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Abstract: Graph convolution networks (GCN) have demonstrated success in learning graph struc-
tures; however, they are limited in inductive tasks. Graph attention networks (GAT) were proposed
to address the limitations of GCN and have shown high performance in graph-based tasks. Despite
this success, GAT faces challenges in hardware acceleration, including: 1) The GAT algorithm has
difficulty adapting to hardware; 2) challenges in efficiently implementing Sparse matrix multiplication
(SPMM); and 3) complex addressing and pipeline stall issues due to irregular memory accesses. To
this end, this paper proposed SH-GAT, an FPGA-based GAT accelerator that achieves more efficient
GAT inference. The proposed approach employed several optimizations to enhance GAT performance.
First, this work optimized the GAT algorithm using split weights and softmax approximation to make it
more hardware-friendly. Second, a load-balanced SPMM kernel was designed to fully leverage poten-
tial parallelism and improve data throughput. Lastly, data preprocessing was performed by pre-fetching
the source node and its neighbor nodes, effectively addressing pipeline stall and complexly addressing
issues arising from irregular memory access. SH-GAT was evaluated on the Xilinx FPGA Alveo U280
accelerator card with three popular datasets. Compared to existing CPU, GPU, and state-of-the-art
(SOTA) FPGA-based accelerators, SH-GAT can achieve speedup by up to 3283×, 13×, and 2.3×.
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1. Introduction

In recent years, graph neural networks (GNNs) have been applied across various domains, demon-
strating remarkable performance in learning from graph-structured data, encompassing networking,
biology, recommendation systems, and other fields. Graph convolutional networks (GCNs) [1], draw-
ing inspiration from convolutional neural networks (CNNs), have demonstrated significant potential in
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real-time tasks, including node classification [2], link prediction [3], and graph classification [4].
However, GCNs predominantly learn parameters related to the graph structure, thereby limiting

their effectiveness in handling inductive tasks. To overcome this limitation, the graph attention net-
work (GAT) [5] introduces an attention mechanism that resolves the computational monolithic nature,
inflexibility, and unsuitability for inductive tasks observed in GCNs. GATs have demonstrated re-
markable performance in the aforementioned tasks, outperforming GCNs. Achieving efficient GAT
inference computation poses several challenges. Central processing units (CPUs) excel in control-
intensive computational tasks but may not be suitable for highly parallel tasks like GAT. Similarly,
efficiently handling logically complex tasks is challenging for graphic processing units (GPUs), result-
ing in degraded computational performance in GAT due to irregular memory access problems. The
slowdown of Moore’s and Dennard’s laws has prompted a shift toward domain-specific accelerators.
Field Programmable Gate Arrays (FPGAs) have become popular for algorithm acceleration platforms
due to their reconfigurability, customizability, and flexibility [6]. However, using FPGAs to customize
the accelerator for GAT presents the following problems and challenges: 1) The GAT algorithm is not
hardware-friendly, leading to significant delays in data splicing and softmax computation; 2) efficient
computation of sparse matrix multiplication (SPMM) is challenging; and 3) irregular memory accesses
poses a two-fold problem, involving complex addressing operations and generating pipeline stalls that
reduce computation efficiency.

Previous researches [7–10] have concentrated on the computation of attention mechanisms, ig-
noring the potential of partial computational flow reconstruction to improve performance. These re-
searches [7,8,10] use DDR as off-chip memory ( [9] is not specific for GAT) and lack specific solutions
with high-bandwidth memory (HBM)). However, this work conducts hardware-friendly algorithm op-
timizations, which involve splitting weights instead of data splicing and utilizing softmax approxima-
tion. Moreover, this work designs a load-balanced sparse matrix multiplication kernel that leverages the
bandwidth advantage of HBM and maximizes potential parallelism to enhance data throughput. Lastly,
this work addresses the issues of pipeline stalls and complex addressing resulting from irregular mem-
ory accesses through data pre-fetching, ensuring that the source node and its neighboring nodes are
always adjacent. This effectively resolves the problems caused by irregular memory accesses related
to complex addressing and pipeline stalls. In summary, this work proposes a software-hardware co-
design for GAT (SH-GAT), which contains software optimization and an FPGA-based GAT accelerator
designed to achieve more efficient GAT inference. SH-GAT provides the following key contributions:

GAT algorithm optimization: The GAT algorithm is optimized for hardware-friendliness by uti-
lizing weight splitting and SoftMax approximation.

Load-Balanced SPMM: We design a load-balanced SPMM kernel that capitalizes on the band-
width advantage of HBM and exploits potential parallelism to enhance data throughput.

Competitive performance: SH-GAT outperforms the Intel I7-12700KF CPU, Nvidia RTX3090
GPU, and the state of the art(SOTA) FPGA accelerators with remarkable speedups of up to 3283×,
13×, and 2.3×, while also achieving significantly improved energy efficiency of up to 44,053× and
631× compared with CPU and GPU, respectively.
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2. Related work

Recently, many domain-specific architectures have been proposed to partially address the challenges
in GNN inference. Autotuning-workload-balancing GCN (AWB-GCN) [11] achieves dynamic work-
load balancing among the processing engine (PE) using three hardware-based task scheduling mecha-
nisms, demonstrating remarkable performance improvement as an early FPGA-based GNN accelera-
tor. BoostGCN [12] introduces a feature aggregation module and two feature update modules tailored
for different sparsity levels, optimizing matrix computation. I-GCN [13] proposes a novel algorithm
for graph reconstruction to enhance data locality and matrix operation efficiency by merging nodes
with shared neighbors, thereby avoiding redundant operations in the aggregation phase. HyGCN [14]
presents a two-stage accelerator designed for memory-intensive aggregation and compute-intensive
combination phases.

Traditional matrix multiplication architectures fail to achieve maximum computational efficiency
due to the high sparsity of graph data [15, 16]. HBM offers a considerable advantage over DDR when
dealing with random memory access and memory-intensive applications, due to its multiple channels
that enable multichannel parallel access transfers. For instance, the Xilinx U280 FPGA accelerator card
features HBM with 32 channels, each offering a bandwidth of 14.375 GB/s, summing up to 460 GB/s.
Additionally, the existing GAT accelerator overlooks the critical challenge posed by graph sparsity,
despite reducing the usage of DSP resources through quantization algorithms. For example, S-GAT
neglects to consider preprocessing and CPU communication time, while its PE unit fails to leverage
the sparsity of the graph for matrix multiplication. H-GAT is an accelerator for GAT based on edge
devices. FP-GNN is a hardware adaptive architecture on GNNs, which can implement GAT inference
by switching components. FTW-GAT quantizes the weights of GATs to ternary values, but it can’t
eliminate redundant memory access. All of them are not optimized for GAT’s computational flow.

3. Software preprocessing

This section introduces the optimization of the GAT algorithm, graph data format, and data prepro-
cessing methods.

3.1. GAT algorithm optimization

Figure 1 presents a comparison of optimization in the GAT computational flow, showcasing the
original GAT formula on the left and our improved GAT formula on the right. The graph attention
layer can be divided into two steps: self-attention process and feature aggregation. In the first step,
the result is zi j, while the second step calculates the attention coefficients ei j. Let’s represent matrix
transpose using T and data splicing using ||. In the second step, the shared weights are divided α into
α1 and α2, where α1 and α2 are used in the central and neighboring nodes, respectively. Here, zi and
z j represent the features of the central node and its corresponding adjacent nodes, respectively. The
purpose of splitting the shared weight α is to parallelize the computation of zi and z j, significantly
improving computation efficiency during splicing. The next step is softmax function, replacing the
original exponentiation with 2, as it is more hardware-friendly with minimal loss of accuracy [17].
Finally, zi j is reused in the aggregation process, significantly improving the computation efficiency.
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Figure 1. Comparison of GAT computational flow optimization.

3.2. Graph data format

The feature matrix in GAT is often highly sparse. To conserve storage and reduce computation
complexity, feature matrices are compressed to retain only valuable information (nonzero elements).
Additionally, computational process needs to simultaneously identify whether each node belongs to a
source node or a neighbor node. Building on the aforementioned points, the GCSR format is proposed
as a graph data representation. In this work, one row of the adjacency matrix is chosen as a subgraph,
which contains the interactions of a node with all other neighboring nodes. There is an overlap between
the subgraphs, but this prevents boundary effects from affecting the accuracy of the results. GCSR is
utilized to store node features and subgraph location information using three arrays: col-index, value,
and node-info, illustrated in Figure 2(c). Figure 2(a) depicts the edge messages of two subgraphs. One
subgraph’s source node is node0, with neighbors node130 and node270, while the other subgraph’s source
node is node1, with neighbors node350 and node450. Figure 2(b) illustrates the features of each node.
The col-index array stores the column indices of the nonzero elements, and the value array retains
only nonzero elements. The node-info array comprises row-length and node-flag, with row-length
denoting the number of nonzero elements in each row, and node-flag identifying whether the current
node is a source or a neighbor. GCSR is well-suited for GNN parallel pipeline computing, enabling
the transmission of node features in multiple channels to achieve higher bandwidth.
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Figure 2. GCSR Description. (a) edge message; (b) node features; (c) GCSR data compres-
sion format; (d) node features for each AXI channel.
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Figure 2(d) illustrates our parallel strategy for transmitting node features using multiple channels.
Two channels in a group, with one channel dedicated to transmitting values and the other for sending
merged node-info and col-index. Employing three groups of channels (6 channels in total), the first
group handles the transmission of source nodes, while the other groups are responsible for transmitting
neighbor nodes. To ensure subgraph information integrity, the subgraph’s node information is lim-
ited to fewer channels than the three groups provide, keeping the remaining channels idle. However,
this does not imply that the remaining channels will remain idle indefinitely. In cases where subse-
quent subgraph node information exceeds the capacity of the three groups of channels, the extra node
information will occupy the previously idle channels.

3.3. Data preprocessing

In the data preprocessing phase, our primary focus is on mitigating the irregular access of edge
messages for zi j. The edge message (adjacency matrix) stores the connection relationships of each
node. As observed in Figure 1, during the computation of zi j, the features z j of the neighboring nodes
corresponding to the current zi (source node) need to be pre-fetched based on the edge messages for the
subsequent computation step. However, this places pressure on both hardware aspects: 1) To maintain
high parallelism, zi j is simultaneously accessed in multiple on-chip memories to ensure unimpeded
throughput for subsequent parallel computations. However, irregular memory accesses in multiple on-
chip memories entail significant control overhead. 2) Irregular memory accesses lead to pipeline stalls
when computing the attention coefficient ei j, reducing computation efficiency. This is because when
zi j is irregularly accessed, it must wait until all zi j computations are completed. Data preprocessing is
performed to address the aforementioned problems. Specifically, we pre-fetch the features of the source
node and its neighboring nodes are pre-fetched based on the edge messages, ensuring that the features
of the source node and its neighbors remain adjacent. This eliminates the necessity for irregular and
complex addressing of zi j and resolves the associated complex addressing operations and pipeline
stall problems caused by irregular access. As a result, the overall computation remains unimpeded,
enabling the neighbor nodes required by the source node to be computed first without waiting for all
zi j calculations to be completed. Additionally, it partially alleviates the on-chip memory pressure.

For illustration, there is a small-scale computation as an example. Figure 3(a) displays the edge
message, while Figure 3(b) depicts the challenges encountered without data preprocessing. On the
other hand, Figure 3(c) illustrates the process after data preprocessing. Without data preprocessing,
the features h are entered individually into SPMM, resulting in the derivation of zi j. To enable parallel
reading and writing, zi j is stored in ram0 to ram2. However, this gives rise to two challenges: 1) the
complex addressing operations associated with irregular memory accesses. While random access to
a single ram using an address as an index is feasible, performing random memory access to multiple
rams is difficult due to the need to index the ram numbers across multiple rams and index the addresses
within the same ram. 2) Irregular memory accesses cause pipeline stalls. After deriving the source node
z0, the neighbor nodes z130 and z270 must wait a considerable time to access it, leading to a pipeline
stall. To overcome these challenges, data pre-fetching is implemented, the features of the source node
h0 and its neighboring nodes h130, h270 are pre-fetched based on the edge messages, ensuring that these
features remain adjacent. Consequently, irregular and complex addressing of zi j is unnecessary. This
optimization significantly improves overall computational efficiency and speed, and reduces on-chip
memory utilization.
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Figure 3. Comparison of data preprocessing. (a) the edge message; (b) no preprocessing; (c)
preprocessing method.

4. Hardware architecture

4.1. Overview

This section focuses on the hardware architecture of SH-GAT. Figure 4 provides an overview of the
proposed hardware architecture. The HBM contains all the input data, including the weight matrix,
α vector, and compressed feature vector (in GCSR format). The memory controller reads this input
data in parallel from the 15 AXI channels (CH) and caches it to the on-chip memory. The schedule
handles data collation for features and data partitioning for weights. It includes separate loaders for
each input data, such as the feature loader, weight loader, and α loader. Each loader is equipped with
a corresponding buffer. In the GCSR format, a graph is divided into multiple subgraphs for storage,
and when multiple subgraphs loaded fill up the buffer, the loader stops loading data until a subgraph is
computed. The workload is then assigned to the computational engine, which comprises self-attention
and an aggregator. The self-attention module computes zi j, ei, e j, and αi j using five components:
loaders, buffers, SPMM, dense matrix vector multiplication (DMVM), and activation function (AF)
module. The weight loader and feature loader assign weights and features to SPMM, resulting in the
computation of zi j. Subsequently, zi j is calculated in the DMVM array using the α vector to produce ei

and e j. ei and e j are further computed by the leaky ReLU and softmax to obtain αi j. In the aggregator,
zi j is reused, and zi j along with αi j performs the final operation in the SPMM to obtain the updated
feature h(1+1). The updated feature h(1+1) is subsequently written back to the HBM channels 15 to 20
through the memory controller for the next computation layer. Detailed descriptions of our schedule,
SPMM, DMVM array, and softmax will be presented in the following sections.
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Figure 4. The overall architecture and workflow of SH-GAT.

4.2. Schedule and SPMM

Schedule. The hardware architecture of schedule and SPMM is illustrated in Figure 5. The sched-
ule includes loaders for each input data, namely, the feature loader and weight loader, each equipped
with a buffer to cache the data. The weight loader sequentially inputs the weight from columns W0

to Wn using counters, where W0 represents the first column of weight data. To address data conflict
problems arising from sparse matrices’ irregularity, the weight loader copies weights, enabling highly
parallel computation and effectively resolving data conflict issues. The feature loader uses scheduling
to distribute features to SP-PE arrays. The feature is represented by node-info, col-index, and value
using the GCSR format, as shown in Figure 2. First, node-info prepares the corresponding col-index
and value for each row in advance. If a SP-PE completes its computation, it returns the SP-PE comple-
tion signal and its corresponding SP-PE address to notify the schedule to send the data. The schedule
then packages the distributed feature (node-info, col-index, and value) and sends it to the corresponding
SP-PE. This scheduling strategy resolves the load-balancing problem and ensures efficient computation
utilizing the enormous computational resources available.

SPMM. Figure 4 illustrates our approach of performing three groups of HBM channel parallel
transmission accesses to the features. The SPMM consists of multiple sets, each containing three SP-
PEs used to compute the sparse matrix-vector multiplication (SPMV). Figure 5(a) depicts the detailed
architecture of the SP-PE module. The multiplier uses the vector value indexed by the col-index.
After multiplication, the mux determines whether to continue accumulation or output based on the
value of node-info. SPMM adopts a highly parallel strategy, and SP-PE adopts a fully streaming
architecture. SP-PEs operate in a standalone mode dedicated to performing the computation of the
inner product of a node feature with a column in the weight matrix. This design allows each SP-PE
to signal the scheduler to assign the next pending node feature in the subgraph as soon as it completes
the computation of the current node feature. Since there is no data dependency among the SP-PEs
in this computational mode, SP-PEs are able to realize parallel and independent computation, which
greatly improves the overall computational efficiency. Our scheduling strategy effectively solves the
load-balancing problem, contributing to the overall computational efficiency of SPMM.
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4.3. DMVM array, softmax, and aggregator

DMVM array. Figure 4 illustrates our approach of performing three sets of HBM channel parallel
transmission accesses to the features. The DMVM comprises three DMVMs, and its overall architec-
ture is presented in Figure 6(a). The DMVM is responsible for performing the vector inner product. To
achieve this, the α loader splits α into α1 and α2 based on the source node flag. Upon receiving the data
from α1, α2, and zi j, the multiplier initiates the multiplication operation, and the resulting products are
sent to the additional tree for summation.

Softmax. After the DMVM calculation, the data is fed into the AF module to obtain ei and e j. The
AF module plays a crucial role in the GAT’s activation function, encompassing leakyrelu and softmax.
The operation of softmax is:

σ(z)i =
ezi∑K
j=1 ez j

⇒
2zi∑K
j=1 2z j

. (4.1)

Regarding the softmax operation, this work optimized it by replacing the original power operation
with a shift from e to 2, making it more hardware-friendly. Given that our PEs section follows a
full pipeline structure, this work designed the softmax accelerator accordingly to maintain the overall
pipeline structure. The shift operation with a power of 2 efficiently conserves resources without com-
promising accuracy. Figure 6(b) illustrates the comprehensive softmax architecture, comprising shift
registers, an adder, and a divider. Initially, the input data is bifurcated into two paths following the
shift operation. One path enters the add-tree for summation, while the other is directed to the register
to await the division operation. Upon the completion of summation, the final division operation is
executed to derive the value of αi j.

Aggregator. This module is responsible for aggregating zi j using the corresponding αi j. As zi j

is already computed during the self-attention, the aggregator efficiently reuses this data via the zi j

buffer. The aggregation process in this module is also calculated using the SPMM. Once the aggregator
receives the relevant αi j values from the attention mechanism module, it performs the aggregation and
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sends the resulting output to the memory controller. By reusing the αi j data in the aggregator, the
amount of redundant computation is significantly reduced, leading to improved overall performance.
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Figure 6. (a) The hardware architecture of DMVM array; (b) The hardware architecture
of softmax.

5. Evaluation

5.1. Experiment setup

The proposed SH-GAT are implemented using Verilog HDL. To evaluate the performance of SH-
GAT, we successfully deployed SH-GAT on a Xilinx FPGA Alveo U280 accelerator card. SH-GAT
was fully evaluated on three datasets: Table 1 lists the size and sparsity of the datasets. We conduct a
comprehensive comparison of SH-GAT with Intel(R) Xeon(R) Gold 5218R CPUs (CPU) and NVIDIA
RTX3090 GPUs (GPU). We compare SH-GAT with the SOTA FPGA-based GAT accelerator FTW-
GAT. Additionally, for comprehensive comparison, we also evaluate it against the other advanced
accelerators, FP-GNN, H-GAT, and S-GAT.

Table 1. Dimensions and densities of widely used datasets.

Datasets Nodes Edges
Input
feature

Classes
Feature
density

Edge
density

Weight
density

Cora 2708 10,556 1433 7 1.3% 0.14% 100%
CiteSeer 3327 9104 3703 6 0.8% 0.08% 100%
PubMed 19,717 88,648 500 3 10.4% 0.02% 100%

5.2. Softmax accuracy loss

We approximate the softmax function, and Table 2 presents the accuracy loss across datasets which
reveals that our average accuracy loss is close to 0.01. This computation achieves better hardware
performance with very little loss of accuracy because the exponential computation is replaced with a
shift operation.
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Table 2. Accuracy loss across datasets.

Dataset Cora Citeseer Pubmed
Accuracy loss 0.15 0.006 0.012

5.3. Comparison with CPU and GPU

The comparison on latency is shown in Figure 7(a). Additionally, speedup ratios are computed us-
ing logarithm (base 10) for graph visibility. The SH-GAT outperforms the CPU by an average speedup
of 3283× and the GPU by 13× under the GAT model using various datasets. SH-GAT demonstrates
excellent performance with efficient data preprocessing, algorithm optimization, and high throughput
computing units. However, its performance is slightly reduced on the GPU side for the PubMed dataset,
which contains the largest matrix in the dataset. Figure 7(b) presents a comparison of the energy effi-
ciency of our design on various platforms. Compared to CPU and GPU, SH-GAT exhibits significantly
better energy efficiency, with an average improvement of 44,053× and 631×, respectively. The energy-
efficiency improvement ratio is logarithmically computed (base 10). The computation unit features a
full pipeline architecture, and this work has effectively addressed the load-balancing problem through
scheduling. Furthermore, each SP-PE is equipped with an enable port and a gated clock, ensuring that
modules not involved in the computation remain inactive to conserve power consumption.
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Figure 7. Comparison with CPU and GPU implementations. (a) speedup ratio comparison;
(b) improvement ratio of energy efficiency comparison.

5.4. Comparison with FPGA-based accelerators

This work assesses the overall resource consumption and latency of SH-GAT compared to FPGA-
based GAT accelerators S-GAT, H-GAT, FTW-GAT, and an overlay accelerator FP-GNN using the
Cora, CiteSeer, and PubMed datasets. The model is set to two layers and the feature dimension is
set to 16. Table 3 demonstrates that SH-GAT achieves a speedup of 2.3× compared to FTW-GAT,
the SOTA accelerator. S-GAT fails to leverage the sparsity of graph data and the high parallelism
in the PE design. H-GAT is limited by the resources of the edge device. FTW-GAT and FP-GNN
don’t optimize GAT’s computational flow, resulting in a lot of redundant memory access. SH-GAT
reduces redundant memory accesses by optimizing the computational flow of GAT and the compression
format, and enables efficient parallel computation through an HBM-based architecture. Despite FTW-

Electronic Research Archive Volume 32, Issue 4, 2310–2322.



2320

GAT and FP-GNN utilizing more DSPs, SH-GAT still outperforms them due to our efficient data
preprocessing, which avoids complex addressing and pipeline stall issues, ensuring SH-GAT maintains
efficient computation. Additionally, the substantial data read from HBM is optimally utilized through
GCSR’s efficient data allocation, resulting in significant improvements in computational regularity.
This approach reduces the dependency on DSPs, enabling better performance with just 732 DSPs,
while FP-GNN heavily relies on DSPs and experiences reduced operation frequency. Table 4 shows
that our dependence on on-chip resources is low, which indirectly implies that our power consumption
is relatively low.

Table 3. Comparison with FPGA-based accelerators on latency.

Datasets
Latency (us)

SH-GAT (Ours) FTW-GAT [10] FP-GNN [9] H-GAT [8] S-GAT [7]
Cora 19.4 44.9 46.3 600 6400
CiteSeer 22.1 50.8 71.4 800 N/A
PubMed 150.2 339 616 5700 N/A

Table 4. Comparison with FPGA-based accelerators on resource utilization.

Accelerators FPGA Frequency LUT FF BRAM DSP
SH-GAT (Ours) Alveo-U280 225 MHz 110 K 125 K 1428 732
FTW-GAT [10] VCU128 225 MHz 437 K 470 K 1502 1216
FP-GNN [9] VCU128 225 MHz 1068 K 727 K 1792 8740
H-GAT [8] K325T 200 MHz 39 K 42 K 119 244
S-GAT [7] Inspur F10A 216 MHz 250 K 338 K 683 148

6. Conclusions

This work proposes SH-GAT, an FPGA-based accelerator for GAT that prioritizes high-throughput
and energy-efficiency. SH-GAT employs algorithmic optimization, efficient data preprocessing, and a
high-throughput, load-balanced computation engine to execute GAT inference efficiently. Algorithmic
optimization enhances hardware-friendliness in GAT computation, while data preprocessing resolves
issues arising from irregular memory accesses. Additionally, a high-throughput and load-balanced
SPMM kernel is designed to leverage HBM’s bandwidth advantage and exploit potential parallelism,
thus enhancing data throughput. SH-GAT exhibits high energy efficiency and considerable scalabil-
ity potential for GAT inference computation. This is attributed to the presence of multiple memory
channels and the ability to add parallel computational units. In comparison to CPU and GPU, SH-GAT
attains speedups of up to 3283× and 13× and exhibits energy efficiency improvements of up to 44,053×
and 631×, respectively. Moreover, SH-GAT outperforms the SOTA FPGA-based GAT accelerator by
achieving a 2.3× speedup. Although these optimizations result in performance improvements, they
inevitably introduce some overheads, such as data preprocessing in GCSR formats, etc, and as the
structure of the GAT model changes, such specialized accelerators will face the challenge of adapting
to the new model structure for agility designs. Moreover, the explosion of information in the real world
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is making dataset sizes ever larger. For very large graphs, a multilevel graph partitioning approach may
be required. Moreover, it is necessary to consider how to reduce the impact of boundary effects and
loss of information, which will be a future research direction.
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preprint, arXiv:1710.10903.

6. R. Chen, H. Zhang, Y. Li, R. Zhang, G. Li, J. Yu, et al., Edge FPGA-based onsite neural network
training, in 2023 IEEE International Symposium on Circuits and Systems (ISCAS), (2023), 1–5.
https://doi.org/10.1109/ISCAS46773.2023.10181582

7. W. Yan, W. Tong, X. Zhi, S-GAT: Accelerating graph attention networks inference on FPGA plat-
form with shift operation, in 2020 IEEE 26th International Conference on Parallel and Distributed
Systems (ICPADS), (2020), 661–666. https://doi.org/10.1109/ICPADS51040.2020.00093

8. S. Huang, E. Tang, S. Li, H-GAT: A hardware-efficient accelerator for graph attention networks,
J. Appl. Sci. Eng., 27 (2023), 2233–2240. http://dx.doi.org/10.6180/jase.202403 27(3).0010

Electronic Research Archive Volume 32, Issue 4, 2310–2322.

http://dx.doi.org/https://doi.org/10.1609/aaai.v32i1.11782
http://dx.doi.org/https://doi.org/10.1109/ISCAS46773.2023.10181582
http://dx.doi.org/https://doi.org/10.1109/ICPADS51040.2020.00093
http://dx.doi.org/http://dx.doi.org/10.6180/jase.202403_27(3).0010


2322

9. T. Tian, L. Zhao, X. Wang, Q. Wu, W. Yuan, X. Jin, FP-GNN: Adaptive FPGA ac-
celerator for graph neural networks, Future Gener. Comput. Syst., 136 (2022), 294–310.
https://doi.org/10.1016/j.future.2022.06.010

10. Z. He, T. Tian, Q. Wu, X. Jin, FTW-GAT: An FPGA-based accelerator for graph attention net-
works with ternary weights, IEEE Trans. Circuits Syst. II Express Briefs, 70 (2023), 4211–4215.
https://doi.org/10.1109/TCSII.2023.3280180

11. T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, et al., AWB-GCN: A graph con-
volutional network accelerator with runtime workload rebalancing, in 2020 53rd An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO), (2020), 922–936.
https://doi.org/10.1109/MICRO50266.2020.00079

12. B. Zhang, R. Kannan, V. Prasanna, BoostGCN: A framework for optimizing GCN inference on
FPGA, in 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), (2021), 29–39. https://doi.org/10.1109/FCCM51124.2021.00012

13. T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, et al., I-GCN: A graph con-
volutional network accelerator with runtime locality enhancement through Islandization, in
54th Annual IEEE/ACM International Symposium on Microarchitecture, (2021), 1051–1063.
https://doi.org/10.1145/3466752.3480113

14. M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, et al., HyGCN: A GCN accelerator with hybrid
architecture, in 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA), (2020), 15–29. https://doi.org/10.1109/HPCA47549.2020.00012

15. Y. Gao, L. Gong, C. Wang, T. Wang, X. Zhou, SDMA: An efficient and flex-
ible sparse-dense matrix-multiplication architecture for GNNs, in 2022 32nd Interna-
tional Conference on Field-Programmable Logic and Applications (FPL), (2022), 307–312.
https://doi.org/10.1109/FPL57034.2022.00054

16. R. Chen, H. Zhang, Y. Ma, J. Chen, J. Yu, K. Wang, eSSpMV: An embedded-
FPGA-based hardware accelerator for symmetric sparse matrix-vector multiplication, in
2023 IEEE International Symposium on Circuits and Systems (ISCAS), (2023), 1–5.
https://doi.org/10.1109/ISCAS46773.2023.10181734

17. Z. Xu, J. Yu, C. Yu, H. Shen, Y. Wang, H. Yang, CNN-based feature-point extraction
for real-time visual SLAM on embedded FPGA, in 2020 IEEE 28th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM), (2020), 33–37.
https://doi.org/10.1109/FCCM48280.2020.00014

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 32, Issue 4, 2310–2322.

http://dx.doi.org/https://doi.org/10.1016/j.future.2022.06.010
http://dx.doi.org/https://doi.org/10.1109/TCSII.2023.3280180
http://dx.doi.org/https://doi.org/10.1109/MICRO50266.2020.00079
http://dx.doi.org/https://doi.org/10.1109/FCCM51124.2021.00012
http://dx.doi.org/https://doi.org/10.1145/3466752.3480113
http://dx.doi.org/https://doi.org/10.1109/HPCA47549.2020.00012
http://dx.doi.org/https://doi.org/10.1109/FPL57034.2022.00054
http://dx.doi.org/https://doi.org/10.1109/ISCAS46773.2023.10181734
http://dx.doi.org/https://doi.org/10.1109/FCCM48280.2020.00014
http://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Software preprocessing
	GAT algorithm optimization
	Graph data format
	Data preprocessing

	Hardware architecture
	Overview
	Schedule and SPMM 
	DMVM array, softmax, and aggregator

	Evaluation
	Experiment setup
	 Softmax accuracy loss
	Comparison with CPU and GPU
	Comparison with FPGA-based accelerators

	Conclusions

