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Abstract: In this article, the properties of solutions of Hadamard fractional differential equations
are investigated on an infinite interval. The equations are subject to integral and discrete boundary
conditions. A new proper compactness criterion is introduced in a unique space. By applying the
monotone iterative technique, we have obtained two positive solutions. And, an error estimate is
also shown at the end. This study innovatively uses a monotonic iterative approach to study Hadamard
fractional boundary-value problems containing multiple fractional derivative terms on infinite intervals,
and it enriches some of the existing conclusions. Meanwhile, it is potentially of practical significance
in the research field of computational fluid dynamics related to blood flow problems and in the direction
of the development of viscoelastic fluids.
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1. Introduction

The two most important aspects for studying differential equations are fitting and solving. First, for
a practical problem, we want to determine whether we can fit a suitable equation that can realistically
portray the practical problem. Second, for a practical problem, we want to determine whether we can
find suitable solutions to verify the reasonableness of the equation, thus reflecting the practicability of
the practical problem.

Fractional differential equations (FDEs) are popular in the fields of physics, engineering, and
biology because they can well characterize complex processes such as heritability and memory
properties; see the related literature [1-5]. In order to better fit the constructed equations, we can add
corresponding boundary-value problems (BVPs) to the equations, such as the integral BVP and the
multipoint BVP; we can also regard the problem as a system of equations by means of coupling, or
we can add the semilinear Laplace operators. In these ways, different practical problems can be better
transformed into equations [6—8]. After we obtain the equation, we need to verify the practical
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significance of the solutions. And, there are a number of ways to determine the properties of
solutions, such as the monotonic iterative methods [9, 10], and others. More detailed studies are
as follows.

Hadamard [11] established the concept of fractional derivatives in 1892. Hadamard derivatives
differ significantly from Riemann-Liouville and Caputo derivatives in terms of fractional powers;
specifically, the kernel of the integral contains the logarithmic function of an arbitrary exponent.
Hadamard derivatives have stable characterizations in terms of expansion and well matched the
problems on the half-open interval; see [4]. At the same time, the Hadamard FDE has an important
role in the mechanical behavior of viscoelastic materials and turbulence phenomena in fluid
dynamics; see [12, 13]. Since the problem we discuss in this paper is restricted to half-open intervals,
we consider the use of Hadamard fractional derivatives.

Integral boundary conditions are instrumental in computational fluid dynamics studies related to
blood flow problems. When dealing with these problems, the usual approach is to assume that the
cross-section of the blood vessels is circular, which is not always reasonable. In order to optimize this
detailed problem and make the results more detailed and convincing, the integral boundary conditions
can be included to develop an efficient and applicable method. More details can be found in [14]. In
addition, integral boundary conditions have other uses in physics and biology; see [15].

The authors of [16] found that the study of fractional BVPs for m-points on infinite intervals is
almost non-existent, so they studied the related problem by referencing [17] for the first time. The
authors of [17] found that the intrinsic equations of viscoelastic fluids in the models of physics and
biology are closely connected with the FDEs; see [18]. Therefore, multipoint boundary problems are
beginning to be studied.

In recent years, Hao et al. [19] considered a Hadamard FDE with integral boundary conditions. By
applying Schauder’s fixed-point theorem and Banach’s contraction principle, they obtained the unique
solution of the equation. Li et al. [20] considered the two integral boundary conditions of the Riemann-
Liouville FDE. By employing Krasnoselskii’s fixed-point theorem and Banach’s contraction principle,
they obtained the existence of the solution.

Zhang and Liu [21] applied Banach’s contraction mapping principle, the monotone iterative method,
and the Avery-Peterson fixed-point theorem to show the existence, uniqueness, and multiplicity results

of solutions:
HD‘ﬁx(t) +a®)f(t,x()=0,2 <a<3,te(l,+0),

(1) = 2'(1) =0, "Di x(+00) = 3" i x(m) + b ) ojx()),
i=1

J=1

where HD‘I’Jr is the Hadamard-type fractional derivative of order a; 1 < n < & < +o00; b,a;,0; > 0
G,j=1,2,...,n).
In [22], the authors investigated the fractional BVP with

"D u(t) + pO £t u(®), " DY u(®) = 0, 1€ (1, +00),
u®(1) =0, "D{  u(+o0) = f ) g(r)u(r)ﬂ + Z AT x(p),
! b= :

wheren— 1 <a<n0<k<n-2,ne(l,+0) 4,8, >0({=1,2,...,m); g € C ([1,+00), (0, +c0)).
By employing the Bai-Ge fixed-point theorem, they obtained the solutions of the Hadamard-type FDE.
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By considering the above two boundary conditions, research questions and the need for practical
problem-solving, this article investigates the existence of positive solutions to the following Hadamard-
type FDE with an integral and multipoint discrete BVP:

Hp? x(t) + r(0) f (1, x(0), " D} x(1), "D} x(1)) = 0, 1€ (1, +00),

oo = 1.1
x(1) = ¥ (1) =0, 7D x(+00) = fl WX+ Y Bixta, b
i=1

where HDf . 1s the Hadamard-type fractional derivative of order 6, 2 < 6 < 3; f € C ([1,+00) X
[0, +00) X [0, +00), [0, +00)); w € L' [1,+00), where w > 0; 1 <5, <1 < --+ < 1, < +00; f3; denotes
positive real constants (i = 1,2,...,m).

In previous works, the fixed-point theorem is usually used to determine the existence of the solutions
of the equations, while the innovation of this paper is the use of the monotone iterative method to
solve Hadamard FDEs containing multiple lower-order derivative terms, which results in not only
obtaining the existence of the two positive solutions, but also deriving the error estimation formula
for the unique positive solution. This paper enriches the use of monotone iterative methods and has
potential application to the development of blood flow modeling and properties of viscoelastic fluids
for practical applications.

2. Preliminaries and lemmas
In this section, it is essential to present some important lemmas.

2.1. Basic concepts and properties

Definition 1. ( [23]) Let ¢ > 0; the Hadamard fractional integral of order ¢ for a function
f:[1,4+00) = Ris defined as

i 1 ! r\¢! ds
10 = s [ (loet) 0% >,

Definition 2. ( [23]) Let ¢ > 0; the Hadamard fractional derivative of order ¢ for a function f :
[1, +o0) — R is defined as

o _ 1 i ”ft En—(p—l é
s 1 B I 5 R ICE S !

where n = [¢] + 1 and [¢] 1s the integer part of ¢.

Lemma 1. ( [23]) If ¢, ¥ > O, then

I
(logt)?*~", "D (logt)’™' = &(log ) A

T -9

L'(y)

Hyy y-1 _
hlloe™ = v
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Lemma 2. ( [23]) Let ¢ > 0; the solution ofHDerx(t) = 0 with x € C[1,00) N L'[1, o0) is valid if, and
only if,

n

x(t) = ) cilog ¥,

i=1
and the following formula holds:
"I, MDY x(0) = x(t) + ) cillog ¥,
i=1
wherec; €R,i=1,2,...,.n,n—1<¢<n.

Lemma 3. We define h(t) € L'(1, +c0), 0 < fl+°° h($)%£ < +oo, and

T - f oow(t)(log z)9—1d7t =7 >0, (2.1)
1
where
T=T(0)~ ) Bllogn)"". (2.2)
i=1

Then, the solution of the Hadamard-type FDE given by

DO x(t) + h(t) =0, t€(1,+c0),

x(1) = ¥'(1) =0, "D{ x(+o0) = f T ox0Z 4 gt 2
1 3
can be expressed as
x(t) = f K, s)h(s)ds, te(1,+00), 2.4)
1
where
K(t,s) = K(t, s) + K»(t, 5), (2.5)
A(1
Ki(t, 5) = k(t, $) + Z b ('x?rg(te)) ki, 9), (2.6)
-1
Ka(t,5) = (lg—t) f Kitt, o™, 2.7)
Tl 1 t

o-1 \0-!
k(t,s) = 1 {(logt) —(log;) , I<s<t<oo,

r(6) (log 1), 1 <t<s<oo,

6-1
(logn)? ' —(logZ) ', 1<s<n <oo,
k~<ni,s):{ zn)! - (log ) 1

(log )", 1<y <s<oo.
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Proof. Because of Lemma 2, (2.3) has a solution:
x(t) = ="17 h(t) + c;(log )’ + c,(log )"~ + c3(log ). (2.8)

From x(1) = x’(1) = 0, we know that ¢, = ¢3 = 0. From Lemma 1, we have
1'(6)

H y6-1 _ _Hjl -\
Dy, x(t) = ="1, h(t) + ¢ 11“(1)

Considering the boundary condition # D! x(+c0) = fl+oo w(x(®)% + ¥, Bix(n;), we conclude that

1 e ds e ni ds
== h(s)— + Hx(t)— — g =) h(s)—}.
¢ ‘r{fl ()~ fl w()x() Zr(e) 0g-) (S)s}
Consequently, substituting ¢y, ¢;, and c¢3 into (2.8), we have
(log 1)?! f‘” (log ! f dt 1 f’( t)”‘l ds
t) =———— h(s)— + ——— Nx(t)— — — log—| h(s)—
x(1) T 1 (s ) T 1 w(t)x(0)— ro J, \og5 ()~
Bilog )" f ( ni )9‘1 ds
- log—| h(s)—.
Z T J, \gy) M9
Next, after piecing together and organizing the first and third terms of the above equation, we get

_(logn)™t [ (T(O) — T)(og 1)?! (log £)?! dt
x(2) —Wﬁ h(s )— ‘IT(G) j: h(s )— T I (t)x(t)T

1 - Bilog )" mi\'~t  ds
i J (omg) o D EGER [ e ) o
with the help of (2.2) and some arrangement, we obtain
_(ognt [ Bi(logn)®! -1
o) =S50 [ HoT Z o= [ ogny s
(logt)?~! = 1 t\f- ds
» (8! f (D (”7‘% oz 2)"
Bilog )™t (™ i
Z () fl (log ?) h(s)T

6-1 6-1
= f ki, 92 + Zﬁ'(k’g” f1 s )™ + CED f )

1 TT(0) T
00 6-1 00
_ f K\ (t, $)h(s )— % f w0
1 1 t
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Then,

+00 00 00 1 -1
f wx0 = f o ( f K, s)h() y dog ™ f W™ )dt
1 t 1 T

:f a)(t)f K, s)h(s)éd;

+ fl w(n(logry-1 ! fl w(t)x(t)?.

Given that 'y = T — [ w(t)(log )’ "%, we have

fm w(l)x(t)— :—f a)(t)f K, s)h(s)—ﬂ
1

T [
T_l I’l(S)I Kl(t, S)(,U(t)T?

Thus,

00 1 6-1
x(1) = fl Ky (1, $)h(s )— % f (r)x(r)—

00 1 -1

- [ Kisne T+ %(— f (s) f K\, s)w(;)ﬂd_:
1
00 -1

- f K. s)h(s)—s+ (logt) f K.t o™ h()
1 1

= f ) K\, s)h(s)—+ f ng(t,s)h(s)?

f K(t, s)h(s) —

Lemma 4. The function K(t, s) defined in (2.5) satisfies the following conditions:
1) K(t, s) is continuous for (t, s) € [1,4+00) X [1, +00);
2) K(t, s) is nonnegative on [1,4+00) X [1, +00);

K K
) H(ls;;))g r < (log(i)f,), < T L forall (1, 5) € [1,+00) X [1, +00).

Proof. We obviously get that conditions 1) and 2) above. Next, we show that condition 3) holds. For
all (¢, s) € [1, +00) X [1, +00), we deduce the following:
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K(t,s)  Ki(t,s) N Ky (1, s)
(log )~ ~ (log)*' ~ (log 1)

_ k@) Zﬁ,k i(is S) e
~ (log 1)~ (log H)f-1 TT(0) ‘I’l

Bilog )" e g1 At
Sr(e)) " Z o) T r(e)fl w(Blog )™=

; 1 ; 6-1 -
Zﬁ ( ;ﬁ(’g j: w(t)(log "

K, s)a)(t)?

)91

_ Bi(log n;
_r(e) * ; TT(0)

1 o o-1 41 N o-1
‘T fl w(t)(log ) 7(T+;ﬁiaogm> )

. 1 < D(@)Bilog )™ 1 -1
T TOLT e ‘r‘rlfl w(tlog?)
CTT, + Ty@O) - 1)+ TO)T - TO)T,

B LO)YY,

1
=y
The proof is completed.

By Lemma 3 and (2.4), we get
| +00 dS
"DV x(n) = f K*(t, )h(s)—,  te(l,+00),
1 N

where

T J

s {O, 1<s<t<+oo,
t,s) =

K*(t, 5) = k*(t, 5) + Z F “k"g?“’ 9 Lo M Ki(t, s)w(t)df,
i=1

1, 1<t<s<+00.

From Lemma 3 and (2.4), we have
H y6-2 v ds
D" x(t) = K., (t, s)h(s)?, t € (1, +00),
1

where

5 Bilog t '@ logt dt
K9 = k.94 ) Pk + S [ Ko
i=1 !

T

t
logt —log —, 1<s<t<+oo,
ki(t,s) = s

logt, 1<t<s<+oo.

(2.9)

(2.10)
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Lemma 5. The functions K*(t, s) and K,(t, s), defined in (2.9) and (2.10), ensure that

0< K*(t.5) < @ 0< Kelt9) _Kilts) r(e),
T’ 1+logr ™ logt T

t,s €1, +00). (2.11)

Proof. According to (2.9) and (2.10), we can easily get that K*(z, s) > 0 and f;l(t SZ > 0. Furthermore,
forall #, s € [1, +00),

K*(t, s) =k*(t, s)+2ﬂikff;,7i’ 9, 1O f K\ (t, s)w(t)—

ﬁl(log 771)9 ! dt
Z t f (log 0 e(r)—

1'(6) ﬁz(logm)‘“ * o-1 . dt
+ Z 6 fl (log 0 e(r)—

o Te-r 1 (T o-1 Al W \0-1
=1+ T + TTlf; (lOgt) (x)(t)t [T"';,B:(logﬂz) )

re -1 N L@ -1y
T TY,

=1+

_1©)
10

By the same steps, we have

Ki(t,5) _ku(t,5) Zﬁzk(m,S) I'(6)

dt
= K t, 1—
logt logt — 1 R t

INCO) NS 1 o0 - dt - _
<l+ t T, j; (log 1)’ lw(t)T (T + ;ﬁi(log n:)’ l)
INOENS . L@ -7y)

T T

=1+

_1©)
10

The proof is completed.
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2.2. Compactness of the operator

Next, let

F— 0|
F={x,"D""x, D" x € C[1, +o0) : _ ko ,
{x 1 D € Ll #oo) iy T+ (Qognf T =7

6-2
"D " x(t)| .
— T < hoo, sup [PD)x(1)] < +o0 b,
re[l.+o0) 1 +1logt te[1,+00)

6-2
|x(1)| "D, x(t)| ool
[lx]| = max{ sup —————, sup ————, sup |"D,, x(®)|;.

te[l,Poo) 1 + (log 1)1 te[l,-fPoo) 1 +logt te[l,-{Poo) *
Similar to [19], (F, || - ||) is a Banach space.

Lemma 6. Let U C F be a bounded set. Then, U is relatively compact in F if the following
conditions hold:

H n6-2
1) For all x(t) € U, 1+(lzg)t)g_l, ﬁlfogin, and 1 D?jr‘x(t) are equicontinuous on any compact interval of
[1, +o0).
2) For all € > 0, there is a constant T = T (&) > 1, which satifies
x(t1) x(t2) UD42x(t) DY Px(t)
1+ dogt)?! 1+ (logt)?! 1 +logt 1 +logt, ’
and

"D} x(t) - "D x(1)| < e,
forany t|, t, > T and x € U.
Proof. This proof has been proved by Lemma 4 in [19], so it is omitted here.

Define a cone P :
—1

P={xeF:x()=0, "D x(t) >0, "D}, x(t) > 0, t € [1, +o0)}.

Next, we give two circumstances:

(H)) f € C([1, +00) X [0, +00)*, [0, +0c0)) and £(2,0,0,0) # 0 on any subinterval of [1, +c0); when
Ix| < M, |y| < M forany M > 0, f(z,(1 + (log ) "x, (1 + log t)y, z) is bounded on [1, +o0).

(H) r(t) : [1,+00) = [0, +00), r(¢) £ 0 on any subinterval of [1, +c0), and 0 < flm r(s)% < +00.

For the convenience of description, let

F(s) = f(s,x(5), "D{2x(s), " DY x(s)),

Fk(S) = f(s’ Xk(s), HD?;Z-xk(S)’ HD?;lxk(s)L k = O, 1’ 2, (S

According to Lemma 3, let T : P — F be an operator with
—+00 dS
Tx(t) = K@, 9r(s)F(s)—, te[l,+00), (2.12)
1 S
Thus, we can get the solution of (1.1) to be the fixed point of the operator 7.
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Lemma 7. Assuming that (H,) and (H,) are valid, then T : P — F is a continuous operator.
Proof. Tx(t) > 0 is obvious for all + € [1,+c0) and x € P. Then, we have the evidence that T
is continuous:

T x(2)|
re[l,+00) 1 + (log 1?1

o K(, ) ds
— _ S F(s)—
te[SEEo)I 1 + (log o1 Ir(SHF! S

[N (1 + (log 5)* x(s) (1 +1logs)? DI ?x(s) e
< T_1v[1 lr(s)fs, Tt dog )T T+iogs , x(s )]|_

1" DY T x(1)|
sup ——
efl+o0) 1 +logt

+00
K, (1, 5)
= su I(S) (S)I—
IE[I,POO)»[I 1 +log

re (+ (1 + (log )’ Hx(s) (1+1ogs)'D}?x(s) , .\ ds
< —= , D —
<), TS T o sy 1 +logs e MO
< 400,
and
sup |7DY T x(1)|
te[1,+00)
+ 00 d
= supf K*(t,s)lr(s)F(s)I—s
te[l,+00) J1 §
TO [ s, L og ) Ont) (L Tog D) -y ok
R SN "1+ (log s)f-! 1+logs
< 400,

Thus, we know that 7 : P — F.

Next, we give the proof that 7 : P — F is a continuous operator. Let x, — xpasn — ooin P

there is a constant ko > 0 such that sup, ., [|x, < ko, [lxol| < ko. Let By, = sup{f(z, (1 + (log )’ ")x, (1 +
log 1)y, 2)|(t, x,y,z) € [1,+00) X [0, ko]*}. Next, we aim to prove that ||Tx, — Txo|| — 0 as n — co. By
(H,), (H,), the Lebesgue dominated convergence theorem, and continuity of f, we can get

Electronic Research Archive
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. e K(t, 8) ds o K(t, $) ds
1 _— Fn - = F ,
m ] T3 Gognmt O j; T+ Qog i’ OFo)

limf T K9 r(s)F,,(s)d—; = f ESIUD) ”(S)Fo(S)%»
1 1

n—co 1 +logt 1 +logt
+00 d +00 d
im [ K $)r(s)F, ()2 = f K*(1, $)r(s)Fo(s)=>.
n—oo J; Ky 1 Ky
Therefore,
T x,(1) = Txo(2)]
el +o0) 1+ (logr)f-!
o K(, ) ds
< su —————— 1 (9)|F.(s) — Fo(s)]— = 0 (n— 00),
ze[l,Poo)I 1 + (log )%~ ’ s
HDH—ZT (1) — HDH—ZT t
sup | 1+ L X () 1+ XO( )l 50 (I’l N oo),
t€[1,+00) 1 + lOgt
and

sup |"DY'Tx,(t) = DI ' Txo(t)) > 0 (n — o).

te[1,+00)

Hence, T is continuous.

Lemma 8. Suppose that f1+oo(log t)g‘lw(t)dT’ < oo and (Hy) and (H») hold; then, T : P — Pis a
compact operator.

Proof. We will show this lemma in the following three procedures. First, let 2 be a bounded subset
of cone P to prove the truth that 7Q is a bounded set of cone P. There is a constant k; > 0, which
guarantees that ||x]| < k; for all x € Q. Let By, = sup{f(, (1 +log)’")x, (1 + log )y, 2)|(t,x,y,2) €
[1,+00) X [0, k;]*}. By Lemmas 4 and 5, we get

sup T x(2)|
re[l +00) 1 + (log 1?1

(T K@) ds
—fl‘ WV(S)F(SNT

1 [ (1 + (log 5)’ Hx(s) (1 +1ogs)'DI2x(s) , , ds
<— D', =
<7 ), OIS T g Trlogs  Dr Ol

Bko oo ds
< 0 _
=7, . r(s) .
< 4009,

Electronic Research Archive Volume 32, Issue 4, 2286—2309.
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w 1" DY 2T x(1)|
te[1,+00) 1+10gt

e
- [T “SN<>FQ»—
T'(6) (1 + (log s)* Hx(s) (1 +log )" DY 2x(s)

<_
T J, s I+ dogs)- ° 1+logs

Srwﬂ%L[ oD
1

N

. ds
, HD?JX(S)]I?

sup |7DI T x(1)|

te[1,+00)
e ds
= K*(t, s)lr(S)F(S)|?
1
r +00 1 1 6-1 1+1 HD
< 0 [r(s) fLs, (1 + (og 5) )X(S), (1 + log )"D3,"x(s )’HD(LI ( mﬁ
T, J, 1 + (log 5)%-! 1 +logs
LO)B, (™
<202 [T e
1 1 s
< 400

Hence, TQ is bounded in P.

Second, we prove that condition 1) in Lemma 6 is established. For all #, , € [Ly,L,] with#; < 1,
and x € Q mentioned above, we get

Tx() __ Tx(t)
1+ (logn)' 1+ (logt)*!

%) K(l’z, S) K(tl, S) ds
< B _ ds
< B ] e T G|

B f+oo K(tz, S) K([], S) ( )dS
- r(s)—
o n I+ dogtr)?~! 1+ (logt)?! s

%) K(lz, S) K(tl, S) ds
< B _ ds
B “ j; 1+ (ogt)' 1+ (logt)?! r(s) p

By (7| _Qogn)™ __dogt)™! | ods
K B o ®
T J, [1+dogn)*™" 1+ (ogn)*! S

Electronic Research Archive Volume 32, Issue 4, 2286—2309.



2298

"DIPTx(t)  "DIPTx(t)
1+10gt2 1+10gf1

< B f’z K, (1, 5)  Ki(t1,9) r(s)ﬁ

"Jy |[1+logr, 1+logth s
+Ble(9) f+°° logt  logt ds
T 4 1 +logt, 1+logt S

K(t,s) (log 1)?! logt . .
Because T g * Trlog 7T d ; o7 Are uniformly continuous on any compact set [L, L,] X

[Li, L,], [Ly, Ly], and [L,, L,], respectively, we have

Tx(12) Tx(t)

0, t t,
1+ oz 1+ogm)'| 1ok

HD?:_ZTX(lz) 3 HD?:_ZTX(ll )

0, t B.
1+10gt2 1+10gt1 - 1 h

Furthermore, in view of
H ny0-1 H. ds
D, Tx(t) = K*(t, s)r(s)F(s)?, (2.13)
1

the function K*(z, s) € C([1, +o0) X [1, +00)) does not depend on ¢. Hence, we know that condition 1)
in Lemma 6 is established.

Finally, we prove that condition 2) in Lemma 6 is established. For any & > 0, since 0 < fl+°° r(s)% <
+00, we can get that there exists M; > 1 such that

+00 d
0< f r(s)—s <e.
M, S

(log 1)?! . k(t, My)
m-——————=1, lim —————— =
-+ | + (log1)?-! -+ | + (log 1)1

In view of

b

for all £ > 0, there exist two constants M, > 0, M5 > M, such that, for all ¢, t, > M,

(log 1,)""! (logr)"!
g g

1+ dogtr) ' 1+ (logt)?!

b

forallt;,t, > Mz and 1 < s < M|,

k(t2a S) k(tla S)

1+ (lognr)~' 1+ (logt)?!

<li_ k(t, M)
- 1 + (logt,)?-!

3 k(t,, M)
1 + (log t;)?!

Since | bt M
2 _ 1\ um x(1, 1)_1

im =1, =
-+ | + logt t—+0 1 +logt

b
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for all € > 0, there exist constants M, > 0 and Ms > M, such that, for all #;, t, > My,

logt, log t;
1+10gt2 1+10gt1
forallt;,t, > Msand 1 < s < M|,
k*(t27 S) k*(tl,S) k*(t29 Ml) +

- 1 +logt,

<

l+logs; 1+logt

<e,

k,(t;, M
‘1 (ty, M) e

B 1 +logt

Let M > max{M,, M5, My, Ms}; for all t;, t, > M, we deduce the following result by substituting

(2.5)—(2.7) and applying Lemma 4:

T x(t2) T x(t)
1+ (logr)*! 1+ (ogn)*!

T K(f, $) K(t,s) ds
Sfl T+ (ogn)y T~ T+ aognyt| WO
<fM‘ B, Ki(n,s) K, s) r(s)ﬁ
~ T+ dogn)! 1+ (logt)?-! s

N f“x’ B, K(,s)  K@,s) (s)@
w1+ logr)™t 1+ (logt)?! s
N fM] B, Kyn,s) K1, s) (s)@
I "I+ (logn)t 1+ (logt)f-! s

ZBkl oo ds SBkl
—_— —
O+

d
r(s)—s + —
s

M
<eB f
b 1 1y M, s
8Bk1 (fMl 0-1 dt
+ — (log )" w(t)—
1 1 8 1IN

M dt
(Tl +2+ f k(t, s)w(t)T +
1

r(S)d—sS

Bk]&‘
<_

1 1

i

M, M
(log r)"‘lwm@) f (9%,
t 1 S

M
k(t, s)w(t)%) f r(s)d—;
1

Next, we substitute the specific form of K,(z, s) and apply the properties of K., (¢, s). We have

HDO2Tx(1,) _ HDY 2T x(ty)
1 +logt, 1 +logth
< f+00 K*(t27 S) _ K*(tb S)
- 1+ (ogt)' 1+ (logt)!
M
<<"-)Bk1 f
1 M,

ds 2B,T() [
B M M,
+ﬂ( f (logt)H_la)(t)d—t) f &S
Tl 1 t 1 S

ds
r(s)? + T, r(s)? +

By,
<—
1

Electronic Research Archive

HF ()

SBkI

M dr\ (™ ds
T—l(ﬁ k(t, S)a)(t)7)ﬁ I"(S)T

M] M] M]
© (T1 +2I°(0) + f k(t, s)w(t)% + (log t)e_lw(t)%) f r(s)d—ss.
1 1 1
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In the same way, considering the the properties of K*(z, s), we obtain

D Tx(tr) - DI Tx(ty)|

_2B,T®) oo By, [ ™ dr\ M ds
= 9% + T{Ikmwmﬂﬁrw;
gB/a ( f (log )" w(t)— ) f r(S)%

My M
e (2r(9)+ f K, s)a)(t)—+ f (1ogr)9-1w(z)d—t) f (9%,
Tl 1 t 1 N

Hence, we know that condition 2) in Lemma 6 is established. By Lemma 6, T is a compact operator.
The proof is completed.
In consequence, according to Lemmas 7 and 8, the operator 7 is completely continuous.

3. Existence of solutions
(H3) Let £ > 0 be a constant, which satisfies

S, (1 + (log N Hx, (1 + logt)y,z) < Ti¢

re) [ rnd’
for all (¢, x,y,2) € [1,+00) X [0, £]?, where T is shown by Lemma 3.

(H,4) Regardless of the values of ¢ € [1, +00) and x,y, z € [0, +0), f(t, x,y,z) is nondecreasing and
continuous, which satisfies

f(t,xl,}’l,zl) _f(t’ xZayZ’ZZ) = O,

where x; > X2, y1 > Y2, 21 > 2.

Theorem 1. ( [24]) Assume that (H,)—(Hy) hold; there are two positive solutions x*, y* of (1.1), where
Ilx*[l, ly*ll € (0,Z]. Actually, the solutions can be established by applying the sequences {x,}, , and
{ya)2,, which satisfy

n <o <y < X, (3.1

where

—+00 - - dS
Xnr1(2) =f K(t, s)r(s)f (s, xn(s)’HD?_'.ZXH(S)aHD?_;_Ixn(S))_a (3.2)
1
—+00
Yns1(8) = f K(t, )r(s)f(s,yu(8), " D} 2y,(s), " DY, 1yn(S))— (3.3)
1
with the initial values xy(t) = {(lor%; and yo(t) = 0. At the same time, for all t € (1, +00), {x,}°°, and

{yn};o, converge to x*, y*, separately.

Proof. Set P, = {x € P, ||x|| < ¢} if x € P;, where ||x|| < {. According to (H3) and Lemmas 4 and 5,
we have
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. 1T x(2)|
te[1,4+00) 1+ (10g t)g_l

+00 K([, s) ds
= su _ K@&s) S FeandS
ze[l,&)ﬁ 1 + (log t)9—1| (F(s)l .

+00 6-1 1 1 HD9—2
- 1 ) /Ts. (1 + (log s) )x(s)’ (1 + log 5)" D" x(s)
T i 1 + (log $)?-! 1 +logs

1 Ti¢ f“” ds

< - 2 @ -

ST [ e "
¢

ds
,HD?llx(S)]l?

T
</,

1" DY T x(1)|
sup ——
te[1,+00) 1+ log t

= sup f K. (@, 5) Ir(s)F(s)ld—;
1

te[1,+0) 1 +logt

re (- (1 + (log s)* Hx(s) (1 +1log )" DI 2x(s) ,, ,_, ds
< Ten b b b D -
<7, ) OIS T g s 1+1logs e XIS

re 1< f*“’ ds
< — r(s)—
Tir©) [ rise Ji s

:{’

sup DY T x(1)|

te[1,+00)
—+00 d
= sup f K*(t, $)|r(s)F(s)| =
te[l,+00) J1 S
'@ oo 1+ 6-1 1 +log $)"D%2x(s d
<TO ™ s, A Gog " ) U108 VDL XS) gy s
T 1 + (log s)?! 1+logs s

SLCHR £ S L
TETO [ (s Ji s

:g.

From the above inequalities, we prove that ||Tx|| < {. Thus, T(P;) C P;, T : Py — Py.

. 6—1 .
First, let xo(¢) = {(k}%g , x1 = Txo, and x, = T?xg = Tx;. It is clear that ||xo|| < ¢, so xo(f) € P;.

Furthermore, we know that T : P, — P,, which means that x; € T(P;) C P; and x, € T(P;) C P;. By
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(H5) and Lemmas 4 and 5, we have

xl(t)=f K, S)F(S)Fo(S)%
1

* (logt)?~!  ds Y - L
: fl TS T s
1 s

_ {(log ™!
G
= xo(1),
Hpi2x,(t) = "D 2T xo(t) = ) K, (1, s)r(s)FO(s)d—:
1
™ T(@)logt  ds T -{
< - = .
- I h§ ) s T(0) flm r(s)%
={( logt
= D2 x0(1),

+00 ds
ity = DY (1) = f K* 0, () Fo(9)
1

f“’" IXC) ds T ¢

< —r(s)— =

1 1 s F(@)f1 r(s)d—ss
={

= "D xo(0).

Hence,
xl(t) < XO(t)’
D42 x, (1) < D2 xo(0),

DY %1 (1) < DT o ().
Suppose that the following holds:

X (1) < X1 (D),
Hpi-2x(t) < D621 (1),

Ity ) < "D xi 1 (D).
Then, we show that

Xer1 (1) < xi(2),
H n6-2 H ny6-2
D1+ xk+1(t) S D1+ X]((t),

D8y () < DI x(o).

(3.4)

(3.5)

(3.6)
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By (H,4), we can get
Xi(#) = X1 (1) =Ty (1) — Txy(1)

e d
= f K(t, 9)r(s)f (s, 1 (8), " D{ 221 (s), HD?;lxk—l(s))Ts
1

- f K(ta S)r(S)f(S, )Ck(s), HD(]ilzxk(s)’ HD?llxk(S))%
1
>0.

In the same way, according to (H,), (2.9) and (2.10), we get

D2 x(t) = D P2 (0) =" DY 2Ty (6) = D2 T(0) 2 0,

Hp%lx(t) = "D w1 () =D Txy (1) — D' Txi (1) = 0.

By induction, we obtain that {x,}>, € T(P;) C P; and x,,; = Tx,. For all ¢ € [1, c0), we derive
the following:

xn+l(t) S -xn(t)9 (37)
DI 25,01 (t) < D2, (0), (3.8)
T x 1 () < DY x, (o). (3.9)

Due to the complete continuity of 7" and the existence of x* in P, we obtain that x,, — x* as
n — oo. So, we can get that there is a convergent subsequence {x,,},>, of {x,} " ,. This demonstrates
that lim,_,., x, = x*. Given that x,,; = Tx, and T is continuous, we prove that Tx* = x*, which
demonstrates that x* is a fixed point of 7.

Since yo(f) = 0 and [[yol| < £, we can easily get that yo(r) € P,, which implies that T : P, — P,.
Similarly, we can get that y,.; = Ty, and {y,} -, C T(P;) C P;. By induction, for any ¢ € [1, c0), it can
be seen that

Y1 (1) < yu(), (3.10)
Hpi-2y,1(0) < DI 2y, 1), (3.11)
DYy () < DYy (o). (3.12)

Because of the properties of T, there exists ay* € P, which satifies that y,, — y*as n — co. So, we

*

can get that there is a convergent subsequence {y,, };-, of {y,} > . This demonstrates that lim, ., y, = y".
Given that y,,; = Ty, and T is continuous, we have that Ty* = y*, which implies that y* is a fixed point
of T. By induction, we obtain

Va(t) < x,(1), te[l,0),n=0,1,2,... (3.13)
According to (3.7), (3.10), and (3.13), we have
VoSV S-Sy, S-S X, <0 S xp £ Xp.
This, together with x* = lim, ., x, and y* = lim,_, y,, yields that
VoSYy < Sy, <<y <X << x, <0 - < xp £ .

Because f(¢,0,0,0) # 0, it implies that x = 0 is not a solution of (1.1). Therefore, x* and y* are the
solutions of (1.1).
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4. Error estimate

(Hs) There exist constants L; > 0, i = 1,2,3, Vt € [1,+00), as well as x,y,z € [0, +0c0). Thus,
f(t, x,y, z) satisfies the conditions of the following inequality:

|f(ta xb)’l,Zl) - f(t9 x29y29 Z2)| < Ll(.Xl - X2) + L2(yl - Y2) + L3(Zl - Z2)9

where x; > x3, y1 > Y2, 71 > 2.
Suppose that (H;)—(Hs) hold and (1.1) has a unique solution z* € (0, %(log )%, which relies on
the following sequence:

L1 (1) = f K(t, $)r(s)f (s, z4(s), " DY z,(9), " D 1Zn(S))— 4.1)
1

The initial value of (4.1) is zo(¢) = 0 or zo(¢) = %(log £)’~!. Furthermore, the error estimate can be
defined as

llzn = Z'Il < Z"¢, (4.2)
where Z = S(Ly + Ly + L) [ r(s)(1 + log 14 < 1.

Proof. According to Theorem 1, we prove that (1.1) has two positive solutions, which can be
-1

established by x,.1 = T, and y,,1 = Ty,, with the initial values xo(r) = “583— and yo(r) = 0,

t€[l,+00).

If (1, = Yull = SUP,() 1o0) 'f‘:gi‘gyt’)'éf)ll, by (Hs) and (3.1), we derive the following:

(%n = Y)(®) =T X1 (8) = Tyua (1)
= fl KU O30 (5, D1 (50, DE 3 (5)
= [(8, yu1(8), D2y (9), DY 1<s>)]
< L fl - K(t, $)r(s)[x,-1(s) _yn—l(s)]_
+ 1, f1 "k (DI x,1(s) = "Dy l(s)]—
+Ls f1 " ka, Hr DY %1 (s) = DYy 1(s)]—.
Thus,

1 e g1 ds
1, — yall < —(Ll + L, + L) r(s)(1 +log s) T”xn—l = Yn-ill

ds
r )<L1 L+ Ly) f )1 +10g ' g1 =yl

= Z||Xn—1 — Yn-tll-

By induction, we can get
1, = Yull < Z%||lx0 = yoll < Z"¢. 4.3)

Electronic Research Archive Volume 32, Issue 4, 2286—2309.



2305

0-2 -2
|Hl)14r )C,,([)—HDH Yn

If |1, — Yull = SUPyef) oo 20 by (Hs) and (3.1), we have

"D x, = DY 2y (@) =D Tx,o () = "D Tyt (1)
+00 dS
< L K, (2, $)r(s)[x,—1(s) _yn—l(s)]?
1
e H 0-2 H n0-2 ds
+ L, K. (@, s)r(s)[" D] x,-1(s) = "Dy} yn—l(s)]?
1

+00 g - dS
+ Ls f K, (t, )r()[" DY x,-1(s5) —HD?+1yn,1(s)]?.
1

Thus, by the same arrangement and induction, we obtain
12 = Yull < Zllxn-1 = yuutll < Z"lxo = yoll < Z%¢.
If 1, = Yull = SUP,c(y oo 7D}, Xa(t) = D}, y,(8)], by (Hs) and (3.1), we have
("D = D ) (@) =D T x,1 (1) = DY Ty ()
. ds
< L K™ (2, s)r(s)[x,-1(s) — yn—l(s)]?
1

+ 00 dS
‘L f K* 0, 9r D 1(9) = D3 1 ()]
1

oo ds
+ Ly f K*(t, s)r(s)[" DY x0m1(s) — HD?;lyn—l(S)]?-
1

Thus, by using the same method, we get
s = Yaull < ZlIXy-1 = yu-1ll < Z"lxo — yoll < Z7¢.
From the above steps, we have
s = yall < Z"lxo = yoll < Z"¢.
Consequently, we show that

||yn+m - yn” < ”xn - yn” < ana
”xn - -xn+m|| < ”-xn _yn” < Zn{

(4.4)

(4.5)

We suppose that (1.1) has a solution z € [yy, xo]. It is apparent that Tz = z and yo(?) < z(¢) < xo(?).

Since T is continuous and nondecreasing, together with (3.1), we can get
V' <z<x, (n— o0).

Furthermore, by (4.4), we know that

X" =yl < Z"¢ = 0, (n — +00).

(4.6)

This shows that x* = y* £ z*. Hence, (1.1) has a unique solution z* € [y, xo]. In consequence, in

view of (4.5), it is obvious that (4.2) holds. The proof is completed.
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5. Example

1 { HDI/th
HDS/Zx(t) + —f[l + sm(ﬂ x(3)2 )+ sin ™. ( )1 5
2 1+ (logn)*? + x(1) 2 1+logt+ HD)’x(0)
+sin f-m]—o t € (1, +00) (5.1)
2 1+HDYx(r) ’ 7 '

(1) = X(1) = 0, #D¥x(+00) = f] » 1og,z +Zﬁ,x(n,

_ 5 1 _ 1 1 _ 2 _ 3 _ 4 _ 8 _ 17 _ 6 _ 5
where 0 = 3, r(f) = 5, W) = 7. 01 =5, =5, =5, 0, =, M =3, Mm=¢, \3=3, M= 3

(1) )
1 +logt+ y(2)

N

e7let (g x(1) )
+ +sin|= - + sin
1000 2 1+ (logt)*? + x(r)

L z(1)
—. s 0 < < s
+sm(2 1+Z(I)) x<e

f(t’x7y’z) =

1+ e + sin z ¢ + sin X @)
1000 2 1+ (logr)’?+e 2 1+logt+y()

+sin(7—r- A ) x>e
2 1+z0))’ -

+00 1 5
=T(0) - 1 o1 4t x(;) = =T(%) = 0.72122.
© fl w(n)(log ) Zﬁx(n) )

3
l=8.
Y -
+d, ~ 4.34031.
r® [ r4
) 1 + (log 1)*?x(z)
1, (1 + (logH**)x, (1 + log 1)y, z) =1 T,
J. (L + (ogy™ix, (1 + log . 2) +Sm(2 I+ (log 7 + (1 + (log 7 x(1)
L (1 +log)!' D> x(1)
+ Sin| — 172
2 1 +logt+ (1 +logt)"D,\"x()
(x DY)
+sm|—--————
2’ 1+4DY2x(r))
<l+1+1+1
<4.
Thus,
Y, -
[, (1+ Aog )" Hx, (1 +log 1)y, 2) < %
r®) [ r(n
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From the above steps, the conditions (H;)—(Hs) hold; according to Theorem 1, the BVP (1.1) has
twin positive solutions x* and y* such that ||x*||, |[y*|| € (O, 8].

6. Conclusions

In this article, we first transformed the solutions of the equation into fixed points of the operator by
means of a nonlinear alternative, while proving that the operator is completely continuous. Then, we
applied two iterative sequences to find two positive solutions of the equation via the monotone
iterative method. Finally, we derived the unique solution of the Hadamard fractional BVP. The
significance of this article lies in the fact that we can use the monotone iterative method to discuss the
existence and uniqueness of the positive solution to the equation containing multiple fractional-order
derivative terms.
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