

http://www.aimspress.com/journal/era

ERA, 31(9): 5917–5927. DOI: 10.3934/era.2023300 Received: 01 March 2023 Revised: 26 June 2023

Accepted: 09 August 2023 Published: 31 August 2023

Research article

The short interval results for power moments of the Riesz mean error term

Jing Huang*, Qian Wang and Rui Zhang

School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, Shandong, China

* Correspondence: Email: huangjingsdnu@163.com.

Abstract: Let $\Delta_1(x; \varphi)$ denote the error term in the classical Rankin-Selberg problem. In this paper, our main results are getting the k-th $(3 \le k \le 5)$ power moments of $\Delta_1(x; \varphi)$ in short intervals and its asymptotic formula by using large value arguments.

Keywords: the Rankin-Selberg problem; power moment; integral mean value; Voronoï formula

1. Introduction

Let $\varphi(z)$ be a holomorphic form of weight κ with respect to the full modular group $SL_2(\mathbb{Z})$ and denote by a(n) the n-th Fourier coefficient of $\varphi(z)$. We assume that $\varphi(z)$ is normalized such that a(1) = 1 and $T(n)\varphi = a(n)\varphi$ for every $n \in \mathbb{N}$, where T(n) is the Hecke operator of order n. Let c_n be the convolution function defined by

$$c_n = n^{1-\kappa} \sum_{m^2 \mid n} m^{2(\kappa-1)} \left| a \left(\frac{n}{m^2} \right) \right|^2.$$

In 1974, Deligne [1] proved the estimate $|a(n)| \le n^{\frac{\kappa-1}{2}} d(n)$, where d(n) is the Dirichlet divisor function, which implies $c_n \ll_{\varepsilon} n^{\varepsilon}$. Here and in what follows, ε denotes an arbitrarily small positive number which is not necessarily the same at each occurrence. The classical Rankin-Selberg problem is to estimate the upper bound of the error term

$$\Delta(x;\varphi) := \sum_{n \le x} c_n - Cx,\tag{1.1}$$

where C is an explicit constant. In 1939, Rankin [2] proved that

$$\Delta(x;\varphi) = O(x^{\frac{3}{5}}),\tag{1.2}$$

which was stated by Selberg [3] again without proof. However, no improvement of (1.2) has been obtained after Rankin and Selberg. In [4], Ivić obtained that $\Delta(x;\varphi) = \Omega_{\pm}(x^{3/8})$ and conjectured that $\Delta(x;\varphi) = O(x^{3/8+\varepsilon})$.

Ivić, Matsumoto and Tanigawa [5] considered the Riesz mean of the type

$$D_{\rho}(x;\varphi) := \frac{1}{\Gamma(\rho+1)} \sum_{n < x} (x-n)^{\rho} c_n$$

for any fixed $\rho \geq 0$ and define the error term $\Delta_{\rho}(c;\varphi)$ by

$$D_{\rho}(x;\varphi) = \frac{\pi^2 \kappa R_0}{6\Gamma(\rho+2)} x^{\rho+1} + \frac{Z(0)}{\Gamma(\rho+1)} x^{\rho} + \Delta_{\rho}(x;\varphi), \tag{1.3}$$

where

$$R_0 = \frac{12(4\pi)^{\kappa-1}}{\Gamma(\kappa+1)} \iint_{\mathfrak{F}} y^{\kappa-2} |\varphi(z)|^2 dx dy,$$

$$Z(s) = \sum_{n=1}^{\infty} c_n n^{-s}, \ \Re s > 1,$$

where Z(s) can be continued to the whole plane and the integral being taken over a fundamental domain \mathfrak{F} of $SL_2(\mathbb{Z})$. They considered the relation between $\Delta(x;\varphi)$ and $\Delta_1(x;\varphi)$ and proved that $\Delta(x;\varphi) = O(x^{\alpha/2})$ if $\Delta_1(x;\varphi) = O(x^{\alpha})$ holds for some $\alpha \geq 0$. They also proved that

$$\Delta_1(x;\varphi) = O(x^{\frac{6}{5}})$$

and

$$\int_{1}^{T} \Delta_{1}^{2}(x;\varphi)dx = \frac{2}{13} (2\pi)^{-4} \left(\sum_{n=1}^{\infty} c_{n}^{2} n^{-7/4} \right) T^{13/4} + O(T^{3+\varepsilon}).$$

Since this kind sums play a very important role in the study of analytic number theory, many number theorists and scholars have obtained a series of meaningful research results (for example see [6–9, 11–13], etc.). In particular, in [9], Tanigawa, Zhai and Zhang studied the third, fourth and fifth power moments of $\Delta_1(x;\varphi)$ and proved that

$$\int_{1}^{T} \Delta_{1}^{3}(x;\varphi)dx = \frac{B_{3}(c)}{1120\pi^{6}} T^{\frac{35}{8}} + O\left(T^{\frac{35}{8} - \frac{1}{36} + \varepsilon}\right),$$

$$\int_{1}^{T} \Delta_{1}^{4}(x;\varphi)dx = \frac{B_{4}(c)}{11264\pi^{8}} T^{\frac{11}{2}} + O\left(T^{\frac{11}{2} - \frac{1}{221} + \varepsilon}\right),$$

$$\int_{1}^{T} \Delta_{1}^{5}(x;\varphi)dx = \frac{B_{5}(c)}{108544\pi^{10}} T^{\frac{53}{8}} + O\left(T^{\frac{53}{8} - \frac{1}{1731} + \varepsilon}\right),$$
(1.4)

where

$$B_k(f) := \sum_{l=1}^{k-1} {k-1 \choose l} s_{k;l}(f) \cos \frac{\pi(k-2l)}{4},$$

$$s_{k;l} := \sum_{\sqrt[4]{n_1} + \dots + \sqrt[4]{n_{l+1}} + \dots + \sqrt[4]{n_{k}}} \frac{f(n_1) \cdots f(n_k)}{(n_1 \cdots n_k)^{7/8}}, \ 1 \le l \le k.$$

In this paper we shall prove that the *k*-th power moment of $\Delta_1(x;\varphi)$ in short intervals for k=3,4,5, the theorem is as follows.

Theorem 1. Let $k \ge 3$ be a fixed integer. For any sufficiently small $\varepsilon > 0$, let $\delta_k := (k-1)\left(4^{k-1} + \frac{k-10}{2}\right) + 3$, $0 < \delta < 1$ be a fixed constant, which satisfies $\frac{8}{3}\delta_k \varepsilon < \delta$, T and H are two large positive real number, which satisfies

$$\int_{T-H}^{T+H} |\Delta_1(x;\varphi)|^{k+\delta} dx \ll HT^{9(k+\delta)/8+\varepsilon}$$
(1.5)

and $T^{3/4+2\delta_k\varepsilon/(3\delta)} \leq H \leq T$. Then, we have

$$\int_{T-H}^{T+H} \Delta_1^k(x;\varphi) dx = \frac{B_k(c)}{2^{k-1} \cdot (2\pi)^{2k}} \int_{T-H}^{T+H} x^{9k/8} dx + O\left(HT^{\frac{9k}{8} + \varepsilon} (HT^{-3/4})^{-\frac{3\delta}{\delta_k}}\right),\tag{1.6}$$

where

$$B_k(c) := \sum_{l=1}^{k-1} {k-1 \choose l} s_{k;l}(c) \cos \frac{\pi (k-2l)}{4}$$

$$s_{k;l}(c) := \sum_{\sqrt[4]{n_1} + \dots + \sqrt[4]{n_l} = \sqrt[4]{n_{l+1}} + \dots + \sqrt[4]{n_k}} \frac{c_{n_1} \cdots c_{n_k}}{(n_1 \cdots n_k)^{7/8}}, \ 1 \le l < k.$$

Remark 1. If we take H = T, δ is larger (for example $\delta = \frac{1}{2}$), then Theorem 1 implies asymptotic formula (1.4).

As corollaries, we have the following Theorems 2 and 3. Theorem 3 implies the best possible result.

Theorem 2. Suppose $3 \le k \le 5$, $1/8 < \theta < 1/5$ is a real number. Let $\Delta_1(x; \varphi) \ll x^{\theta+1}$. Then, we have asymptotic formula

$$\int_{T-H}^{T+H} \Delta_1^k(x;\varphi) dx = \frac{B_k(c)}{2^{k-1} \cdot (2\pi)^{2k}} \int_{T-H}^{T+H} x^{9k/8} dx + O\left(HT^{\frac{9k}{8} - \varepsilon}\right),\tag{1.7}$$

when $T^{1+(k-2)\theta-k/8+\sqrt{\varepsilon}} \leq H \leq T$.

Corollary 1. For $3 \le k \le 5$, if $T^{(k-2)/5+1-k/8+\sqrt{\varepsilon}} \le H \le T$, asymptotic formula (1.7) is true.

Theorem 3. Suppose $k \ge 3$ be a any fixed integer and conjecture $\Delta_1(x; \varphi) = O(x^{9/8+\varepsilon})$ is true. Then, asymptotic formula (1.7) is true if $T^{3/4+\sqrt{\varepsilon}/2} \le H \le T$.

Remark 2. By variable substitution, it is easy to see that

$$\int_{T-H}^{T+H} \Delta_1^k(x;\varphi) dx = 4 \int_{T'-H'}^{T'+H'} \Delta_1^k(x^4;\varphi) x^3 dx,$$

here

$$T' := \frac{(T+H)^{1/4} + (T-H)^{1/4}}{4} \times T^{1/4}, \ H' := \frac{(T+H)^{1/4} - (T-H)^{1/4}}{4} \times H/T^{3/4}.$$

If the conjecture $\Delta_1(x;\varphi) = O(X^{9/8+\varepsilon})$ is true and $H = T^{3/4+\sqrt{\varepsilon}/2}$, then we have $H' \approx T^{\sqrt{\varepsilon}/2}$. Thus, Theorem 3 contains the integral $\int_{T-G}^{T+G} \Delta_1^k(x^4;\varphi)dx$ has asymptotic formula for $G = T^{\sqrt{\varepsilon}/2}$. Thus, the constant 3/4 in Theorem 3 is probably the best.

2. Some Preliminary Lemmas

Lemma 1. Suppose x > 1 is a real number. For $1 \ll N \ll x^2$ a parameter we have

$$\Delta_1(x;\varphi) = \frac{1}{(2\pi)^2} \mathcal{R}(x;N) + O(x^{1+\varepsilon} + x^{3/2+\varepsilon} N^{-1/2}), \tag{2.1}$$

where

$$\mathcal{R} := \mathcal{R}(x, N) = x^{9/8} \sum_{n \le N} \frac{c_n}{n^{7/8}} \cos\left(8\pi \sqrt[4]{nx} - \frac{\pi}{4}\right).$$

Proof. This is [9, Lemma 2.1].

Lemma 2. Suppose $k \ge 3$, $(i_1, \dots, i_{k-1}) \in \{0, 1\}^{k-1}$ such that

$$\sqrt[4]{n_1} + (-1)^{i_1} \sqrt[4]{n_2} + (-1)^{i_2} \sqrt[4]{n_3} + \dots + (-1)^{i_{k-1}} \sqrt[4]{n_k} \neq 0.$$

Then, we have

$$|\sqrt[4]{n_1} + (-1)^{i_1}\sqrt[4]{n_2} + (-1)^{i_2}\sqrt[4]{n_3} + \dots + (-1)^{i_{k-1}}\sqrt[4]{n_k}| \gg \max(n_1, \dots, n_k)^{-(4^{k-2}-4^{-1})}$$

Proof. This is [9, Lemma 2.3].

Lemma 3. If f(x) and g(x) are continuous real-valued functions of x and f(x) is monotonic, then we have

$$\int_{a}^{b} f(x)g(x)dx \ll \left(\max_{a \le x \le b} |f(x)|\right) \left(\max_{a \le u < v \le b} \left| \int_{u}^{v} g(x)dx \right| \right).$$

Proof. This follows from the second mean value theorem.

For any real numbers $p(\neq 0)$ and q, by using this lemma we can obtain

$$\int_{T}^{2T} x^{27/8} \cos(p \sqrt[4]{x} + q) dx = \int_{T}^{2T} 4p^{-1} x^{33/8} \left(\frac{p}{4x^{3/4}} \cos(p \sqrt[4]{x} + q) \right) dx$$

$$\ll T^{33/8} |p|^{-1} \left| \int_{u}^{v} \frac{p}{4x^{3/4}} \cos(p \sqrt[4]{x} + q) dx \right|$$

$$\ll T^{33/8} |p|^{-1}.$$

Lemma 4. Suppose $k \ge 3$, $(i_1, \dots, i_{k-1}) \in \{0, 1\}^{k-1}$, $(i_1, \dots, i_{k-1}) \ne (0, \dots, 0)$, $N_1, \dots, N_k > 1$, $0 < \Delta \ll E^{1/4}$, $E = \max(N_1, \dots, N_k)$. Let \mathcal{A} denote the number of solutions of the inequality

$$\left| \sqrt[4]{n_1} + (-1)^{i_1} \sqrt[4]{n_2} + (-1)^{i_2} \sqrt[4]{n_3} + \dots + (-1)^{i_{k-1}} \sqrt[4]{n_k} \right| < \Delta \tag{2.2}$$

with $N_j < n_j \le 2N_j$, $1 \le j \le k$, where

$$\mathcal{A} = \mathcal{A}(N_1, \cdots, N_k; i_1, \cdots, i_{k-1}; \Delta).$$

Then, we have

$$\mathcal{A} \ll \Delta E^{-1/4} N_1 \cdots N_k + E^{-1} N_1 \cdots N_k.$$

Proof. The proof of this lemma is similar to the proof of [10, Lemma 2.4]. Suppose $E = N_k$. If (n_1, \dots, n_k) satisfies (2.2), then for some $|\theta| < 1$, we can obtain

$$\sqrt[4]{n_1} + (-1)^{i_1} \sqrt[4]{n_2} + (-1)^{i_2} \sqrt[4]{n_3} + \dots + (-1)^{i_{k-2}} \sqrt[4]{n_{k-1}} = (-1)^{i_{k-1}} \sqrt[4]{n_k} + \theta \Delta.$$

Thus, we have

$$\sqrt[4]{n_1} + (-1)^{i_1} \sqrt[4]{n_2} + (-1)^{i_2} \sqrt[4]{n_3} + \dots + (-1)^{i_{k-2}} \sqrt[4]{n_{k-1}} = (-1)^{i_{k-1}} \sqrt[4]{n_k} + \theta \Delta,$$

$$\left(\sqrt[4]{n_1} + (-1)^{i_1} \sqrt[4]{n_2} + (-1)^{i_2} \sqrt[4]{n_3} + \dots + (-1)^{i_{k-2}} \sqrt[4]{n_{k-1}}\right)^4 = n_k + O(\Delta N_k^{3/4}).$$

Therefore, for fixed (n_1, \dots, n_{k-1}) , the number of n_k is $\ll 1 + \Delta N_k^{3/4}$ and so

$$\mathcal{A} \ll \Delta N_k^{3/4} N_1 \cdots N_{k-1} + N_1 \cdots N_{k-1}.$$

3. Proof of Theorem 1

If $T/2 \le H \le T$, it is easily to get Theorem 1. Suppose $H \le \frac{T}{2}$ and y is a parameter such that $T^{\varepsilon} < y \le T^{1/3}$. For any $T \le x \le 2T$, we define

$$\mathcal{R} = \frac{x^{9/8}}{(2\pi)^2} \sum_{n \le y} \frac{c_n}{n^{7/8}} \cos\left(8\pi \sqrt[4]{nx} - \frac{\pi}{4}\right),$$

$$\mathcal{R}_1 = \mathcal{R}_1(x, y) := \Delta_1(x; \varphi) - \mathcal{R}.$$

We will prove that the higher-power moment of \mathcal{R}_1 is small, so the integral $\int_{T-H}^{T+H} \Delta_1^k(x;\varphi) dx$ can be well approximated by $\int_{T-H}^{T+H} \mathcal{R}^k dx$, which is easy to evaluate.

3.1. Evaluation of the integral $\int_{T-H}^{T+H} \mathcal{R}^k dx$

First, by the elementary formula

$$\cos b_1 \cdots \cos b_k = \frac{1}{2^{k-1}} \sum_{(i_1, \dots, i_{k-1}) \in \{0,1\}^{k-1}} \cos(b_1 + (-1)^{i_1} b_2 + (-1)^{i_2} b_3 + \dots + (-1)^{i_{k-1}} b_k),$$

we can write

$$\mathcal{R}^{k} = (2\pi)^{-2k} x^{9k/8} \sum_{n_{1} \leq y} \cdots \sum_{n_{k} \leq y} \frac{c_{n_{1}} \cdots c_{n_{k}}}{(n_{1} \cdots n_{k})^{7/8}} \prod_{j=1}^{k} \cos(8\pi \sqrt[4]{n_{j}x} - \pi/4)$$

$$= (2\pi)^{-2k} x^{9k/8} \sum_{(i_{1}, \cdots, i_{k-1}) \in \{0,1\}^{k-1}} \sum_{n_{1} \leq y} \cdots \sum_{n_{k} \leq y} \frac{c_{n_{1}} \cdots c_{n_{k}}}{(n_{1} \cdots n_{k})^{7/8}}$$

$$\times \cos\left(8\pi \sqrt[4]{x} \alpha(n_{1}, \cdots, n_{k}; i_{1}, \cdots, i_{k-1}) - \pi/4\beta(i_{1}, \cdots, i_{k-1})\right),$$

where

$$\alpha(n_1, \dots, n_k; i_1, \dots, i_{k-1}) := \sqrt[4]{n_1} + (-1)^{i_1} \sqrt[4]{n_2} + (-1)^{i_2} \sqrt[4]{n_3} + \dots + (-1)^{i_{k-1}} \sqrt[4]{n_k},$$

$$\beta(i_1, \dots, i_{k-1}) := 1 + (-1)^{i_1} + (-1)^{i_2} + \dots + (-1)^{i_{k-1}}.$$

Therefore, we have

$$\mathcal{R}^{k} = \frac{1}{2^{k-1}(2\pi)^{2k}} x^{9k/8} \sum_{\substack{(i_{1}, \dots, i_{k-1}) \in \{0,1\}^{k-1}}} \cos\left(-\frac{\pi\beta}{4}\right) \sum_{\substack{n_{j \leq y, 1 \leq j \leq k} \\ \alpha=0}} \frac{c_{n_{1}} \cdots c_{n_{k}}}{(n_{1} \cdots n_{k})^{7/8}}$$

$$+ \frac{1}{2^{k-1}(2\pi)^{2k}} x^{9k/8} \sum_{\substack{(i_{1}, \dots, i_{k-1}) \in \{0,1\}^{k-1} \\ \alpha\neq 0}} \sum_{\substack{n_{j \leq y, 1 \leq j \leq k} \\ \alpha\neq 0}} \frac{c_{n_{1}} \cdots c_{n_{k}}}{(n_{1} \cdots n_{k})^{7/8}} \cos\left(8\pi\alpha\sqrt[4]{x} - \frac{\pi\beta}{4}\right)$$

$$= \frac{1}{2^{k-1}(2\pi)^{2k}} \left(S_{3}(x, k) + S_{4}(x, k)\right),$$

$$(3.1)$$

where

$$\alpha := \alpha(n_1, \dots, n_k; i_1, \dots, i_{k-1}), \beta := \beta(i_1, \dots, i_{k-1}).$$

Consider $S_3(x, k)$. We have

$$\int_{T-H}^{T+H} S_3(x,k) dx = \sum_{\substack{(i_1, \dots, i_{k-1}) \in \{0,1\}^{k-1} \\ \alpha = 0}} \cos\left(-\frac{\pi\beta}{4}\right) \sum_{\substack{n_j \le y, 1 \le j \le k \\ \alpha = 0}} \frac{c_{n_1} \cdots c_{n_k}}{(n_1 \cdots n_k)^{7/8}} \int_{T-H}^{T+H} x^{9k/8} dx.$$
(3.2)

By (4.3) in [9], we know that

$$\frac{1}{2^{k-1} \cdot (2\pi)^{2k}} \int_{T-H}^{T+H} S_3(x,k) dx = \frac{B_k(c)}{2^{k-1} \cdot (2\pi)^{2k}} \int_{T-H}^{T+H} x^{9k/8} dx + O\left(HT^{9k/8+\varepsilon} y^{-3/4}\right). \tag{3.3}$$

Now we consider $S_4(x, k)$. By the first derivative of van der Corput method, one has

$$\int_{T-H}^{T+H} S_4(x,k) dx \ll T^{3/4+9k/8} \sum_{\substack{(i_1, \dots, i_{k-1}) \in \{0,1\}^{k-1} \\ \alpha \neq 0}} \sum_{\substack{n_j \le y, 1 \le j \le k \\ \alpha \neq 0}} \frac{c_{n_1} \cdots c_{n_k}}{(n_1 \cdots n_k)^{7/8} |\alpha|}.$$
 (3.4)

For fixed $(i_1, \dots, i_{k-1}) \in \{0, 1\}^{k-1}$, we write

$$\sum (y; i_1, \cdots, i_{k-1}) = \sum_{\substack{n_j \leq y, 1 \leq j \leq k \\ \alpha \neq 0}} \frac{c_{n_1} \cdots c_{n_k}}{(n_1 \cdots n_k)^{7/8} |\alpha|}.$$

If $(i_1, \dots, i_{k-1}) = (0, \dots, 0)$, then we have

$$\sum (y; 0, \dots, 0) \ll \sum_{n_j \le y, 1 \le j \le k} \frac{c_{n_1} \cdots c_{n_k}}{(n_1 \cdots n_k)^{7/8} (\sqrt[4]{n_1} + \dots + \sqrt[4]{n_k})}$$

$$\ll \sum_{n_j \le y, 1 \le j \le k} \frac{c_{n_1} \cdots c_{n_k}}{(n_1 \cdots n_k)^{7/8 + 1/(4k)}}$$

$$\ll y^{(k-2)/8} \log^k y.$$

For $(i_1, \dots, i_{k-1}) \neq (0, \dots, 0)$, by a splitting argument we deduce that there exist a collection of numbers $1 < N_1, \dots, N_k < y$ such that

$$\sum_{\substack{N_j < n_j \leq 2N_j, 1 \leq j \leq k \\ \alpha \neq 0}} \frac{c_{n_1} \cdots c_{n_k}}{(n_1 \cdots n_k)^{7/8} |\alpha|} \log^k y.$$

Suppose $N_1 \le \cdots \le N_k \le y$. According to Lemma 2, we know that $|\alpha| \gg N_k^{-(4^{k-2}-4^{-1})}$. For some $N_k^{-(4^{k-2}-4^{-1})} \ll \Delta < y^{1/4}$, by using Lemma 4 we can get

$$\sum_{\substack{N_{j} < n_{j} \leq 2N_{j}, 1 \leq j \leq k \\ \alpha \neq 0}} \frac{c_{n_{1}} \cdots c_{n_{k}}}{(n_{1} \cdots n_{k})^{7/8} |\alpha|} \ll \frac{y^{\varepsilon}}{(N_{1} \cdots N_{k})^{7/8} \Delta} \mathcal{A}(N_{1}, \cdots, N_{k}; i_{1}, \cdots, i_{h-1}; \Delta)$$

$$\ll \frac{y^{\varepsilon}}{(N_{1} \cdots N_{k})^{7/8} \Delta} \left(\Delta N_{k}^{3/4} N_{1} \cdots N_{k-1} + N_{1} \cdots N_{k-1} \right)$$

$$\ll y^{\varepsilon} \left(N_{k}^{\frac{k-2}{8}} + N_{k}^{4^{k-2} + \frac{k-10}{8}} \right)$$

$$\ll y^{b(k) + \varepsilon},$$

$$(3.5)$$

where $b(k) = 4^{k-2} + \frac{k-10}{8}$. Therefore we have

$$\int_{T-H}^{T+H} S_4(x,k) dx \ll H^{3/4} T^{9k/8+\varepsilon} y^{b(k)}. \tag{3.6}$$

According to (3.1)-(3.6), we have

$$\int_{T-H}^{T+H} |\mathcal{R}|^k dx = \frac{B_k(c)}{2^{k-1} \cdot (2\pi)^{2k}} \int_{T-H}^{T+H} x^{9k/8} dx + O\left(HT^{9k/8+\varepsilon} y^{-3/4} + T^{3/4+9k/8+\varepsilon} y^{b(k)}\right)$$
(3.7)

3.2. Higher-power moments of \mathcal{R}_1

From the definition of K_0 ($K_0 := \min\{n \in \mathbb{N} : n \ge A_0, 2|n\}$ in [9] we write

$$K_0 = \begin{cases} k+1, & k \text{ is odd,} \\ k+2, & \text{otherwise.} \end{cases}$$

Suppose that $y \le (HT^{-3/4})^{1/b(K_0)}$. Let N = T in the formula (2.1) of Lemma 1. Then, we can obtain

$$\mathcal{R}_{1} = (2\pi)^{-2} x^{9/8} \sum_{y < n \le T} \frac{c_{n}}{n^{7/8}} \cos(8\pi \sqrt[4]{nx} - \pi/4) + O(T^{1+\varepsilon})$$

$$\ll \left| x^{9/8} \sum_{y < n \le T} \frac{c_{n}}{n^{7/8}} e(4\sqrt[4]{nx}) \right| + T^{1+\varepsilon}.$$

Thus, we have

$$\int_{T-H}^{T+H} \mathcal{R}_{1}^{2} dx \ll HT^{2+\varepsilon} + \int_{T-H}^{T+H} \left(x^{9/8} \sum_{y < n \le T} \frac{c_{n}}{n^{7/8}} e(4\sqrt[4]{nx}) \right)^{2} dx$$

$$\ll HT^{2+\varepsilon} + HT^{9/4} \sum_{y < n \le T} \frac{c_{n}^{2}}{n^{7/4}} + T^{3} \sum_{y < m < n \le T} \frac{c_{n}c_{m}}{(mn)^{7/8} (\sqrt[4]{n} - \sqrt[4]{m})}$$

$$\ll HT^{2+\varepsilon} + T^{3+\varepsilon} + \frac{HT^{9/4} \log^{3} T}{y^{3/4}}$$

$$\ll \frac{HT^{9/4} \log^{3} T}{v^{3/4}}.$$
(3.8)

From (3.7) we can obtain that

$$\int_{T-H}^{T+H} |\mathcal{R}|^{K_0} dx \ll HT^{9K_0/8+\varepsilon}.$$

By Hölder's inequality and the above formula we have

$$\int_{T-H}^{T+H} |\mathcal{R}|^{A_0} dx \ll H T^{9A_0/8+\varepsilon} \tag{3.9}$$

for $A_0 = k + \delta$, here $0 < \delta < 1$ is a fixed constant. From (1.5) and (3.9) we get

$$\int_{T-H}^{T+H} |\mathcal{R}_1|^{A_0} dx \ll \int_{T-H}^{T+H} \left(|\Delta(x;\varphi)|^{A_0} + |\mathcal{R}|^{A_0} \right) dx \ll H T^{9A_0/8+\varepsilon}. \tag{3.10}$$

For any $2 < A < A_0$, by (3.8), (3.10) and Hölder inequality we have

$$\int_{T-H}^{T+H} |\mathcal{R}_{1}|^{A} dx = \int_{T-H}^{T+H} |\mathcal{R}_{1}|^{\frac{2(A_{0}-A)}{A_{0}-2} + \frac{A_{0}(A-2)}{A_{0}-2}} dx$$

$$\ll \left(\int_{T-H}^{T+H} \mathcal{R}_{1}^{2} dx \right)^{\frac{(A_{0}-A)}{A_{0}-2}} \left(\int_{T-H}^{T+H} |\mathcal{R}_{1}|^{A_{0}} dx \right)^{\frac{(A-2)}{A_{0}-2}}$$

$$\ll HT^{\frac{9A}{8} + \varepsilon} y^{-\frac{3(A_{0}-A)}{4(A_{0}-2)}}.$$
(3.11)

Thus we have

Lemma 5. Suppose $T^{\varepsilon} \le y \le (HT^{-3/4})^{1/b(K_0)}$, $2 < A < A_0$. Then, we have

$$\int_{T-H}^{T+H} |\mathcal{R}_1|^A dx \ll H T^{\frac{9A}{8} + \varepsilon} y^{-\frac{3(A_0 - A)}{4(A_0 - 2)}}.$$
 (3.12)

3.3. Proof of Theorem 1

Suppose $3 \le k < A_0$. By the elementary formula $(a + b)^k - a^k \ll |b|^k + |a^{k-1}b|$ we have

$$\int_{T-H}^{T+H} \Delta_1^k(x;\varphi) dx = \int_{T-H}^{T+H} \mathcal{R}^k dx + O\left(\int_{T-H}^{T+H} |\mathcal{R}^{k-1}\mathcal{R}_1| dx\right) + O\left(\int_{T-H}^{T+H} |\mathcal{R}_1|^k dx\right). \tag{3.13}$$

By (3.9), Lemma 5 and Hölder inequality we have

$$\int_{T-H}^{T+H} |\mathcal{R}^{k-1}\mathcal{R}_1| dx \ll \left(\int_{T-H}^{T+H} |\mathcal{R}^{A_0}| dx \right)^{\frac{k-1}{A_0}} \left(\int_{T-H}^{T+H} |\mathcal{R}_1^{\frac{A_0}{A_0-k+1}}| dx \right)^{\frac{A_0-k+1}{A_0}}$$

$$\ll HT^{\frac{9k}{8} + \varepsilon} y^{-\frac{3(A_0-k)}{4(A_0-2)}}.$$
(3.14)

Taking $y = (HT^{-3/4})^{\frac{1}{b(K_0) + \frac{3\delta}{4(k+\delta-2)}}}$. From (3.13), (3.14), (3.7) and Lemma 5, we can obtain

$$\int_{T-H}^{T+H} \Delta_{1}^{k}(x;\varphi) dx = \frac{B_{k}(c)}{2^{k-1} \cdot (2\pi)^{2k}} \int_{T-H}^{T+H} x^{9k/8} dx + O\left(T^{3/4+9k/8+\varepsilon} y^{b(K_{0})} + HT^{\frac{9k}{8}+\varepsilon} y^{-\frac{3(A_{0}-k)}{4(A_{0}-2)}}\right) \\
= \frac{B_{k}(c)}{2^{k-1} \cdot (2\pi)^{2k}} \int_{T-H}^{T+H} x^{9k/8} dx + O\left(HT^{\frac{9k}{8}+\varepsilon} (HT^{-3/4})^{-\frac{3\delta}{4b(K_{0})(k+\delta-2)+3\delta}}\right) \\
= \frac{B_{k}(c)}{2^{k-1} \cdot (2\pi)^{2k}} \int_{T-H}^{T+H} x^{9k/8} dx + O\left(HT^{\frac{9k}{8}+\varepsilon} (HT^{-3/4})^{-\frac{3\delta}{\delta_{k}}}\right). \tag{3.15}$$

From this we can easily get Theorem 1.

4. Proof of Theorem 2

In this section, we will give the proof of Theorem 2. Let $N = T^{3/5}$. By (2.1) we can obtain

$$\Delta_1(x;\varphi) \ll x^{6/5}$$
.

Suppose $\frac{1}{8} < \theta < \frac{1}{5}$ be a fixed real number. Let $\Delta_1(x; \varphi) \ll x^{\theta+1}$.

Suppose $T - H \le x_1 < \cdots < x_R \le T + H$ satisfies $|x_r - x_s| \ge V$ $(r \ne s \le R)$, $T^{1/8} \ll V \ll T^{\theta}$ and $|\Delta_1(x_r;\varphi)| \gg VT$ $(r=1,\cdots,R)$. Dividing interval [T-H,T+H] into the subinterval of length not exceeding T_0 ($T_0 \ge V$). Let R_0 denotes the number of x_r which exists in the subinterval of length not exceeding T_0 . Then, we have

$$R \ll R_0(1 + H/T_0)$$
.

Tanigawa, Zhai and Zhang [9] proved that

$$R \ll TV^{-3}\mathcal{L}^5 + HT^3V^{-25}\mathcal{L}^{39},\tag{4.1}$$

if $T_0 = V^{22}T^{-2}\mathcal{L}^{-34}$, $R_0 \ll T^{1+4\varepsilon}V^{-2}$. Now we consider $\int_{T-H}^{T+H} |\Delta_1(x;\varphi)|^A dx$, where 2 < A < 24 be a fixed real number. According to [9], we have

$$\int_{T-H}^{T+H} |\Delta_1(x;\varphi)|^A dx \ll HT^{9A/8+\varepsilon} + \sum_V V \sum_{r \le R_V} |\Delta_1(x_r;\varphi)|^A, \tag{4.2}$$

where $T^{1/8} \le V = 2^m \le T^\theta$, $VT < |\Delta_1(x_r; \varphi)| \le 2VT$ $(r = 1, \dots, R_V)$ and $|x_r - x_s| \ge V$ for $r \ne s \le R \le R$ R_V . By (4.1) we have

$$V \sum_{r \le R_V} |\Delta_1(x_r; \varphi)|^A \ll R_V T^A V^{A+1} \ll \mathcal{L}^5 T^{1+A} V^{A-2} + \mathcal{L}^{39} H T^{3+A} V^{A-24}$$

$$\ll T^{1+A} V^{A-2} \mathcal{L}^5 + H T^{9A/8} \mathcal{L}^{39}.$$
(4.3)

Combining (4.2) and (4.3), we get

$$\int_{T-H}^{T+H} |\Delta_1(x;\varphi)|^A dx \ll H T^{9A/8+\varepsilon} + T^{1+A+\theta(A-2)+\varepsilon}.$$

Now suppose $2 < A < 2\theta/(\theta - 1/8)$. If $H \ge T^{1+\theta(A-2)-A/8}$, then we have

$$\int_{T-H}^{T+H} |\Delta_1(x;\varphi)|^A dx \ll HT^{9A/8+\varepsilon}.$$

We notice that $2\theta/(\theta - 1/8) = 16/3 = 5.33 \cdots$, if $\theta = 1/5$. In Theorem 1, taking $\delta = 4/3\delta_k \sqrt{\varepsilon}$ for $3 \le k \le 5$, we can get Theorem 2.

5. Proof of Theorem 3

Suppose $\Delta_1(x;\varphi) \ll x^{9/8+\varepsilon}$. Then,

$$\int_{T-H}^{T+H} |\Delta_1(x;\varphi)|^{k+\delta} dx \ll HT^{9(k+\delta)/8+\varepsilon'},$$

where $\varepsilon' = (k+1)\varepsilon$. From Theorem 1, we can get asymptotic formula

$$\int_{T-H}^{T+H} \Delta_1^k(x;\varphi) dx = \frac{B_k(c)}{2^{k-1} \cdot (2\pi)^{2k}} \int_{T-H}^{T+H} x^{9k/8} dx + O\left(HT^{\frac{9k}{8} + \varepsilon'}(HT^{-3/4})^{-3\delta/\delta_k}\right)$$

for $T^{\frac{2\delta_k \mathcal{E}'}{3\delta} + \frac{3}{4}} \leq H \leq T$. Taking $\delta = \frac{4}{3}\delta_k(k+1)\sqrt{\varepsilon}$ in Theorem 1, we can get Theorem 3.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by National Natural Science Foundation of China (grant nos. 12171286).

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- 1. P. Deligne, La conjecture de Weil. I, *Inst. Hautes Études Sci. publ. Math.*, **43** (1974), 273–307. https://doi.org/10.1007/BF02684373
- 2. R. A. Rankin, Contributions to the theory of Ramanujans function $\tau(n)$ and similar arithmetical functions II. The order of the Fourier coefficients of integral modular forms, *Math. Proc. Cambridge Philos. Soc.*, **35** (1939), 357–372. https://doi.org/10.1017/S0305004100021101

- 3. A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, *Arch. Math. Naturvid.*, **43** (1940), 47–50.
- 4. A. Ivić, Large values of certain number-theoretic error terms, *Acta Arith.*, **56** (1990), 135–159. https://doi.org/10.4064/aa-56-2-135-159
- 5. A. Ivić, K. Matsumoto, Y. Tanigawa, On Riesz means of the coefficients of the Rankin-Selberg series, *Math. Proc. Cambridge Philos. Soc.*, **127** (1999), 117–131. https://doi.org/10.1017/S0305004199003564
- 6. A. Ivić, On the fourth moment in the Rankin-Selberg problem, *Arch. Math.*, **90** (2008), 412–419. https://doi.org/10.1007/s00013-008-2326-4
- 7. P. Song, W. G. Zhai, D. Y. Zhang, Power moments of Hecke eigenvalues for congruence group, *J. Number Theory*, **198** (2019), 139–158. https://doi.org/10.1016/j.jnt.2018.10.006
- 8. K. M. Tsang, Higher-power moments of $\Delta(x)$, E(t) and P(x), *Proc. London Math. Soc.*, **S3-65** (1992), 65–84. https://doi.org/10.1112/plms/s3-65.1.65
- 9. T. Yoshio, W. G. Zhai, D. Y. Zhang, On the Rankin-Selberg problem: higher power moments of the Riesz mean error term, *Sci. China Ser. A-Math.*, **51** (2008), 148–160. https://doi.org/10.1007/s11425-007-0130-4
- 10. W. G. Zhai, On higher-power moments of $\Delta(x)(II)$, Acta Arith., **114** (2008), 35–54. https://doi.org/10.4064/aa114-1-3
- 11. W. G. Zhai, On higher-power moments of $\Delta(x)$ (III), *Acta Arith.*, **118** (2005), 263–281. https://doi.org/10.4064/aa118-3-3
- 12. D. Y. Zhang, Y. N. Wang, Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_0(N)$, Ramanujan J., 47 (2018), 685–700. https://doi.org/10.1007/s11139-018-0051-6
- 13. D. Y. Zhang, W. G. Zhai, On the fifth-power moment of $\Delta(x)$, *Int. J. Number Theory*, **7** (2011), 71–86. https://doi.org/10.1142/S1793042111003922

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)