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Abstract: Shared autonomous electric vehicle systems (SAEVS) combine autonomous driving 
technology with shared electric vehicle services to provide advantages over traditional shared vehicle 
systems, including autonomous vehicle relocation and rapid response to user needs. In this study, we 
seek to enhance the operational efficiency and profitability of SAEVS by considering trip selection 
and the potential opportunity cost associated with unmet user demands. An integer linear programming 
(ILP) model is developed using a spatio-temporal state network to optimize the system design planning 
(e.g., charging facility, vehicle fleet sizing and distribution) and operational decisions (e.g., vehicle 
operational relocation and trip selection strategy). To handle the computational complexities of this 
model, we propose a Lagrangian relaxation (LR) algorithm. The performance of the LR algorithm is 
evaluated through a case study. The results, along with a parameter sensitivity analysis, reveal several 
key findings: (i) Allocating vehicles to stations with concentrated early peak demand, distributing 
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charging facilities to stations with high total demand throughout the day and implementing vehicle 
relocation after the early demand peak can mitigate uneven vehicle distribution; (ii) Implementing trip 
selection enhances SAEVS profitability; (iii) Increasing opportunity cost meets user demands but at 
the expense of reduced profit; (iv) It is recommended that SAEVS be equipped with charging facilities 
of suitable charging power based on operational conditions. 

Keywords: shared electric vehicle system; autonomous driving; opportunity cost; spatio-temporal-
state network; Lagrangian relaxation 
 

1. Introduction 

The shared vehicle system (SVS) is an emerging and environmentally friendly mode of 
transportation that bridges the gap between public transit and private cars. It effectively reduces private 
car usage, vehicle emissions and mitigates traffic congestion [1]. Some research suggests that the 
market for SVS services is expected to reach 38.61 billion dollars by 2030 [2]. 

However, as a novel mode of transportation, SVS faces numerous challenges. From the demand 
side, the prevalent station-based, one-way SVS suffers from uneven user demand. Over time, this 
results in vehicles becoming concentrated in certain zones, leading to a spatial and temporal imbalance 
that diminishes vehicle utilization throughout the day. This reduces the overall service level and 
undermines potential profits for SVS operators [3]. On the supply side, the uneven distribution of 
vehicles results in congestion at certain stations and scarcity at others [4]. These issues hinder the 
system’s ability to promptly and effectively respond to user reservations. 

With the rapid advancement of technology, autonomous driving has become increasingly mature. 
By integrating autonomous vehicles (AVs) into the system, shared autonomous vehicle system (SAVS) 
can transition from a “people look for vehicles” model to a “vehicles find people” model, enabling an 
efficient response to user demand [5]. 

Furthermore, electric vehicle (EV) technology has matured significantly, and nearly all major 
vehicle manufacturers offer their own electric vehicle models [6]. EVs operate in a more 
environmentally friendly manner, producing zero direct tailpipe emissions. Electrified drive is 
expected to be the dominant mode for AVs. However, due to the limitations of current battery 
technology, electric vehicles often require significant time for recharging at stations before they can 
meet the energy requirements for subsequent trips [7]. 

Consequently, the integration of SVS, AVs and EVs has garnered significant attention from 
scholars, leading to the emergence of the shared autonomous electric vehicle system (SAEVS) [8]. 

1.1. Literature review 

In the last few years, SVS have attracted considerable attention. Several strategies have been 
proposed to enhance the overall efficiency of CSSs over the past few years and can be classified into 
the following two categories: (i) Operational levels and (ii) planning levels. 
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1.1.1. Operational level 

At the operational level, operators aim to alleviate the supply-demand imbalance and enhance the 
overall profitability of the SVS. To this end, they need to adopting appropriate relocation strategy or 
other operational strategies, taking into account the SVS characteristics [9,10]. 

The relocation strategy necessitates the SVS operator to draw up vehicle relocation plans, 
specifying the time and stations for vehicles to transit between different stations. Nair and Miller-
Hooks [11] proposed a mixed-integer programming model with joint chance constraints to generated 
partial redistribution plans based on each station’s current inventory level to satisfy user demand. 
Nourinejad et al. [12] developed a model based on two integrated multi-traveling salesman problems 
to address the joint optimization problem of vehicle relocation and staff rebalancing. Repoux et al. [13] 
introduced a new proactive relocation policy based on Markov chain dynamics that utilizes reservation 
information to predict the stations’ future states and make a relocation decision. 

For an electric sharing vehicle system (ESVS), the relocation problem is more complex because 
the vehicle movement is restricted to the battery capacity. Boyaci et al. [14] proposed a simulation-
optimization framework to optimize the vehicle and personnel relocation in an ESVS. The optimization 
module was adopted to generate relocation solutions. The simulation module was used to check the 
battery level feasibility of the solution and then update the charging constraint if infeasible. Zhao et 
al. [15] developed a time-space network model for an integrated EV rebalancing and staff relocation 
problem. Then, a Lagrangian relaxation-based algorithm was designed to solve this problem.  

Although operator relocation can alleviate the imbalance of the SVS, it is limited by the number 
of vehicles, relocation cost and other factors. Therefore, some studies have introduced trip selection to 
improve the efficiency of the SVS [16]. Trip selection refers to the process of choosing a specific trip 
or journey from the available options within a transportation system. Trip selection helps SVS serve 
beneficial trips (to increase one-rental income or balance supply and demand) based on forecasted or 
known needs [17]. 

Furthermore, SVS as an emerging mode of transportation, are chosen by users as a means of travel. 
The choice behavior is influenced by factors such as travel time, price and transportation convenience, 
leading users to select between shared cars, private cars and public transportation. Huang et al. [18] 
and Xu et al. [7] employed a binary Logit model to quantify user choice behavior between conventional 
fuel-powered or electric shared autonomous vehicles and private cars. However, there is a lack of 
literature that considers user choice behavior and analyzes from the standpoint of opportunity cost. For 
example, if the user demand is not met, it may lead users to permanently switch from SVS to other 
modes of transportation. 

1.1.2. Planning level 

In this stream, the relevant studies mainly focus on the fundamental design of the SVS, planning 
including strategic and tactical levels [19]. The strategic planning involves the determination of the 
locations and capacity (size) of parking/charging facilities. The tactical problems are related to 
optimize the fleet size and distribution of vehicles. The main goal of the planning problems is to 
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minimize the cost of infrastructure and to maximize the revenue obtained from satisfied user requests 
to the greatest extent possible [20]. 

For the planning problem of the SVS, Hu and Liu [21] introduced a hybrid queuing network 
model to depict the network of a carsharing system. Building upon this model, they proposed an 
optimization framework that takes into account road congestion to determine the station capacities and 
fleet size. Brandstatter et al. [22] proposed a two-stage, stochastic programming model based on 
random user demand to optimize the station location. Xu et al. [23] assumed that vehicles can only be 
used once they are fully charged and based on the concept of aggregation modeling. They established 
a nonlinear integer programming model to determine the fleet size of a shared car system. Hua et al. [24] 
jointly optimized the infrastructure planning (e.g., charging station location and initial fleet distribution) 
and dynamic fleet operations (e.g., vehicle assignment and relocation) under time-varying uncertain 
demand. Then, an algorithm based on the Lagrangian relaxation and stochastic dual dynamic 
programming method was proposed to solve the multistage stochastic model. 

A few studies have also paid attention to the aspects of SAEVSs, Miao et al. [6] developed a two-
stage multi-objective optimization methodology with a non-dominated sorting genetic algorithm to 
design the service area and the allocation of charging infrastructures. Chen et al. [25] considered 
different demand scenarios and utilized a three-dimensional spatio-temporal state network to describe 
the variation of vehicle battery levels while operating between stations. They established a two-stage 
stochastic integer programming model to make decisions regarding fleet size and charging station 
configuration in a SAEVS. 

1.2. Focus of this study 

In summary, the introduction of autonomous electric vehicles (AEVs) in shared vehicle systems 
can effectively address user demands and promote environmental sustainability. Despite this, existing 
research on station-based SAEVS is limited, as it primarily focuses on maximizing system profits from 
the supply side and does not sufficiently consider trip selection. Moreover, there is a notable gap in the 
literature when it comes to studying opportunity cost loss in the carsharing system. 

Opportunity cost, a concept in economics, refers to the loss of potential gain from other 
alternatives when one particular alternative is chosen. Essentially, it is the cost of forgoing the next 
best option (Mohammad and Pierluigi [26]; Krishna [27]). In carsharing services, the operator's 
opportunity cost loss stems from the SAEVS’s inability to respond to customer demand in a timely 
manner. This leads to customer attrition as they turn to other modes of transportation. 

To address these issues, this paper tackles the integrated optimization problem of planning and 
operation strategy in large-scale SAEVS environments. It encompasses trip selection and opportunity 
cost considerations, with the objective of maximizing comprehensive profits. By employing a spatio-
temporal state network modeling approach, an integer linear programming (ILP) model is developed 
to jointly determine vehicle relocation strategy, number of charging facilities and vehicle fleet size and 
its distribution. Additionally, a Lagrangian relaxation method is designed to solve the model. The 
efficiency of the proposed model and algorithm is validated through numerical experiments, and the 
impacts of various parameters, such as the opportunity cost loss coefficient, charging station power 
and cost, on system performance, are analyzed. 
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The major contributions of this paper are as follows: 
1) Introducing the concepts of trip selection and opportunity cost. Trip selection ensures the 

allocation of vehicles to high-quality user reservation trips, thereby enhancing the operational 
efficiency and economic viability of SAEVS, and opportunity cost considers the potential cost of 
unsatisfied user demands.  

2) Developing a ILP model for integrated planning and operation strategy optimization of SAEVS 
based on the spatio-temporal state network representation. This model accurately captures the vehicle 
spatio-temporal paths and battery level of vehicles during SAEVS operations. The planning level 
covers charging facility sizing, distribution and vehicle fleet considerations, while the operational level 
includes vehicle relocation and trip selection strategies. 

3) Introducing a Lagrangian relaxation framework to address the curse of dimensionality in 
solving large-scale instances of the problem. This approach efficiently solves large-scale linear 
programming problems, provides upper and lower bounds on the duality gap, evaluates the quality of 
the current solution and ensures solution quality while achieving fast computation. 

4) Real-world instances of the Chengdu are performed, showing the effectiveness of the proposed 
algorithm and further analyses the impact of different demand scenarios. 

The remainder of this paper is organized as follows: The problem statement and spatio-temporal 
state network modeling method are provided in Section 2. The ILP model of the SAEVS is introduced 
in Section 3. Section 4 presents a Lagrangian relaxation framework for solving the developed model. 
In Section 5, we conduct a series of numerical examples to test the performance of the proposed model 
and solution approach. Finally, conclusions and further studies are presented in Section 6. 

2. Problem statement 

2.1. Description of SAEVS 

In this study, we consider the network of a SAEVS with predetermined stations where each station 
is initially assigned a specific number of vehicles. During the operational phase, users can visit any 
station to pick up a vehicle and drop it at another one. Due to unbalanced demand, it is necessary for 
the SAEVS to dynamically relocate vehicles to parking stations experiencing higher demand, thereby 
ensuring a balanced distribution of vehicles throughout the network. 

An illustrative example is shown in Figure 1, which presents an SAEVS consisting of three 
stations. There are 7 charging facilities, 5 electric autonomous vehicles (EVAs) and 10 reserved 
demands in the entire network. In the scenario of SAEVS without vehicle relocation and trip selection 
is not considered (see Figure 1(a)), if the initial vehicle allocation is unsatisfactory, only 3 reservations 
will be met under the limited vehicles and parking capacities. To address this problem, the operators 
need to assign vehicles to execute relocation tasks. Figure 1(b) shows that more reserved orders (9 
orders) will be serviced when the vehicles are relocated. Furthermore, let us consider the trip selection 
strategy combined with the vehicle relocation, all reserved demand can be satisfied, resulting in a 
higher satisfaction (see Figure 1(c)). Therefore, considering vehicle relocation and trip selection has a 
significant impact on improving the operational efficiency of SAEVS. 
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The planning and operation strategy decision problem of SAEVS in our study aims to answer the 
following question: How many charging facilities and vehicles are required in each station of SAEVS. 
How to carry out vehicle relocation strategy to respond to customer demand. 
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(a) SAEVS without vehicle relocation or trip selection 
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(b) SAEVS with vehicle relocation 
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(c) SAEVS without vehicle relocation or trip selection 
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Figure 1. Impact of vehicle relocation and trip selection on SAEVS. 

2.2. Graph representation 

In this study, we formulate the dynamics of the SAEVS based on a spatio-temporal network. 
Spatio-temporal networks are widely used in the transportation network modeling [28–31]. Given all 
of that, the SAEVS can be represented by a spatio-temporal directed multigraph denote as G∈(S, L), 
where S represents a set of stations in the SAEVS, and each station 𝑖, 𝑗 ∈ 𝑆 1,2, … , 𝑛 . 𝐋 



47 

Electronic Research Archive  Volume 32, Issue 1, 41-71. 

represents links connecting station 𝑖 and station 𝑗, and each link (𝑖, 𝑗) ∈ 𝐋. Then, we extend the traffic 
network into a spatio-temporal network. Let 𝐓 𝑡 , 𝑡 𝛿, . . , 𝑡 𝑁𝛿  represent a set of 
discretized time period of the whole operating time horizon. 𝛿 represent the time slices of two adjacent 
timestamp. In general, the smaller the time slices, the better it can reflect the actual operational 
conditions. However, considering the scale of the variables, we often cannot set the time slices too 
small as it may affect computational efficiency. Vertex (𝑖, 𝑡  represents the state of corresponding 
parking station 𝑖 at the current timestamp 𝑡. Spatio-temporal arc (𝑖, 𝑡,𝑗, 𝑘) represents a trip from origin 
station 𝑖 to origin station 𝑗 starting at time 𝑡 and ending at time 𝑘.  

The example shown in Figure 2 demonstrates the spatio-temporal network of a vehicle relocation 
process presented in Figure 1(c). The traveling arcs in the constructed spatio-temporal network can be 
divided into two types: User reservation arcs and vehicle traveling arcs. Furthermore, to ensure spatio-
temporal network flow balance, we introduce the (𝑖 , 𝑡  and (𝑖 , 𝑡  as the dummy origin and 
dummy destination in the spatio-temporal network.  

The user reservation arcs represent that the users reserve vehicles from the origin station to the 
destination station at certain time (e.g., (1,𝑡 , 2,𝑡 2𝛿)). These arcs are according to the dynamic 
user demand that as the input date. The vehicle traveling arcs involve usage arcs, relocation arcs and 
waiting arcs. The usage arcs represent the vehicle are drive by users from one station to another (e.g., 
(1,𝑡 , 2,𝑡 2𝛿)). The relocation arcs represent the vehicle move from one station to another based on 
the relocation strategy (e.g., (3,𝑡 , 1,𝑡 𝛿)). The waiting arcs represents the vehicle dwell in stations 
(e.g., (1,𝑡 𝛿, 1,𝑡 2𝛿)). 

𝑡0 𝛿 𝑡0 2𝛿 𝑡0 𝑡0 3𝛿 𝑡0 4𝛿 

1 1 1 1 1 

2 2 2 2 2 

3 3 3 3 3 

User reservation

3 

2 

1 

𝑡0 5𝛿 

𝑂 𝐷 

𝑡𝑂 𝑡𝐷 

𝐷 

𝑡0 6𝛿 

3 

1 

Vehicle traveling
 

Figure 2. Illustration for spatio-temporal network of SAEVS. 

Next, we expand the spatio-temporal network into a spatio-temporal-energy three-dimensional 
network. Let 𝐄 0, ε, . . ,2ε, E  represent a set of discrete battery level of the EVAs. ε represents 
discrete battery levels between adjacent battery states, and E  represents maximum capacity of the 
battery. Similarly, considering the spatio-temporal network parameters, we define the spatio-temporal- 
energy network vertex (𝑖,𝑡,𝑒) to represent a vehicle at station 𝑖 at time 𝑡 battery state as 𝑒. The spatio-
temporal- energy arcs (𝑖, j, 𝑡, 𝑘, 𝑒, 𝑒 ) represent vehicles from origin station 𝑖 starting at time 𝑡 with 
battery level 𝑒 to origin station 𝑗 ending at time 𝑘 with battery level 𝑒 . When EVAs, are operating 
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within the system, their battery levels undergo changes. Then we set the ED represent the battery 
consumption rate per time slices. EC represent the represents the battery charging rate per time slice. 
∆𝐸 , ,  represents the change of battery when EVA moves from station 𝑖 to station 𝑗 with battery 

level of 𝑒. If 𝑖 𝑗, which represent the EVA is staying at a station for charging. During the charging 
process, the vehicle's battery level cannot exceed the maximum capacity E . 

The relationship expressing the variation in vehicle battery during changes in the spatio-temporal- 
energy network can be represented by Eqs (1) and (2). 𝑇 ,  represent the traveling time of vehicle 

from station 𝑖 to station 𝑗. 

∆𝐸 , ,

𝐸𝐷 ∙ ε
𝐸𝐶 ∙ ε

E ∙ 𝑒
 

𝑖 𝑗, 𝑒 𝐸𝐷 ∙ ε 0
𝑖 𝑗

𝑖 𝑗, 𝑒 𝐸𝐷 ∙ ε E
∀𝑖, 𝑗 ∈ 𝐒, 𝑒, 𝑒 ∈ 𝐄           (1) 

𝑒 𝑒 ∆𝐸 , , 𝑇 ,                             (2) 

The example shown in Figure 3 demonstrates the spatio-temporal-energy network formulation of 
a vehicle relocation process presented in Figure 1(c). The two-dimensional projection of the vehicle’s 
spatio-temporal-energy traveling arcs in Figure 3 corresponds to the spatio-temporal trajectory arc of 
the EVAs in Figure 2. 

 

Figure 3. Illustration for spatio-temporal-energy network of SAEVS. 

3. Model formulation 

This section formulates a MILP to address the integrated optimization of the planning and 
operation strategy problems for SAEVS considering the opportunity cost and trip selection. 
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3.1. Assumptions 

1) The user demands reservations between different stations at different time periods are given, 
meaning the potential user demands is given; 

2) When the SAEVS fails to meet user demands, the demand will shift from SAEVS to other 
public transportation modes, resulting in potential profit loss. Here, a coefficient for opportunity cost 
loss is given here. When the system fails to meet user demands, the opportunity cost loss incurred is 
equal to the potential profit associated with the unmet demand multiplied by the loss coefficient. 

3) The shared vehicles in the SAEVS are AEV. The battery consumption of the vehicles is directly 
proportional to the travel time on the route, while the charging rate at the stations is directly 
proportional to the time the vehicles dwell at the station. Additionally, no dispatcher is required as the 
vehicles can autonomously schedule and move; 

4) The capacity of a station is equivalent to the number of charging facilities available. When 
there are idle charging facilities at a station, vehicles returning to the station will directly charge at 
those facilities; 

5) At the beginning of operations, vehicles park next to the charging facilities at the stations. In 
other words, the scale of charging facilities configured at each station is guaranteed to be greater than 
the initial number of vehicles stationed at the station. 

3.2. Symbol and description 

The primary notation used throughout this paper is presented in Table 1 below. 

Table 1. Symbol and description. 

Notation Description 

Sets 
S:{𝑖, 𝑗} Set of stations in the SAEVS, 𝑖 and 𝑗 represent the index of the stations 

T:{𝑡, 𝑘} 
Set of time stamps in the operating time horizon，𝑡, 𝑘 represent index of 
different timestamp 

L:{ 𝑖, 𝑗 } 
Set of direct links between stations, 𝑖, 𝑗  represents index of direct links 
between parking stations 

E:{𝑒, 𝑒 } Set of battery levels, 𝑒, 𝑒  represent index of battery levels  

𝐕 :{ 𝑖, 𝑡 , 𝑗, 𝑘 }  
Set of spatio-temporal vertexes, 𝑖, 𝑡  and 𝑗, 𝑘  represent index of spatio-
temporal vertexes 

𝐕{ 𝑖, 𝑡, 𝑒 , 𝑗, 𝑘, 𝑒   
Set of spatio-temporal-energy vertexes, 𝑖, 𝑡  and 𝑗, 𝑘  represent index of 
spatio-temporal- energy vertexes 

𝐀 : 𝑖, 𝑡, 𝑗, 𝑘  
Set of spatio-temporal arcs in the spatio-temporal network, 𝑖, 𝑡, 𝑗, 𝑘  
represents index of spatio-temporal network 

𝐀: 𝑖, 𝑡, 𝑗, 𝑘, 𝑒, 𝑒  
Set of spatio-temporal-energy arcs in the spatio-temporal network, 
𝑖, 𝑡, 𝑗, 𝑘, 𝑒, 𝑒  represents index of spatio-temporal-energy network 

H:{h} Set of AEVs in the SAEVS, h represents the index of AEVs 
Continued on next page
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Notation Description 

Parameters  
𝛿 The time slices of two adjacent timestamp 
𝜀 Discrete battery levels between adjacent battery states 

𝑖 、𝑖  
Dummy origin and destination station in the spatio-temporal-energy 
network. 

𝑡 、𝑡  Dummy start and ending time in the spatio-temporal-energy network. 

𝑒 、𝑒  
Dummy start and ending battery level in the spatio-temporal-energy 
network. 

𝐷 , , ,  Number of the user reservation on spatio-temporal network 
𝐻  Maximum number of AEVs 
𝐶  Maximum number of charging facility in the station 
𝑇 ,  AEVs traveling time between station 𝑖 and 𝑗 
𝑇𝑃  Travel rental price of a vehicle from station 𝑖 to station 𝑗 
𝐶𝑇  Travel cost of AEV move from station 𝑖 to station 𝑗 
AC Amortized cost of a AEV  
CC Amortized cost of a charging facility 

𝜂 
The opportunity cost loss coefficient represents the proportion of potential 
user loss, resulting from unmet demand. 

EC The battery charging rate per unit of time at a charging station. 
ED The battery discharging rate per unit of time when a AEV is in motion 
𝐸  Represent maximum capacity of the battery 

∆𝐸 , ,  
represents the change of battery when EVA moves from station 𝑖 to station 
𝑗 with battery level of 𝑒 

Decision variable 

X: 𝑥 , , , , ,  
Vehicle traveling arcs, if 𝑥 , , , , , 1, AEV ℎ travels on spatio-temporal-

energy arc 𝑖, 𝑗, 𝑡, 𝑘, 𝑒, 𝑒 , otherwise 𝑥 , , , , , 0. 

Z: 𝑧 , , ,  

User reservation satisfied arcs, if 𝑧 , , , 1, vehicle ℎ is picked up by a 

user from station 𝑖 at time 𝑡 and arrive at station 𝑗 at time 𝑘. Otherwise, 

𝑧 , , , 0. 

nH:{𝑛𝐻 } Initial number of AEVs allocated in station 𝑖 
nC:{𝑛𝐶 } Initial number of charging facilities allocated in station 𝑖 

3.3. Mathematical model 

3.3.1. Objective function 

In our study, we aim to construct an objective function for the SAEVS with the comprehensive 
profit of its operations as the primary goal. The objective function of SAEVS consists of two major 
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components. The first part is revenue from the SAEVS which includes AEV rental income. In order to 
specify whether AEVs are operated by users or accept the relocation strategy to move autonomously, 

we introduce the user reservation satisfied arcs 𝑧 , , , , if 𝑧 , , , 1, vehicle ℎ is picked up by a 

user from station 𝑖 at time 𝑡. The second parts include operation cost, opportunity cost and investment 
cost of the SAEVS. The operation cost represents the travel cost of AEVs, opportunity cost represents 
the economic loss caused by the potential shift of user demand to other transportation modes due to 
the absence of user demand, the amortized cost represent the amortized cost of AEVs and rental cost 
of charging facility. 

The objective of the model is to maximize the operators’ comprehensive profits considering 
opportunity costs. The objective function is as follows: 

max 𝑍 ∑ ∑ 𝑇𝑃 , , , 𝑧 , , ,, , , ∈𝐀∈𝐇

   

∑ ∑ 𝐶𝑇 , , 𝑥 , , , , ,, , , , , ∈𝐀∈𝐇

  

∑ 𝜂 ∙ 𝑇𝑃 , , , ∙ 𝐷 , , , ∑ 𝑧 , , ,∈𝐇, , , ∈𝐀

   

𝐶𝐶 ∑ n𝐶∈𝐒

   

𝐴𝐶 ∑ n𝐻∈𝐒

   

  (3a) 

Furthermore, for the convenience of model solving we can transform the original problem to the 
minimization problem as shown below: 

min 𝑍 ∑ ∑ 𝑇𝑃 , , , 𝑧 , , ,, , , ∈𝐀∈𝐇

   

∑ ∑ 𝐶𝑇 , , 𝑥 , , , , ,, , , , , ∈𝐀∈𝐇

  

∑ 𝜂 ∙ 𝑇𝑃 , , , ∙ 𝐷 , , , ∑ 𝑧 , , ,∈𝐇, , , ∈𝐀

   

𝐶𝐶 ∑ n𝐶∈𝐒

   

𝐴𝐶 ∑ n𝐻∈𝐒

   

  (3b) 

3.3.2. Model constraints 

∑ 𝑥 , , , , , ∑ 𝑥 , , , , ,, ∈𝑽: , ∈𝑨, , ∈𝑽: , , , , , ∈𝑨   

  
1
1

0

𝑖 𝑖 , 𝑡 𝑡 , 𝑒 𝑒 ,
𝑖 𝑖 , 𝑡 𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, ∀ℎ ∈ 𝐇, 𝑖, 𝑡, 𝑒 ∈ 𝐕               (4)

∑ 𝑥 , , , , ,∈𝐇 n𝐻 , ∀𝑖 ∈ 𝐒 , 𝑖 , 𝑗, 𝑡 , 𝑡 , 𝑒 , 𝐸 ∈ 𝐀          (5)

∑ n𝐻∈𝐒 𝐻 , ∀𝑖 ∈ 𝐒                           (6)

∑ 𝑧 , , ,∈𝐇 𝐷 , , , , ∀ 𝑖, 𝑗, 𝑡, 𝑘 ∈ 𝐀                    (7)

𝑧 , , , ∑ 𝑥 , , , , ,, ∈𝐄 , ∀ 𝑖, 𝑗, 𝑡, 𝑘, 𝑒, 𝑒 ∈ 𝐀, ∀ℎ ∈ 𝐇        (8)
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∑ 𝑥 , , , , , n𝐶∀ ∈𝐇: , ∈𝐕, , ∈𝐄: , , , , , ∈𝐀 ,  ∀ 𝑖 ∈ 𝐒             (9)

n𝐶 𝐶 , ∀ 𝑖 ∈ 𝐒                             (10)

𝑛𝐻 , 𝑛𝐹 , 𝑛𝐶 ∈ 𝒁                                 (11)

𝑥 , , , , , , 𝑧 , , , ∈ 0,1 , ∀ 𝑖, 𝑗, 𝑡, 𝑘 ∈ 𝐀 , ∀ 𝑖, 𝑗, 𝑡, 𝑘, 𝑒, 𝑒 ∈ 𝐀, ∀ ℎ ∈ 𝑯     (12) 

Constraints (4) is used to keep the spatio-temporal network flow balance of the AEVs, ensuring 

a feasible spatio-temporal path 𝑥 , , , , ,  for each vehicle ℎ in the spatio-temporal network. The 

constraints (5) represent the relationships between the number of initially allocated AEVs n𝐻  in the 

station 𝑖 and their traveling acres at the dummy origin nodes 𝑥 , , , , , ; The constraints (6) 

represent the number of initial vehicles ∑ n𝐻∈  in the SAEVS can’t exceed the maximum number 

of fleet size 𝐻 . The constraints (7) ensure that all AEVs satisfies reservation arcs 𝑧 , , ,  at spatio-

temporal arc 𝑖, 𝑗, 𝑡, 𝑘  is less than the reservations 𝐷 , , , . Constraints (8) indicate the relationship 

between variables X and Z, that is the user reservation arcs cannot exceed the number of vehicle 
traveling arcs. During the optimization process, constraints (7) and (8) are related to trip selection. 
Constraints (9) ensure that the number of EVs at the station is limited by the number of available 
charging facilities. The constraints (10) indicate the decision variable of the station capacity n𝐶  is not 
greater than the maximum station capacity 𝐶 . Constraints (11) and (12) define the domains for the 
binary and integer variables. 

4. Model formulation 

The ILP model proposed to address the integrated planning and operation strategy optimization 
problem is essentially a multi-commodity flow problem, which is an NP-hard problem [32–34]. It leads 
to computational challenges for large-scale real-world data sets. To tackle this computational challenge, 
we introduce a Lagrangian relaxation (LR) approach to solve the problem.  

LR is a mathematical optimization technique used to solve complex optimization problems with 
multiple constraints. It is particularly effective for solving large-scale problems where finding an exact 
solution is computationally challenging [35–38]. 

4.1. Lagrangian relaxation model 

In the proposed ILP model, constraints (8) and (9) are related to multiple decision variables, which 
increases the difficulty and time of calculation, so it is called complicating constraints. In particular, 
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the constraints (8) are related to the variable 𝑥 , , , , ,  and 𝑧 , , , . The constraints (9) are related 

to the variable 𝑥 , , , , ,  and n𝐶 .  

Thus, we need relax these complicating constraints into the objective function (3b) and get the 
lower bound of the primal problem. In this subsection, we introduce two Lagranian multipliers 

𝜶:{𝛼 , , , 0 , , , ∈𝐀 , 𝜷:{𝛽 , 0 , ∈𝐕, by relaxed constraints (8) and (9) to construct the 

dualized Lagrangian function L (X,Z,nH, nC,𝜶, 𝜷) as follows: 

𝐋 𝑿, 𝒁, 𝒏𝑯, 𝒏𝑪, 𝜶, 𝜷 : min ∑ ∑ 1 𝜂 𝑇𝑃 , , , 𝑧 , , ,, , , ∈𝐀∈𝐇

∑ ∑ 𝐶𝑇 , 𝑥 , , , , ,, , , , , ∈𝐀∈𝐇  𝐶𝐶 ∑ n𝐶∈𝐒

∑ 𝑇𝑃 , , , 𝜂𝐷 , , ,, , , ∈𝐀 𝐴𝐶 ∑ n𝐻∈𝐒 𝛼 , , , ∑ ∑ 𝑧 , , ,, , , ∈𝐀∈𝐇

∑ 𝑥 , , , , , 𝛽 , ∑ 𝑥 , , , , , n𝐶∀ ∈𝐇: , ∈𝐕, , ∈𝐄: , , , , , ∈𝐀, ∈𝐄      (13) 

To simplify Eq (13) and obtain the dual relaxation problem of the primal problem: 

min ∑ ∑ 1 𝜂 𝑇𝑃 , , , 𝛼 , , , 𝑧 , , ,, , , ∈𝐀∈𝐇 ∑ ∑ 𝐶𝑇 , 𝛽 ,, , , , , ∈𝐀∈𝐇

𝛼 , , , 𝑥 , , , , , ∑ 𝑇𝑃 , , , ∙ 𝜂 ∙ 𝐷 , , ,, , , ∈𝐀  𝐶𝐶 𝛽 , ∑ n𝐶∈𝐒 𝐴𝐶 ∑ n𝐻∈𝐒  (14) 

Subject to constraints (1), (2), (4)–(7) and (10)–(12), the complicating constraints are relaxed 

variables 𝑿, 𝒁, 𝒏𝑯, 𝒏𝑪, are separated from each other in the relaxed problem. Then, the primal 
problem is essentially divided into three sub-problems (𝐹 , 𝐹 , 𝐹 ) that respectively determine the AEV 
routing, AEV-user assignment plans, station charging facility configuration. 
Subproblem 1. 

The first set of subproblems is related to vehicle traveling arc 𝑥 , , , , ,  for all ℎ ∈ 𝐇, as follows: 

𝐹 𝑿, 𝜶, 𝜷  Min𝐴𝐶 ∑ n𝐻∈𝐒 ∑ ∑ 𝐶𝑇 , 𝛽 , 𝛼 , , , 𝑥 , , , , ,, , , , , ∈𝐀∈𝐇  (15) 

Subject to constraints (1), (2), (4)–(6), (11) and (12), by analyzing Subproblem 1, the constraints 
relevant to this problem include the auxiliary decision variable Eqs (1) and (2), the spatio-temporal 
flow balance constraint (4), the initial vehicle constraints (5) and (6) and the variable value constraints 
(12) and (13). Therefore, Subproblem 1 can be transformed into a set of |𝐇| secondary subproblems, 
where each secondary subproblem can be viewed as a resource constrained shortest path problems.  

Each secondary subproblem consists of two parts. The first part is the amortized cost that is fixed 
for each given vehicle ℎ ∈ 𝐇. The second part is the generalized traveling cost related to the routing 
paths of the AEVs in the constructed spatio-temporal network. Furthermore, to capture the EV battery 
charging and consumption dynamics, we extend the spatio-temporal-energy network by adding the 
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charge-status dimension of battery levels. Then this problem can be solved to the optimum by some 
exact solution approaches. (e.g., dynamic programming, Mahmoudi and Zhou [38]).  

Algorithm 1 Dynamic programming algorithm for solving resource constrained shortest path 
problem  

1: Initialize: 𝐿 𝑀, 𝑃𝑆 0, 𝑃𝑇 0, 𝑃𝐸 0, 𝑅 ∅。∀ 𝑖, 𝑡 ∈ 𝐕, ℎ ∈H 
2: for ℎ ∈H do 

3:    𝐿 0 

4:    for 𝑖, 𝑡, 𝑗, 𝑘 ∈ 𝐀  do 
5:        for 𝑒 ∈ 𝐄  do 
6:            if 𝑒 ∆E , , , 0 do 
7:                if  𝑒 ∆E , , , 𝐸   

8:                    𝑒 𝐸  
9:                end if 
11:               else if 𝑒 ∆E , , , 𝐸  do 
12:                   𝑒 𝑒 ∆E , , ,  

13:               end if 
14:           end if 

15:           if  𝐿 𝐶 , 𝐿   do 

16:                𝐿 , , 𝐿 , , 𝑤 , , , , 𝑃𝑆 , , =𝑖, 𝑃𝑇 , , 𝑡, 𝑃𝐸 , , 𝑒 

17:           end if 
18:       end for  
19:   end for 

20:   Select  𝐿 ∗ , ∗=min{𝐿 , , ∈𝐒, ∈𝐄 

21:   if   𝐿 ∗, , ∗ + 𝐴𝐸 0  do 

22:        back from spatio-temporal vertex (𝑖∗, 𝑡 𝑀𝛿) with battery level of 𝑒∗ to dummy  
           origin vertex (𝑖 , 𝑡 ) using the values of 𝑃𝑆 , 𝑃𝑇 , 𝑃𝐸  and record all the  
           relative spatio-temporal arcs in set 𝑹 . 
23:    end if 
24:    for 𝑖, 𝑡, 𝑗, 𝑘, 𝑒, 𝑒 ∈ 𝐀 do 

25:         𝑥 , , , , ,
1
0

if 𝑖, 𝑡, 𝑗, 𝑘, 𝑒, 𝑒 ∈ 𝑹  
𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 ∀ℎ ∈ 𝐇 

26:    end for              
27: end for              

29: return 𝑥 , , , , , ∈𝐇, , , , , , ∈𝐀 
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We define 𝐶 , , , : 𝐶𝑇 , 𝛽 , 𝛼 , , , . 𝐶 , , ,  represents the cost of vehicle ℎ traveling 

through spatio-temporal arcs 𝑖, 𝑡, 𝑗, 𝑘 ∈ 𝐀 . Then, we let 𝐿  record the traveling cost state of ℎ at 
spatio-temporal-energy vertex (𝑖, 𝑡, 𝑒); 𝑃𝑆 , 𝑃𝑇 , 𝑃𝐸  record previous station, previous time and 
previous battery level on the shortest path from origin nodes to the given vertex spatio-temporal-energy 
vertex 𝑖, 𝑡, 𝑒 ∈ 𝐕 for vehicle ℎ ∈H , respectively. Besides, set 𝑹  record the spatio-temporal arcs 

that least-cost routing with least 𝐿  value. Then, we proposed a dynamic programming algorithm to 
solve this problem descript in Algorithm 1. 
Subproblem 2. 

The second set of subproblems is related to the demand satisfied reservations arc 𝑧 , , ,  for all 

ℎ ∈ 𝐇 as follow: 

𝐹 𝒁, 𝜶 min: 1 𝜂 𝑇𝑃 , , , 𝛼 , , , ∑ ∑ 𝑧 , , ,∈𝐇, , , ∈𝐀          (16) 

Subject to constraints (7) and (12), the structure of Subproblem 2 is very simple that the exact 
optimal solution can be easily obtained as follows. For each spatio-temporal arc 𝑖, 𝑡, 𝑗, 𝑘 ∈ 𝐀 , 

where 𝐀 𝑖, 𝑡, 𝑗, 𝑘 ∈ 𝐀|𝐷 , 0 , we define a set 𝐇 , , ,
∗ ℎ , ℎ , … , ℎ

, , ,
 to denote 

the first 𝐷 ,  vehicles sorted by the values of their corresponding Lagrangian multipliers. The 
vehicles set 𝐇 , , ,

∗  include EVs ∀𝑒ℎ ∈ 𝐄𝐇 and GVs ∀𝑔ℎ ∈ 𝐆𝐇. We first sort the set of Lagrangian 

multipliers 𝛼 , , ,  for ∀ℎ ∈ 𝐇 from the smallest to the largest. Then, we pick the smallest 𝐷 , , ,  

multipliers and let the corresponding 𝑧 , , ,  equal to 1. Repeating the process above for all the spatio-

temporal arcs 𝑖, 𝑡, 𝑗, 𝑘 ∈ 𝐀, the optimal solution 𝑧 , , ,  to Subproblem 2 can be represented as: 

𝑧 , , ,
1
0

  
ℎ ∈ 𝐇 , , ,

∗  
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ∀ℎ ∈ 𝐇                     (17) 

Subproblem 3. 
The third set of subproblems is related to the station capacity n𝐶 , as follows:  

𝐹 𝒁, 𝜶 min 𝐶𝑃 ∑  𝐶𝐶 𝛽 , n𝐶∈                     (18) 

Subject to constraints (10) and (11), through analysis of the structure of Subproblem 3, it can be 
determined that the problem is a simple assignment problem. The exact optimal solution can be easily 

obtained as follows. If 𝐶𝐶 𝛽 , 0, n𝐶 𝐶 , else if 𝐶𝐶 𝛽 , 0, n𝐶 0, then we can 

obtain the optimal solution of the Subproblem 3. 
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We can get the optimal value of the lower bound in the Lagrangian dual problem for the primal 
problem to solving the subproblem (13)–(18), the optimal objective of the relaxed problem (19) for a 
set of 𝜶, 𝜷 can be obtained as follows: 

𝐿𝐵 𝜶, 𝜷 ∑ 𝐹 𝑿, 𝜶, 𝜷∈𝐇 𝐹 𝒁, 𝜶 𝐹 (𝒁, 𝜶)                (19) 

Then, we can obtain the optimal value 𝑿, 𝒁, 𝒏𝑯, 𝒏𝑪 of the relaxed problem, which can serve as 
the lower bound solution 𝐿𝐵 𝛼, 𝛽, 𝛾  to the optimal value of the primal problem. 

4.2. Feasible solution 

If the optimal solution of relaxation model is feasible for the primal problem, we have obtained 
the optimal solution to the primal problem. Otherwise, we apply a set of algorithms to find an upper 
bound for the primal solution. Specifically, a heuristic algorithm based on the greedy approach is 
introduced to adjust the three types of decision variables, thereby obtaining feasible solutions for the 
original problem. In simple terms, the algorithm first removes the vehicle traveling arcs that do not 
satisfy the constraints or result in negative profit. Then, it adds these vehicle traveling arcs back into 
the spatio-temporal network with the objective of maximizing operational profit, aiming to maximize 
the overall system profit as much as possible. The feasible process is as follows. 
Step 1. Initialization 

First, set the lower bound relaxation solution 𝐿𝐵 𝛼, 𝛽, 𝛾  as the decision variable of initial 

solution. Then, we introduce the auxiliary variables 𝑈𝐷 , , ,  ,𝐿𝑐 , , 𝑤 , , ,  and 𝑃 . 𝑈𝐷 , , ,  

represent number of unfinished user reservation demand in space time arcs 𝑖, 𝑡, 𝑗, 𝑘 . The initial set 

𝑈𝐷 , , , 𝐷 , , , , ∀ 𝑖, 𝑡, 𝑗, 𝑘 ∈ 𝐀 . 𝐿𝑐 ,  represent the station resource occupancy at the spatio-

temporal node 𝑖, 𝑡 ∈ 𝐕 . It denotes the total number of vehicle travel arcs passing through station 𝑖 

at time 𝑡 , initializing by setting 𝐿𝑐 , =∑ 𝑥 , , , , ,∀ ∈𝐇: , ∈𝐕, , ∈𝐄: , , , , , ∈𝐀 , ∀ 𝑖, 𝑡 ∈ 𝐕 . 

𝑤 , , ,  represent the potential profit that vehicle ℎ may generate by traversing spatio-temporal arc,  

∀ 𝑖, 𝑡, 𝑗, 𝑘 ∈ 𝐀 . 𝑃  represent the profit generated by vehicle during the operational period, 

initializing by setting 𝑃 0, ℎ ∈ 𝐇. Furthermore, we introduce the auxiliary set SH and UH, the SH 

represents the set of selected schedules of vehicle, when ℎ ∈ 𝐒𝐇, ∑ 𝑥 , , , , ,, , , , , ∈𝐀 0 . UH 

represents the set of unselected schedules of vehicle, when ℎ ∈ 𝐔𝐇, ∑ 𝑥 , , , , ,, , , , , ∈𝐀 0. 

Initializing by setting SH = ∑ 𝑛𝐻∈𝐒 , UH = H / SH. 
Step 2. Remove vehicle schedule that violate capacity constraints 

For each spatio-temporal nodes 𝑖, 𝑡 ∈ 𝐕 , when 𝐿𝑐 ,  𝐶 , we select |𝐶  – 𝐿𝑐 , | 

vehicles ℎ ∈ 𝐇 and set the 𝑤 , , , =M, ∀ 𝑖, 𝑡, 𝑗, 𝑘 ∈ 𝐀 . M is a very large number. When 𝐿𝑐 ,  < 

𝐶 ， if 𝑈𝐷 , , , 0 ， let 𝑤 , , , 𝐶𝑇 , ℎ ∈ 𝐇 ; otherwise 𝑈𝐷 , , , 0 , let 𝑤 , , ,

𝐶𝑇 1 𝜂 𝑇𝑃 .Then based on the potential profit 𝑤 , , , , for ℎ ∈ 𝐇 , calculating the 𝑃 , 

∀(𝑖,𝑡,𝑗,𝑘) ∈ 𝐀′profit 𝑃 , if 𝑃 0 , remove vehicle ℎ , SH → 𝐒𝐇/ℎ ， UH → 𝐔𝐇 ∪ ℎ . The 

corresponding vehicle travel arcs and demand satisfaction  𝑥 , , , , , 0 , 𝑧 , , , 0 , 𝐿𝑐 , →
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𝐿𝑐 , ∑ 𝑥 , , , , ,, ∈𝐕, , ∈𝐄: , , , , , ∈𝐀 ， ∀ 𝑖, 𝑡, 𝑗, 𝑘 ∈ 𝐀 , 𝑖, 𝑡, 𝑗, 𝑘, 𝑒, 𝑒 ∈ 𝐀 , ℎ ∈ 𝐇 . If 𝑃 0 , 

𝑈𝐷 , , , → 𝑈𝐷 , , , ∑ 𝑥 , , , , ,, , , , , ∈𝐀: , ∈𝐄 . 

Step 3. Vehicle reassigning procedure 

In this step, we reassign new vehicle to the SAEVS. For each ℎ ∈  UH, if 𝑈𝐷 , , , 0, 

𝑤 , , , 𝐶𝑇 , else if 𝑈𝐷 , , , 0, let 𝑤 , , , 𝐶𝑇 1 𝜂 𝑇𝑃 . Furthermore, if 𝐿𝑐 , 𝐶 , 

𝑤 , , , M, updating 𝑈𝐷 , , , → 𝑈𝐷 , , , 1.Then, adjusting this vehicle routing plan to cover as 

many reserved trips as possible with the least traveling cost based on DPG algorithm in Algorithm 1. 

Then, obtain a new 𝐗 , and calculate the profit 𝐿  generated by vehicle ℎ based on Eq (20). If 𝐿

0 , retaining this vehicle schedule, updating 𝑧 , , , . If ∑ 𝑥 , , , , ,, , , , , ∈𝐀: , ∈𝐄 1  and 

𝑧 , , , 1, then updating 𝐔𝐃 , , , 𝑚𝑎𝑥 0, 𝐔𝐃 , ∑ 𝑥 , , , , ,, , , , , ∈𝐀: , ∈𝐄 and 𝐿𝑐 , →

𝐿𝑐 , ∑ 𝑥 , , , , ,, ∈𝐕, , ∈𝐄: , , , , , ∈𝐀 . If 𝐿 0, the reassigning process break. In this case, 

when reassigning new vehicles, the profits generate with these vehicles are all less than 0. 

 𝐿 ∑ 𝑇𝑃 , , , 𝑧 , , ,, , , ∈𝐀  +∑ 𝐶𝑇 , , 𝑥 , , , , ,, , , , , ∈𝐀 𝐴𝐶 𝐶𝐶    (20) 

Step 4. Initial Station capacity expand process 
For each station 𝑖 ∈ S, let the station capacity n𝐶 max 𝐿𝑐 , ∈𝐓 and obtain the feasible 

capacity of each station. 
Eventually, the feasible objective value is obtained as the upper bound UP, the 𝐗, 𝐙 and 𝐧𝐇 is 

obtained by the Step 3 and the 𝐧𝐂 obtained by the Step 4. 

4.3. Updating Lagrangian multipliers 

If the lower bound is equal to the upper bound, we can return the corresponding feasible solution. 
Otherwise, we used the subgradient algorithm to optimize the solution by updating the values of the 
Lagrangian multipliers 𝜶, 𝜷. The subgradient algorithm is a widely used approach for updating 
Lagrangian multipliers, The Lagrangian relaxation approach framework is shown in Figure 4. 

In this research, we give a set of initial Lagrangian multipliers 𝜶 ∶ 𝛼 , , , , , , ∈𝐀 , 

𝜷: 𝛽 , , ∈𝐕, ∈𝐇 0 , in which 𝑘  represents the number of iterations. The Lagrangian 

multipliers update process is as follow: 

𝛼 , , ,  max 0, 𝛼 , , , 𝑡 ∑ 𝑧 , , ,∈𝐇 ∑ 𝑥 , , , , ,, , , , , ∈𝐀: , ∈𝐄 } (21) 

𝛽 , max 0, 𝛽 , 𝑡 ∑ ∑ 𝑥 , , , , ,, , , , , ∈𝐀∈𝐇 n𝐶 }  (22) 

The 𝒙 , 𝒚 , 𝒛  and 𝒏𝑪  represent the optimal solutions of relaxed models in the k th iteration, 
the 𝑡  is the step size of the subgradient algorithm can be obtain using Eq (23). 

𝑡  , ,

∑ 𝑨 𝑩∈𝐇, , , , ∈
                        (23) 
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where the 𝑈𝐵  and 𝐿𝐵 𝛼, 𝛽  are the upper bound and lower bound up to iteration 𝑘, the 𝜏  is the 
step parameter in the subgradient algorithm. The 𝑨 , 𝑩 and 𝑪  is represent as (24) and (25) 

𝑨 𝑧 , , , ∑ 𝑥 , , , , ,, ∈𝐄                     (24) 

𝑩 ∑ 𝑥 , , , , ,∀ ∈𝐇, , ∈𝐕, , ∈𝐄 n𝐶                (25) 

 

Figure 4. Lagrangian relaxation approach framework. 

We set the maximum iteration number of the Lagrangian relaxation approach as K. When the 
iteration reaches K, or if the relative gap percentage between LB and UB becomes less than a 
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predefined gap (i.e., 5%), return the current feasible solution as the near-optimum solution, and 
calculate the gap between the upper and lower bounds using Eq (26).  

Gap ∙ 100%                             (26) 

5. Computational experiments 

In this section, we apply the optimization model of planning and operation strategy of SAEVS, 
along with the Lagrangian relaxation algorithm, to real-world instances based on taxi data in Chengdu, 
China on May 28th. The taxi data used in our study is comprehensive and includes several details, 
which includes information such as the pick-up and drop-off locations of each trip, the start and end 
time of each trip, the distance traveled. Finally, we perform a parameter sensitivity analysis focusing 
on trip selection, opportunity cost coefficient and charging rate. This analysis is crucial to 
understanding how changes in these parameters affect the overall performance and optimization results. 
All experiments are conducted on a personal computer with 3.6 GHz CPU and 16 GB RAM. 

5.1. Experimental setting 

The distribution of taxi pick-up and drop-off points reflects the allocation of users’ travel demands. 
We determine candidate stations by mining travel demand points. The distribution of stations is shown 
in Figure 5. 

 

Figure 5. Distribution of selected stations. 
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Considering the service range of the SAEVS stations as a circle with a radius of 0.5 km centered 
at each station, real-time travel origin-destination (OD) data between stations is obtained. The 
operating period is set from 7:00 to 21:00 and divided into 42 time slices at 20 minutes. Then, travel 
trips within the operating hours of 7:00–21:00 are considered as input data for the SAEVS. The total 
demand for SAEVS is determined to be 6206. Figure 6(a) shows the total demand of a day. The actual 
travel times between stations are obtained using the Baidu API and processed to obtain the travel times 
slice 𝑇 ,  for the input of this paper’s model, as shown in Figure 6(b). The user demands at each time 

period presented in Figure 7. 

   

(a)Total demand between selected stations       (b) Travel time between selected stations 

Figure 6. Total OD demand and travel time between selected stations. 

 

Figure 7. User demands at each time period for SAEVS. 

342

444

512

431 437
449 452

471

425 432

485
495

532

299

7:00-8:00 8:00-9:00 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00

Time period

0

100

200

300

400

500

600



61 

Electronic Research Archive  Volume 32, Issue 1, 41-71. 

We set the 𝑇𝑃 as the SAEVS unit-time travel rental price, 𝑇𝑃 𝑇𝑃 ⋅ 𝑇 , , in this experiment, 
and 𝑇𝑃 10$/h. Similarly, we set 𝐶𝑇  as the SAEVS unit-time travel cost, 𝐶𝑇  𝐶𝑇 ⋅ 𝑇 , , 

travel cost of AEV 𝐶𝑇 1$/h, amortized cost of a AEV 𝐴𝐶 120 $/day, amortized cost of a 
charging facility 𝐶𝐶 30$. Maximum number of AEVs 𝐻  = 500, maximum number of charging 
facility in the station 𝐶 30, the opportunity cost loss coefficient 𝜂 = 0.5, maximum capacity of 
the battery 𝐸  = 15，the battery charging rate per unit of time at a charging station 𝐸C = 2, the 
battery discharging rate per unit of time when a AEV is in motion 𝐸D = 1. For the Lagrangian 
relaxation approach, the step parameter in the subgradient algorithm 𝜏 = 2. 

5.2. Computational performance 

In this section, we test small-scale case with 5 stations using Gurobi and LR. Then, we introduce 
a large-scale real-world case and solved it using the Lagrangian relaxation method, followed by an 
analysis of the solution results. 

To provide a deeper understanding of the SAEVS, we introduce two indicators: average EVA 
revenue and acceptance rate. The Average EVA revenue represents the mean income generated by the 
vehicles over the operational period, not accounting for the amortized costs of the vehicle and charging 
station. The acceptance rate, on the other hand, is the ratio of completed demands to total user demands 
throughout the operation cycle. This rate indicates the SAEVS’s ability to meet user demands during 
its operational period, thereby providing a measure of its effectiveness and efficiency. 

5.2.1. Comparison of algorithms in small-scale experiments 

In this section, we used the small-scale case of 294 travel demands from 5 stations provided in 
Section 5.1 as the benchmark case for LR approach validation. The maximum fleet size was set to 30 
vehicles. Based on this benchmark case, we test the computational time and accuracy of the Lagrangian 
relaxation algorithm and the Gurobi commercial solver for different demand and fleet sizes, aiming to 
validate the effectiveness of the Lagrangian relaxation algorithm. 

Table 2. Comparison of performance between LR algorithm and Gurobi commercial solver. 

Demand Max fleet size Solution time (s) Result Gap 

LR Gurobi LR Gurobi LR Gurobi 

294 30 260.5 3600 -1543 -1578 7.60% 5.83% 
588 45 419.4 3600 -3020 -2720 8.48% 17.57% 
882 60 580.1 3600 -4501 -3811 8.51% 22.54% 
1176 75 752.8 3600 -5741 -3837 8.87% 39.09% 

By applying the Lagrangian relaxation algorithm with 5000 iterations and using the Gurobi 
commercial solver for 1 hour on the small-scale case, the results obtained are shown in Table 2. The 
gap values between the solutions obtained by the Lagrangian relaxation algorithm and the Gurobi 
solver were 7.60–8.87% and 5.83–39.09%, respectively. By comparing the results, we can observe 
that for the small-scale case, the difference in solution accuracy between the two methods is relatively 
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small, with the Gurobi commercial solver slightly outperforming the Lagrangian relaxation algorithm. 
However, as the user demand and maximum fleet size increase, the computational time and accuracy 
of the Gurobi commercial solver for precise calculations decrease rapidly. On the other hand, although 
the Lagrangian relaxation algorithm shows a declining trend in solution quality, it still maintains good 
efficiency and accuracy compared to the Gurobi commercial solver. Therefore, it can be concluded 
that the Lagrangian relaxation algorithm performs better overall than the Gurobi commercial solver 
when solving larger-scale real-world problems. 

5.2.2. Results analysis in large-scale experiments 

In this section, we solved the large-scale case by inputting the 20-station case and related 
parameters into the LR. We performed 5000 iterations and obtained the upper and lower bounds as 
well as the convergence curve and error rate, as shown in Figure 8(a),(b). The algorithm demonstrated 
good convergence performance. 

   

(a) Curve of upper and lower bounds changing      (b) Curve of error rate changing 

Figure 8. Iterative process of solving with the LR algorithm. 

The upper and lower bounds obtained were -57,446 and -45,583, respectively, resulting in an 
error rate of 20.7%. Considering that the objective function (3b) represents the conversion of a 
maximization problem into a minimization problem, we set the negative value of the feasible upper 
bound as the output result. When considering the potential opportunity cost, the comprehensive profit 
of SAEVs was 45,583 $. Without considering the opportunity cost, the profit was 48,238 $. The total 
number of relocations was 283, and the total fleet size was 405 vehicles. The initial distribution of 
vehicles and charging facility at each station is shown in Figure 9. 

Then, we analyzed the relocation process of the SAEVS based on the solution results. Figure 10 
illustrates the number of relocations in each time period. We then conducted a detailed analysis of the 
relocation process during the time periods of 7:00–8:00, 10:00–11:00, 14:00–15:00 and 19:00–20:00. 
The corresponding relocation diagrams for these time periods are shown in Figure 11. 
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Figure 9. Initial distribution of vehicles and charging facility at each station. 

 

Figure 10. Number of SAEVS relocations in each time period. 

By observing the total user demand in each time period in Figure 6, along with the corresponding 
relocation diagrams in Figure 11, it can be observed that compared to off-peak periods, the number of 
relocations decreases during the morning and evening peak periods. After the evening peak period, the 
user demands decreases and operations cease, resulting in a sharp decline in the number of relocations. 
The maximum number of relocations occurs during the 10:00–11:00 time period. This is because 
during the morning peak period, the increased vehicle usage leads to an imbalance in vehicle 
distribution. The SAEVS needs to conduct concentrated scheduling to maintain the balance of vehicles 
and meet user demands. 

In conclusion, the SAEVs should focus on relocating vehicles after periods of high demand to 
alleviate the imbalance in vehicle distribution within the SAEVS. 
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(a) Relocation strategy for early peak demand     (b) Relocation strategy after early peak demand 
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  (c) Relocation strategy for off-peak demand    (d) Relocation strategy after late peak demand 
          (14:00–15:00)                                 (19:00–20:00) 

Figure 11. SAEVS relocation strategies for each time period. 

5.3. Sensitive analysis with different parameter settings 

In this section, we perform a series of numerical experiments to verify how the key parameters 
affect the optimal SAEVS objectives based on the real-world case (instance 1) in Section 5.2, including 
trip selection, opportunity cost coefficient and charging rate. 

5.3.1. Impact analysis of trip selection 

In this section, we further analyze the impact of trip selection on the performance of the SAEVS. 
When the SAEVS is not adopted trip selection, the SAEVS will not satisfy all user demand. During 
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the computation using the LR, the vehicle reassigning procedure in the feasibility process, specifically 
step 3, is modified. The modification involves not terminating the reassigning procedure regardless of 
whether 𝐿 0. Instead, the reassigning procedure continues until all demands are satisfied. 

According to Table 3, when the SAEVS does not adopt trip selection, the profit considering 
opportunity cost decreases from 45,583 to 39,349, a decline of 13.67%. The average profit per vehicle 
decreases from 112.5 to 79.5, a decline of 29.3%. The number of relocations increases from 283 to 392, 
an increase of 27.8%. The fleet size of SAEVS increases from 405 to 495, an increase of 18.18%. 

In summary, trip selection can effectively improve the carsharing system’s profit, reduce the 
number of relocations and increase the overall system efficiency by selectively choosing high-quality 
user reservation demands, though the user satisfaction rate may decrease. 

Table 3. The impact of whether consider trip selection on the Performance of SAEVS. 

Trip 
selection 

Profit ($) Average AEVs 
revenue ($) 

Accept rate Number of 
relocations 

Fleet size 

No 39,349.3 79.5 100% 392 495 
Yes 45,583.2 112.5 94.1% 283 405 

5.3.2. Impact analysis of opportunity cost coefficient 

Opportunity cost represents the potential profit loss for the operator of the SAEVS due to the 
inability to meet user demands, resulting in potential users shifting to other public transportation modes. 
This section analyzes the impact of different opportunity cost coefficients 𝜂 on the performance of 
the SAEVS. When 𝜂 = 0, it indicates that even if the SAEVS does not accept user demands during 
operation, potential users will not switch to other public transportation modes. 

From Table 4, it can be observed that as 𝜂  increases from 0 to 2, the profit considering 
opportunity cost and average profit per vehicle of the SAEVS decrease. The profit decreases from 48,407 
$ to 34,075 $, a decrease of 29.6%. The average revenue per vehicle decreases from 123.8 $ to 73.0 $, 
indicating a decrease of 41.0%. On the other hand, the total demand acceptance rate, number of 
relocations, idle rate and fleet size consistently increase. The acceptance rate increases from 92.8% 
to 96.6%. The number of relocations increases from 227 to 353, an increase of 55.5%. The fleet size 
increases from 391 to 467, an increase of 19.4%. 

Table 4 The Impact of different opportunity Cost coefficients on the performance of SAEVS. 

Opportunity cost 
coefficient 

Profit ($) Average AEVs 
revenue ($) 

Accept rate Number of 
relocations 

Fleet size 

0 48,407.9 123.8 92.8% 227 391 
0.5 45,583.2 112.5 94.1% 283 405 
1 39,758.2 97.4 94.3% 292 408 
1.5 36,697.4 81.5 96.0% 334 450 
2 34,075.2 73.0 96.6% 353 467 
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In conclusion, an increase in the opportunity cost coefficient leads to a greater penalty for unmet 
demand, making the system more inclined to satisfy user demands. As a result, the fleet size increases 
to meet user demands as much as possible, and the number of autonomous vehicle relocation increases. 
However, as the fleet size increases, the marginal benefit of adding vehicles to satisfy user demands 
decreases, leading to a decrease in average vehicle profit Therefore, operators need to conduct in-depth 
research on user behavior and develop an appropriate planning and operation strategy for SAEVS. 
This strategy should be based on thorough research into user demand sensitivity, ensuring that the 
balance between cost-effectiveness and customer satisfaction is maintained, while optimizing system 
performance and profitability. 

5.3.3. Impact analysis of charging rate 

Different charging rates correspond to the speed at which electric vehicles are charged, with these 
rates determined by charging facilities with various power levels. Generally, higher charging power 
equates to higher costs, and this cost increase tends to be exponential. In this study, we consider 
charging rates of 1, 2, 3, 4 and 5, with corresponding average charging station costs of 5, 10, 20, 30 
and 45 respectively. This leads to average deployment costs for charging facilities of 25, 30, 40, 50 
and 65 respectively. Observations from Table 5 are as follows: 

Table 5. The impact of different charging rate on the performance of SAEVS. 

Charging 

rate 

SAEVs depreciation 

cost ($) 

Profit ($) Average EVA 

revenue ($) 

Accept rate Number of 

relocations 

Fleet size

1 25 30,938.3 71.3 88.2% 239 434 

2 30 45,583.2 112.5 94.1% 283 405 

3 40 43,068.5 109.0 95.2% 366 395 

4 50 41,550.1 107.1 95.6% 379 388 

5 65 37,320.8 96.7 96.3% 412 386 

With the increase in charging rate and charging facilities costs from 1 to 5, 25–65 respectively. 
The profits of the SAEVS and average EVA revenue first initially increase and then decrease. When 
the charging rate is at 2, both the SAEVS’s profit and the average EVA revenue reach their peak. 
Acceptance rate and number of relocations consistently increase, rising from 88.2% to 96.3% and 
from 239 to 412, respectively. The fleet size decrease from 434 to 386. 

In conclusion, increasing the charging rate reduces the instances where vehicles cannot meet user 
demands and relocation tasks due to insufficient battery level. This leads to higher demand fulfillment 
rates and increased number of relocations, while reducing the required fleet size. However, as the 
charging rate continues to increase, the marginal benefits of the SAEVs decrease, while the costs of 
charging facilities keep rising, resulting in a decrease in SAEVs comprehensive profits. Therefore, 
operators should deploy charging facilities with appropriate power levels based on the actual 
operational conditions of the SAEVS. 
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6. Conclusions 

In this study, we address the planning and operation strategy decision problem of the shared 
electric automated vehicle system (SAEVS), taking into account trip selection and the potential 
demand loss’s opportunity cost. The dynamics of the SAEVS are described using a spatio-temporal-
state network modeling approach, which accurately captures vehicle trajectories and changes in battery 
levels during operations. An integer linear programming (ILP) model is subsequently developed, 
aimed at maximizing total profits by integrating the optimization of design planning (including 
charging facilities, vehicle fleet sizing and distribution) and operational decisions (such as vehicle 
relocation and trip selection strategy) within the SAEVS. The established spatio-temporal-state 
network and integer linear programming model are a particular case of the multi-commodity flow 
model, which has been proved as a NP-hard problem and cannot be solved in polynomial time. To 
address this, we introduce the Lagrangian relaxation (LR) approach, which allows for obtaining near-
optimal solutions within an acceptable time frame. Through validation and analysis of the model and 
algorithm, the results indicate: 

1) The LR algorithm approach in this study exhibits small differences in solution accuracy 
compared to the commercial solver Gurobi for small-scale problems. However, as the problem size 
increases, the time and accuracy of exact solutions using Gurobi decrease rapidly. On the other hand, 
although the LR algorithm shows a deteriorating trend in solution quality, it maintains good efficiency 
and accuracy compared to Gurobi. 

2) Regarding planning decisions, SAEVS operators should distribute vehicles to stations with 
concentrated user demand during early peak hours and allocate charging facilities to stations with high 
total demand throughout the day. For operational decisions, vehicle relocation post-peak demand 
periods are recommended to alleviate imbalances within the SAEVS. 

3) The introduction of trip selection can enhance the overall efficiency of SAEVS compared to 
satisfying all user demands. As the opportunity cost loss coefficient increases, yielding greater profit 
penalties due to unmet demand, the SAEVS is more inclined to satisfy user demands. However, this 
comes at a cost to the overall profitability of the system. Therefore, operators should study user demand 
sensitivity and formulate precise operational strategies. As the charging rate escalates, the marginal 
benefits derived from the SAEVS diminish, while the costs associated with the charging facilities 
continuously rise. Thus, it is crucial for operators to implement charging facilities with suitable power 
levels, taking into account the real-world operational conditions of the SAEVS. 

The model proposed in this study has certain limitations that need to be addressed and improved 
in future research. One limitation is that the planning and operation optimization model for SAEVS 
developed in this study assumes fixed user demands and does not account for the stochastic nature of 
user demand and arrival patterns. To overcome this limitation, future research can focus on optimizing 
the planning and operation aspects of SAEVS in random environments, considering the uncertainty in 
user demand and arrival patterns. This would provide a more realistic and robust framework for 
SAEVS planning and operation. 
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