dx

occurring in the energy functional lacks definiteness. To address the issue of the quadratic form’s
indefiniteness, we take an indirect approach by considering an equivalent system instead of directly
dealing with the original system (1.1). In fact, it follows from (V1) that there exists a constant V ′ > 0,
so that Ṽ(x) := V(x) + V ′ > 0 for all x ∈ R3, and the quadratic form

B̃(u, u) :=
∫
R3

[|∇u|2 + Ṽ(x)u2]dx

is positive definite. Consequently, with the assumption that g̃(u) := g(u)+V ′u and labeling the primitive
function as G̃(u), so that g̃(u) and G̃(u) can still meet the Berestycki-Lions conditions. We proceed to
investigate the following alternative system:{

−∆u + Ṽ(x)u − (2ω + ϕ)ϕu = g̃(u) + h(x), x ∈ R3;
∆ϕ + β∆4ϕ = 4π(ω + ϕ)u2, x ∈ R3.

(2.1)

Clearly, system (1.1) is equivalent to system (2.1). Moreover, conditions (V)–(V3) still hold for Ṽ ,
and we still apply conditions (g1)–(g3) to g̃ and G̃(u), but the value of m is replaced by m̃ = m + V ′.
Henceforth, the subsequent analysis will be focused on the study of system (2.1). For this reason, we
will use (V) instead of (V1) and assume that V is radial. So, in order to prove Theorem 1.1, we only
need to prove system (2.1) has at least two nontrivial solution with the conditions (V1)–(V3), (g1)–(g3),
and (h1)–(h2).
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Given the assumption (V), the lack of compactness of the embedding H1(R3) ↪→ Lp(R3) in our
problem poses a challenge in establishing the satisfaction of the (PS )c condition for the functional I.
Consequently, the work space of the functional I is the following radial space

H1
r (R3) := {u ∈ H1(R3) : u(x) = u(|x|)}, (2.2)

and its norm is defined by

∥u∥ =
[∫
R3

(|∇u|2 + Ṽ(x)u2)dx
] 1

2

.

Let E be defined by

E :=
{

u ∈ H1
r (R3) :

∫
R3

[|∇u|2 + Ṽ(x)u2]dx < ∞
}
,

then E is a Hilbert space. For 1 ≤ s < ∞, we denote the following |.|s as the norm of the usual Lebesgue
space Ls(R3)

|u|s =
(∫
R3
|u|sdx

) 1
s

.

The embedding E ↪→ Ls(R3) is compact for any s ∈ [2, 6] by the assumption (V2); and is continuous
for any s ∈ [2, 6] as Ṽ(x) is bounded from below. The embedding inequality

|u|s ≤ τs∥u∥, ∀u ∈ E, s ∈ [2, 6],

holds for some τs > 0. Let D1,2(R3) = {u ∈ L6(R3) : ∇u ∈ L2(R3)} with the norm

∥u∥D1,2 =

[∫
R3
|∇u|2dx

] 1
2

.

The radial space of D1,2(R3) is D1,2
r (R3) := {u ∈ D1,2(R3) : u = u(|x|)}. The completion of C∞0 (R3,R)

is D(R3), whose norm is the following form

∥ϕ∥D(R3) = |∇ϕ|2 + |∇ϕ|4.

As well, D1,2(R3) is continuously embedded in L6(R3) by Sobolev inequality and D(R3) is continu-
ously embedded in L∞(R3). Set Br := {x ∈ R3 : |x| ≤ r} and let C be a positive constant having different
values in what follows.

Certainly, the energy functional of problem (2.1) is F(u, ϕ) : H1(R3) × D(R3) → R, which is
defined by

F(u, ϕ) =
1
2

∫
R3

[
|∇u|2 + Ṽ(x)u2 − (2ω + ϕ)ϕu2

]
dx −

1
8π

∫
R3
|∇ϕ|2dx

−
β

16π

∫
R3
|∇ϕ|4dx −

∫
R3

G̃(u)dx −
∫
R3

hudx, (2.3)

whose critical points are solutions of problem (2.1).
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Lemma 2.1. ( [11, 12]) For every u ∈ E, we have
(i) there exists a unique ϕ = ϕu ∈ D1,2(R3), which solves

∆ϕ + β∆4ϕ = 4π(ω + ϕ)u2; (2.4)

(ii) if u is radially symmetric, then ϕu is radially symmetric, too;
(iii) if u(x) , 0, then −ω ≤ ϕu ≤ 0;
(iv) ∥ϕu∥D1,2 ≤ C|u|2 and

∫
R3 |ϕu|u2 ≤ C|u|412

5
.

Proof. (i)–(iii) were proved in [11, 12]. Here, we establish (iv). From (2.4), we have∫
R3
|∇ϕu|

2dx +
∫
R3
|∇ϕu|

4dx = −
∫
R3

4πωϕuu2dx −
∫
R3

4πϕ2
uu2dx

≤ 4πω
∫
R3
|ϕu|u2dx ≤ 4πω∥ϕu∥D1,2 |u|212

5
. (2.5)

Then, from (2.5), we have ∥ϕu∥D1,2 ≤ C|u|2 and
∫
R3 |∇ϕu|u2dx ≤ C|u|412

5
.

By Lemma 2.1 and the second equation in (2.1), we obtain

1
4π

∫
R3
|∇ϕu|

2dx +
β

4π

∫
R3
|∇ϕu|

4 = −

∫
R3

(ωϕu + ϕ
2
u)u2dx. (2.6)

Lemma 2.2. ( [11]) If un → u in E, then ϕun → ϕu in D1,2
r (R3) and ϕun → ϕu in Lq

r (R3), 2 < q ≤ 6.
Consequently, I′(un)→ I′(u) in the sense of distributions.

Define I(u) = F(u, ϕu), the functional I : H1
r (R3)→ R for system (2.1) is as follows:

I(u) =
1
2

∫
R3

[
|∇u|2 + Ṽ(x)u2 − (2ω + ϕu)ϕuu2

]
dx −

1
8π

∫
R3
|∇ϕu|

2dx

−
β

16π

∫
R3
|∇ϕu|

4dx −
∫
R3

G̃(u)dx −
∫
R3

hudx. (2.7)

Under the assumptions (V), (V2), (V3), (g1)–(g3), and (h1)–(h2), one has I ∈ C1(E,R) and

⟨I′(u), v⟩ =
∫
R3

[
∇u · ∇v + Ṽ(x)uv − (2ω + ϕu)ϕuuv

]
dx −

∫
R3

g̃(u)vdx −
∫
R3

hvdx, (2.8)

for all u, v ∈ E.

Lemma 2.3. (Mountain pass theorem, [41]) Let X be a Banach space, I ∈ C1(X,R), e ∈ X and r > 0
be such that ∥e∥ > r and

b := inf
∥u∥=r

I(u) > I(0) ≥ I(e).

If I satisfies the (PS )c condition with

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), Γ := {γ ∈ C([0, 1], X)|γ(0) = 0, γ(1) = e},

then c is a critical value of I.
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3. Proof of the main result

Lemma 3.1. Assume that (g1)–(g3) hold and let {un} be a bounded (PS) sequence. Then, {un} contains
a convergent subsequence in E.

Proof. Let {un} ⊂ E be a bounded (PS ) sequence in E, then up to a subsequence, it has

un → u, in E;
un → u, in Lq(R3), 2 ≤ q < 6;
un → u, a.e. in R3.

Set

g1(t) =
{

(g̃(t) + mt)+, if t ≥ 0,
(g̃(t) + mt)−, if t < 0,

and g2(t) = g1(t) − [g̃(t) + mt], ∀ t ∈ R. We obtain limt→0
g1(t)

t = 0, limt→±∞
g1(t)

t5 = 0 and g2(t)t ≥ 0, and
|g2(t)| ≤ C(|t| + |t|5), ∀ t ∈ R. Using this with Strauss’s lemma (see [28]), we have∫

R3
[g1(un) − g1(u)](un − u)dx→ 0. (3.1)

With Fatou’s lemma, we have

lim inf
n→∞

∫
R3

g2(un)undx ≥
∫
R3

g2(u)udx. (3.2)

By the definition of g2(t), one sees that

|g2(t)| ≤ C(|t| + |t|5), ∀ t ∈ R. (3.3)

Being C∞0 (R3) dense in E, one knows that for any ε > 0, there exists ξ ∈ C∞0 (R3) such that ∥ξ−u∥ < ε.
Then, by the Hölder and Sobolev inequalities, we obtain∣∣∣∣∣∫

R3
(g2(un) − g2(u))udx

∣∣∣∣∣ ≤ ∣∣∣∣∣∫
R3

(g2(un) − g2(u))ξdx
∣∣∣∣∣ + ∣∣∣∣∣∫

R3
(g2(un) − g2(u))(u − ξ)dx

∣∣∣∣∣
≤ on(1) +C(∥un∥ + ∥u∥ + ∥un∥

5 + ∥u∥5)∥ξ − u∥ ≤ on(1) +Cε. (3.4)

Then, by (3.2), (3.4) and un → u in E, it has∫
R3

[g2(un) − g2(u)](un − u)dx

=

∫
R3

g2(un)undx −
∫
R3

g2(u)u −
∫
R3

[g2(un) − g2(u)]udx −
∫
R3

g2(u)(un − u)dx ≥ 0. (3.5)

With the Hölder inequality and the Sobolev inequality, one sees∣∣∣∣∣∫
R3

(ϕun − ϕu)un(un − u)dx
∣∣∣∣∣ ≤ |(ϕun − ϕu)(un − u)|2|un|2

≤ |ϕun − ϕu|6|un − u|3|un|2

≤ C∥ϕun − ϕu∥D1,2 |un − u|3|un|2,
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where C > 0 is a constant. As un → u in Ls(R3) for any 2 ≤ s < 6, we obtain∫
R3

(ϕun − ϕu)un(un − u)dx→ 0, as n→ ∞, (3.6)

and ∫
R3
ϕu(un − u)(un − u)dx ≤ |ϕu|6|un − u|3|un − u|2 → 0, as n→ ∞. (3.7)

Consequently, from (3.6) and (3.7), we have∫
R3

(ϕunun − ϕuu)(un − u)dx =
∫
R3

(ϕun − ϕu)un(un − u)dx +
∫
R3
ϕu(un − u)(un − u)dx→ 0. (3.8)

Notice that the sequence {ϕ2
un

un} is bounded in L
3
2 and |ϕ2

un
un| 3

2
≤ |ϕun |

2
6|un|3, we have∣∣∣∣∣∫

R3
(ϕ2

un
− ϕ2

u)(un − u)dx
∣∣∣∣∣ ≤ |ϕ2

un
− ϕ2

u| 32
|un − u|3

≤ (|ϕ2
un
| 3

2
+ |ϕ2

u| 32
)|un − u|3

→ 0. (3.9)

Then, by (3.8) and (3.9), one has∫
R3

[(2ω + ϕun)ϕunun − (2ω + ϕu)ϕuu](un − u)dx

=2ω
∫
R3

(ϕunun − ϕuu)(un − u) +
∫
R3

(ϕ2
un
− ϕ2

u)(un − u)dx→ 0. (3.10)

It follows from (3.1), (3.5), and (3.10) that

⟨I′(un) − I′(u), un − u⟩ =
∫
R3

[
|∇(un − u)|2 + Ṽ(x)(un − u)2 + m(un − u)2

]
dx

−

∫
R3

[(2ω + ϕun)ϕunun − (2ω + ϕu)ϕuu](un − u)dx

−

∫
R3

[g1(un) − g1(u)](un − u)dx +
∫
R3

[g2(un) − g2(u)](un − u)dx

≥∥un − u∥. (3.11)

From (3.11), one obtains that un → u in E as n→ ∞. The proof is completed.

Lemma 3.2. Assume that (V)–(V3), (g1)–(g3), and (h1)–(h2) hold. Then, system (2.1) has a nontrivial
solution u1 ∈ E satisfying I(u1) < 0.

Proof. It follows from (g1) and (g2) that for some constants D > 0 and C > 0

G̃(t) ≤ −Dt2 +Ct6 for all t ∈ R. (3.12)
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From (2.6), the functional I can be simplified to the form

I(u) =
1
2

∫
R3

[
|∇u|2 + Ṽ(x)u2 − (2ω + ϕu)ϕuu2

]
dx −

1
8π

∫
R3
|∇ϕu|

2dx

−
β

16π

∫
R3
|∇ϕu|

4dx −
∫
R3

G̃(u)dx −
∫
R3

hudx

=
1
2

∫
R3

(|∇u|2 + Ṽ(x)u2)dx +
1
2

∫
R3
ϕ2

uu2dx +
1

8π

∫
R3
|∇ϕu|

2dx

+
β

16π

∫
R3
|∇ϕu|

4dx −
∫
R3

G̃(u)dx −
∫
R3

hudx. (3.13)

From −ω ≤ ϕu ≤ 0, Sobolev inequality, (3.12) and (3.13), for some C > 0, we have

I(u) ≥
1
2
∥u∥2 + D

∫
R3

u2dx −C∥u∥6 − |h|2∥u∥

≥ ∥u∥
[
1
2
∥u∥ −C∥u∥5 − |h|2

]
. (3.14)

Set p(t) = 1
2 t −Ct5, for t ≥ 0. It is easy to see that maxt≥0 p(t) = 1

2 ( 1
10C )

1
4 −C( 1

10C )
5
4 := Λ > 0. Then,

from (3.14), we have I|∂Br ≥ α for |h|2 < Λ, where r = ( 1
10C )

1
4 . By (g1), for some C0 > 0 and k > 0,

we have

|G̃(t)| ≤ C0t2 for all |t| ≤ k. (3.15)

With (g2), for any σ > 0, there exists Kσ > k such that

|G̃(t)| ≤ σt6 for all |t| ≥ Kσ. (3.16)

Since g̃ ∈ C(R,R), for some constant C′σ > 0, one has

|G̃(t)| ≤ C′σ ≤
C′σ
k2 t2 for all k ≤ |t| ≤ Kσ. (3.17)

Set Cσ = max{C0,
C′σ
k2 }. Then, combining (3.15)–(3.17), for any σ > 0, it yields that

|G̃(t)| ≤ Cσt2 + σt6 for all t ∈ R.

We let σ = 1
2 and let u0 ∈ E satisfying

∫
R3 h(x)u0dx > 0, together with −ω ≤ ϕu ≤ 0, for t0 > 0,

one has

I(tu0) =
t2

2

∫
R3

(|∇u0|
2 + Ṽ(x)u2

0)dx −
t2

2

∫
R3

(2ω + ϕtu0)ϕtu0u
2
0dx −

1
8π

∫
R3
|∇ϕu|

2dx

−
β

16π

∫
R3
|∇ϕu0 |

4dx −
∫
R3

G̃(tu0)dx −
∫
R3

htu0dx

≤
t2

2

∫
R3

(|∇u0|
2 + Ṽ(x)u2

0)dx + t2ω2
∫
R3

u2
0dx
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+C 1
2
t2

∫
R3

u2
0dx +

t6

2

∫
R3

u6
0dx − t

∫
R3

hu0dx

<0, ∀ 0 < t < t0. (3.18)

From (3.18), we know that there exists tu0 := u ∈ E small enough such that I(u) < 0. Together
with I|∂Br ≥ α, we have c0 := infu∈B̄r I(u) < 0 < infu∈∂B̄r I(u). Using Ekeland’s variational principle
(see [42]), we obtained that a minimizing sequence {un} ⊂ B̄r satisfying

c0 ≥ I(un) ≥ c0 +
1
n

and I(v) ≥ I(un) −
1
n
∥un − v∥, ∀ v ∈ B̄r. (3.19)

So {un} is a bounded (PS ) sequence, combining with Lemma 3.1 and B̄r is a closed set, there exists
ū0 ∈ E such that I′(ū0) = 0 and I(ū0) = c0 < 0.

Similar to the proof of Theorem 5.1 of [35], we can find a solution with positive energy to system
(2.1) only when ω > 0 small enough. To overcome the difficulty in obtaining bounded (PS )c sequence
for the functional I, we define a cut-off function η ∈ C∞(R+,R+) satisfying

η(t) = 1, for t ∈ [0, 1];
0 ≤ η(t) ≤1, for t ∈ (1, 2);
η(t) = 0, for t ∈ [2,+∞);

|η′|∞ ≤ 2.

Consider the following modified functional:

IT (u) =
1
2

∫
R3

(|∇u|2 + Ṽ(x)u2)dx −
1
2

aT (u)
∫
R3

(2ω + ϕu)ϕuu2dx −
1

8π

∫
R3
|∇ϕu|

2dx

−
β

16π

∫
R3
|∇ϕu|

4dx −
∫
R3

G̃(u)dx −
∫
R3

hudx,

and then for all u, v ∈ E,

⟨(IT )′(u), v⟩ =(1 + bT (u))
∫
R3
∇u∇vdx + (1 + bT (u))

∫
R3

Ṽ(x)uvdx

− aT (u)
∫
R3

(2ω + ϕu)ϕuuvdx −
∫
R3

g̃(u)vdx −
∫
R3

hvdx,

where T > 0, aT (u) = η( ∥u∥
2

T 2 ) and bT (u) = − 1
T 2η

′( ∥u∥
2

T 2 )
∫
R3(2ω+ϕu)ϕuu2dx. Consequently, we can obtain

that I(u) = IT (u) when ∥u∥ ≤ T .

Lemma 3.3. Assume that (g1)–(g3) and (h1)–(h2) hold. Then,
(a) IT |∂Br ≥ α ≥ 0, where r and α are the same as that in Lemma 3.2;
(b) there exists e0 ∈ E such that IT (e0) < 0.

Proof. The proof of (a) is the same as that in Lemma 3.2. For (b), similar to [28], for any constant
M > 1, one can define

y(x) = ζ for |x| ≤ M; y(x) = ζ(M + 1 − |x|) for M ≤ |x| ≤ M + 1; y(x) = 0 for |x| ≥ M.
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Hence, y is radial. Here, we work on the ball BM = {x ∈ RN , |x| < M}; and let M → +∞. There
exist C̄i(i = 1, 2, 3, 4) such that∫

R3
|∇y|2dx ≤ C̄1M2,

∫
R3

G̃(y)dx ≥ C̄2M3 − C̄3M2,

∫
R3
|hy|dx ≤ C̄4(M + 1)

3
2 . (3.20)

We define ẙ = y( ·
θ
) for any θ, and let

γ(t) = ẙ(
x
θ

) for 0 < t ≤ 1; γ(t) = 0 for t = 0.

By (3.20) and −ω ≤ ϕu ≤ 0, one has

IT (γ(1)) =
1
2

∫
R3

[|∇y(
x
θ

)|2 + Ṽ(x)y2(
x
θ

)]dx −
1
2

aT (y(
x
θ

))
∫
R3

(2ω + ϕy( x
θ ))ϕy( x

θ )y2(
x
θ

)dx

−
1

8π

∫
R3
|∇ϕy( x

θ )|
2dx −

β

16π

∫
R3
|∇ϕy( x

θ
)|4dx −

∫
R3

G̃(y(
x
θ

)) −
∫
R3

hy(
x
θ

)dx

≤
θ

2
C̄1M2 +

θ3

2

∫
R3

Ṽ(x)y2dx − θ3(C̄2M3 − C̄3M2) + θ
3
2 C̄4(M + 1)

3
2

+ ω2θ3η

θ
∫
R3 |∇y|2dx + θ3

∫
R3 Ṽ(x)y2dx

T 2

 ∫
R3

y2dx. (3.21)

Since θ can be large enough and M > 1, we can choose a y small enough such that

η(
θ
∫
R3 |∇y|2dx + θ3

∫
R3 y2dx

T 2 ) = 0 and IT (γ(1)) < 0.

Let θ0 > 0 sufficiently large, then the proof of Lemma 3.3 is completed by letting e0 = y( x
θ0

).

From Lemmas 2.3 and 3.3, we can define the mountain pass value

c = inf
γ∈Γ

max
t∈[0,1]

IT (γ(t)) > 0,

where Γ := {γ ∈ C([0, 1], E)| : γ(0) = 0, IT (γ(1)) < 0}. Similar to the proof in Appendix A of [43], we
know that u satisfying (IT )′(u) = 0 solves{

−(1 + bT (u))∆u + (1 + bT (u))Ṽ(x)u − aT (u)(2ω + ϕ)ϕu = g̃(u) + h(x), in R3;
∆ϕ + β∆4ϕ = 4π(ω + ϕ)u2, in R3.

(3.22)

Hence, the following Pohožaev identity holds:

PT (u) =
(1 + bT (u))

2

∫
R3
|∇u|2dx +

1
2

(1 + bT (u))
∫
R3

[3Ṽ(x) + (x · ∇Ṽ(x))]u2dx +
3β

16π

∫
R3
|∇ϕu|

4dx

−
1
2

aT (u)
∫
R3

(5ω + 2ϕu)ϕuu2dx −
∫
R3

[3G̃(u) + 3hu + (x · ∇h)u]dx.

Similar to the Lemma 3.3 of [44], one can obtain that there exists a sequence {un} ⊂ E such that

IT (un)→ c, (IT )′(un)→ 0 and PT (un)→ 0, as n→ ∞. (3.23)
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Lemma 3.4. Assume that (V)–(V3), (g1)–(g3), and (h1)–(h2) hold. Let {un} be a sequence given by
(3.23). Then, for T > 0 large enough, there exists a positive constant ω0 such that ∥un∥ ≤ T for any
0 < ω < ω0, which implies that {un} is a bounded sequence for both I and IT .

Proof. We will argue by contradiction, from −ω ≤ ϕu ≤ 0 of Lemma 2.1, assumption (V3) and the
definition of η, we obtain

1
2

aT (u)
∫
R3
ϕ2

uu2dx ≤ C1ω
2T 2, (3.24)

bT (u)
2

∫
R3

(|∇u|2 + 3Ṽ(x)u2)dx ≤
bT (u)

2
· 3∥u∥2 ≤ C2ω

2T 2, (3.25)

and

1 + bT (u)
2

∫
R3

(x · ∇Ṽ(x))u2dx ≤
1 + bT (u)

2
· ϱ∥u∥2 ≤ C3ω

2T 2, (3.26)

where C1,C2,C3 > 0 are constants. By (h1) and Sobolev inequality, there exists κ ∈ L
6
5 (R3) and a

constant A1 > 0 such that ∣∣∣∣∣∫
R3

(x · ∇h)udx
∣∣∣∣∣ ≤ |κ| 65 |u|6 ≤ A1

(∫
R3
|∇u|2

) 1
2

. (3.27)

By (3.21), for some constant A2 > 0, we have

c ≤ max
θ

IT (y(
x
θ

)) ≤max
θ
{
θ

2
C̄1M2 − θ3(C̄2M3 − C̄3M2) + θ

3
2 C̄4(M + 1)

3
2 }

+max
θ
ω2θ3aT (y(

x
θ

))
∫
R3

y2(
x
θ

)dx

≤A2 +C1ω
2T 2. (3.28)

From (3.24)–(3.28), we have

3c + on(1) =3IT − PT (un)

=

∫
R3
|∇un|

2x −
bT (un)

2

∫
R3

(|∇un|
2 + 3Ṽ(x)u2

n)dx −
1 + bT (un)

2

∫
R3

(x · ∇Ṽ(x))u2
ndx

−
1
2

aT (un)
∫
R3

(ω + ϕu)ϕuu2
ndx +

∫
R3

(x · ∇h)undx −
3

8π

∫
R3
|∇ϕun |

2dx −
3β
8π

∫
R3
|∇ϕun |

4dx.

(3.29)

By (3.29), there exists C > 0 such that

∫
R3
|∇un|

2dx ≤3c +
bT (un)

2

∫
R3

(|∇un|
2 + 3Ṽ(x)u2

n)dx +
1 + bT (un)

2

∫
R3

(x · ∇Ṽ(x))u2
ndx

+
1
2

aT (un)
∫
R3
ϕ2

un
u2

ndx −
∫
R3

(x · ∇h)undx +
3

8π

∫
R3
|∇ϕun |

2dx +
3β
8π

∫
R3
|∇ϕun |

4dx
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≤3A2 +Cω2T 2 + A1

(∫
R3
|∇un|

2dx
) 1

2

+
3

8π

(∫
R3
|∇ϕun |

2dx + β
∫
R3
|∇ϕun |

4dx
)
+ on(1),

which implies

(∫
R3
|∇un|

2dx
) 1

2

≤
A1

2
+

√
A2

1

4
+ 3A2 +Cω2T 2 +

3
8π

(
∫
R3
|∇ϕun |

2dx + β
∫
R3
|∇ϕun |

4dx) + on(1). (3.30)

Since {un} satisfies ⟨(IT )′, un⟩ = on(1), by (g1) and (g2), we obtain

(1 + bT (un))
∫
R3
|∇un|

2dx + (1 + bT (un))
∫
R3

Ṽ(x)u2
ndx

+ m
∫
R3

u2
ndx − aT (un)

∫
R3

(2ω + ϕun)ϕunu
2
ndx −

∫
R3

hundx

≤

∫
R3

(g̃(un)un + mu2
n)dx

≤
1
2

∫
R3

u2
ndx +C

∫
R3

u6
ndx + on(1), (3.31)

where C is a positive constant. By Sobolev inequality and (3.31), we have

min{
m
2
, 1}∥un∥

2 −C|h|2∥un∥ ≤ C
(∫
R3
|∇un|

2dx
)3

+ on(1). (3.32)

We suppose by contradiction that ∥un∥ > T . Using (3.30) and (3.32), one has

min{
m
2
, 1}T 2 −CT

≤C

A1

2
+C

√
A2

1

4
+ 3A2 +Cω2T 2 +

3
8π

(∫
R3
|∇ϕun |

2dx + β
∫
R3
|∇ϕun |

4dx
)
+ on(1)


6

+ on(1). (3.33)

We can choose ω < ω0 < T−1 such that ω2T 2 < 1, then from (3.33), we know that this is impossible
for T is large enough. Thus, we complete the proof.

4. Conclusions

Proof of Theorem 1.1.

Proof. From Lemma 3.4, we know that I has a bounded (PS ) sequence {un} with ∥un∥ ≤ T and I(un)→
c > 0 for any ω ∈ (0, ω0]. It follows from Lemma 3.1 that there exists ũ0 ∈ E such that un → ũ0.
Then, we have I′(ũ0) = 0 and I(ũ0) = c > 0. Together with Lemma 3.2, the proof of Theorem 1.1
is completed.
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