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Abstract: Let A;(x; ¢) denote the error term in the classical Rankin-Selberg problem. In this paper,
our main results are getting the k-th (3 < k < 5) power moments of A;(x; ¢) in short intervals and its
asymptotic formula by using large value arguments.
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1. Introduction

Let ¢(z) be a holomorphic form of weight « with respect to the full modular group S L,(Z) and denote
by a(n) the n-th Fourier coefficient of ¢(z). We assume that ¢(z) is normalized such that a(1) = 1 and
T (n)p = a(n)y for every n € N, where T'(n) is the Hecke operator of order n. Let ¢, be the convolution

function defined by
I 2 : 2k—1) n
C,=n m a (%)

m2|n
In 1974, Deligne [1] proved the estimate |a(n)| < n%d(n), where d(n) is the Dirichlet divisor function,
which implies ¢, <, n®°. Here and in what follows, & denotes an arbitrarily small positive number
which is not necessarily the same at each occurrence. The classical Rankin-Selberg problem is to
estimate the upper bound of the error term

AGx; @) = ch—Cx, (1.1)

n<x

2

where C is an explicit constant. In 1939, Rankin [2] proved that
Alx; ) = O(x), (1.2)

which was stated by Selberg [3] again without proof. However, no improvement of (1.2) has been
obtained after Rankin and Selberg. In [4], Ivi¢ obtained that A(x; @) = Q.(x*®) and conjectured that
A(x;9) = O(/5+9),
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Ivi¢, Matsumoto and Tanigawa [5] considered the Riesz mean of the type

F(p D Z( - nf’c,

n<x

D,(x;¢) =

for any fixed p > 0 and define the error term A,(c; ¢) by
m*kRo

o 0 20
‘%QW%%I@+mf T+

12(47)<!
Ro = F((K’fl) f f V(@) Pdxdy,

ﬂ@:}jn S Rs > 1,

n=1

X+ Ay (x; ), (1.3)

where

where Z(s) can be continued to the whole plane and the integral being taken over a fundamental domain
& of SLy(Z). They considered the relation between A(x;¢) and A;(x;¢) and proved that A(x;¢) =
O(x*'?) if A(x; ) = O(x*) holds for some a > 0. They also proved that

Av(x;9) = O(x)

and

T oo
‘flﬁuwmx:Emhy{iyﬁﬂ“%ﬁ”+oa“a
| 13 —
Since this kind sums play a very important role in the study of analytic number theory, many number
theorists and scholars have obtained a series of meaningful research results (for example see [6-9, 11—
13], etc.). In particular, in [9], Tanigawa, Zhai and Zhang studied the third, fourth and fifth power
moments of A;(x;¢) and proved that

T
f Moy = 2 7% 4 o (184
1

112075
T
Bi(c) 1 u__r
A4 cQ)dx = ————T72 +0O(T> =%, 1.4
_J: 5O = 64 ( ) (5
T
Bs(c) s s_1
AS(x;@)dx = —— 1% 4 o(TF-Thre),
\j: (0PN = e a0 ( )

where

& (k- k — 21
Bi(f) = Z (k / 1) Ska(f) cos ¥,

E M’ 1<I<k
(ny - m)"®
Y+ Y= Yo+ Y

In this paper we shall prove that the k-th power moment of A;(x; ¢) in short intervals for k = 3,4, 5,
the theorem is as follows.
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Theorem 1. Let k > 3 be a fixed integer. For any sufficiently small € > 0, let 6, := (k—1) (4"‘1 + %)+

3,0 <0 < 1 be a fixed constant, which satisfies géks < 6, T and H are two large positive real number,
which satisfies

T+H
f IAL(x; @) Pdx <« HT?*+0)/8+e (1.5)
T

-H

and T3/*+2%¢/030) < H < T. Then, we have

e k/o. _ By(c) e 9k/8 % 4 g —3/4\- 2
A (x;0)dx = ——— xdx+ OHT3™(HT'") & |, (1.6)
T-H 21 2% iy

where

N k-2l
Bieri= ) (" suteroos TES2

Cn. " C
ska(c) = E TR i ;;/8, 1<I<k.
ni--n
%4_...4_ %: W_'...._'.% 1 k

Remark 1. If we take H = T, ¢ is larger (for example 6 = % ), then Theorem 1 implies asymptotic
formula (1.4).

As corollaries, we have the following Theorems 2 and 3. Theorem 3 implies the best possible result.

Theorem 2. Suppose 3 < k <5, 1/8 < 6 < 1/5 is a real number. Let Ai(x; @) < x%*'. Then, we have
asymptotic formula

f T+H A )dx = =28 f g O(HT?~) (1.7)
T-H h 2= 2m* )iy ’ .

when T'+(=20-k8+Ve < [ < T
Corollary 1. For3 < k < 5, if T&=2/3+1-k8+Ve < H < T, asymptotic formula (1.7) is true.

Theorem 3. Suppose k > 3 be a any fixed integer and conjecture A\(x; ¢) = O(x°/8+%) is true. Then,
asymptotic formula (1.7) is true if T>** V2 < H < T.

Remark 2. By variable substitution, it is easy to see that

T+H T'+H’
f A’f(x; p)dx =4 f A’{(x“; ©)x’dx,
T

_H /_H/
here
(T + ' +(T - H)Y/4 STV (T + H)'* —(T - H)!/*
- 4 S 4
If the conjecture Ai(x; @) = O(X°8+) is true and H = T>/** Vel2 then we have H' =< T V¥/2. Thus,
Theorem 3 contains the integral fTT_JrGG A’l‘(xA'; ©)dx has asymptotic formula for G = TY¥/2. Thus, the
constant 3/4 in Theorem 3 is probably the best.

T - = H/T?"*.
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2. Some Preliminary Lemmas

Lemma 1. Suppose x > 1 is a real number. For 1 < N < x* a parameter we have

1

Gy R(x; N) + O(x'** + x¥**eN7112), (2.1)

Ay(x; ) =

where

R := R(x,N) = x® Z %cos (871\4/11_— g)

n<N

Proof. This is [9, Lemma 2.1].

Lemma 2. Suppose k >3, (i1, ,ir1) € {0, 1}~ such that
i+ ()" g + (D)2 s + -+ (=D g # 0.
Then, we have
|r + (= 1) g + (=12 + -+ (=1 ] > max (g, -+ m)™ @0,

Proof. This is [9, Lemma 2.3].

Lemma 3. If f(x) and g(x) are continuous real-valued functions of x and f(x) is monotonic, then we

have )
f g(x)dx ) .

For any real numbers p(# 0) and ¢, by using this lemma we can obtain

b
| regoar < (max If(x)l)(

max
a<u<v<b

Proof. This follows from the second mean value theorem.

42304

oT 2T
f 78 cos(pVx + q)dx = f 4pI P8 ( D cos(pix + 6])) dx
T T

< T33/8|P|—l

f 4;/4 cos(pVx + g)dx

< T3B|p .

Lemma 4. Suppose k > 3, iy, ,ir-1) € {0, 1578, iy, -+ ,igey) # (0,4 ,0), Np,--- , Ny > 1,0 <

A < EV* E = max(Ny,--- ,Ny). Let A denote the number of solutions of the inequality
[+ (1) N + (=124 + -+ (D' ] < A (2.2)

with N; <n; <2N; 1 < j <k where
A=AN, - N5y, i1 D).

Then, we have
A< AEVAN, N+ E"'N,---N,.
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Proof. The proof of this lemma is similar to the proof of [10, Lemma 2.4]. Suppose E = N;. If
(ny,--- ,ny) satisfies (2.2), then for some |6| < 1, we can obtain

Y+ (=1 g+ (D23 4 (=12 ey = (=D $fg + 6A.

Thus, we have
\4/I/l_1+ (_1)i| \4/”_2_’_ (—1)i2\4/1’l_3+ e+ (—l)ik_zm — (_l)ik_l \4/’/l—k+ OA,
(V1 + (=" Yy + (=125 + -+ (= 1) Q/m)“ = m + O(AN),

3/4

Therefore, for fixed (ny, - - - , mi_1), the number of n; is < 1 + AN,"" and so

A< ANIN, - Neoy + Ny -+ Ny

3. Proof of Theorem 1

If T/2 < H < T, it is easily to get Theorem 1. Suppose H < L and y is a parameter such that

2
T? <y < TY3 Forany T < x < 2T, we define

X9/8

- Sieenfesd)

Ri = Ri(x,y) := Ai(x; ) —

We will prove that the higher power moment of R; is small, so the integral fTT_;f A’f (x; ¢)dx can be

well approximated by f ﬂkdx which is easy to evaluate.

3.1. Evaluation of the integral f ? Redx

First, by the elementary formula

1 , . .
cosb;---cosb; = T Z cos(by + (=1)"'by + (=1)?b3 + - - + (=1)*"by),
(i1, ik-1)€(0, 14!

we can write

k
_(2ﬂ) 2k | 9k/8 Z Z o Cny - nc),,;/8 1—[ cos(8x 4/—an —1/4)
k

msy  msy J=1
Cpy " C
_ 2k 9k/8 n i
=(2m) " x Z Z Z 7/8
. (ny -+ ny)
(i1, 5ig—1)€{0,1}}k-1 n1 <y ng<y

XCOS(SN‘/;CY(M,“' STy, S i) — /463, - - ’ik—l))’
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where

Q- omsins - sier) 7= AL+ (<D + (<1235 + -+ (=1 3,
Blir, -+ yigt) = 1+ (=1 4 (=1)2 4 -+ (=1),

Therefore, we have

1 C
k_ ok/8 P Cn Gy
R =G 2. COS( ) Z (n1 nk)7/8

(i1, ii-)el0, 111 S Isisk

+ —2k_1(12ﬂ)2kx9k/8 Z Z (n1 'nk)7/8 cos (871'&’\/_ - TB)

(l -k l)e Ol}k 1 n;js<y, 1<j<k
a#0

= (§3(x, k) + S4(x, k),

where
@ :=any, - msin e i), Bi= B30, ko).

Consider S3(x, k). We have

A (i1, ig-DE(0, 1! njEn ISk
a=0

By (4.3) in [9], we know that

1 T+H B T+H
Al Ak f S3(x, k)dx = & f *Bdx + 0 (HT9k/8+€y_3/4).
2 T-H T-H

-1, (27T)2k k-1, (27T)2k

Now we consider S 4(x, k). By the first derivative of van der Corput method, one has
T+H CovoeC
S 4(x, k)dx < T8 nn
J 2

) Blal’
H (i - DE(O. i1 ==k (i)l
a#

For fixed (iy, - - ,ir_1) € {0, 1}*"!, we write

. . Cn = Cp
Z(y;lb""lk—l): Z 1—7/;
n v TSk (ny---nm)'lal
a#0

If (i, ,ik=1) = (0,---,0), then we have

C, "+ C
Z(y; O’ s O) < Z 7/8l’ll - ny -
wezja e ) (g 4+ )
< Z Cn1 e an
(1) -~ - 1) /317

nj<ya<jck T

< Y& gk y.

T+H .c T+H 9k/8
S3(x, k)dx = (——) Cm O f dx.
fT 3(x, k)dx Z cos Z (l’ll nk)7/8 *

3.1

(3.2)

(3.3)

(3.4)
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For (i1, -+ ,ix-1) # (0,---,0), by a splitting argument we deduce that there exist a collection of num-
bers 1 < Ny,---, N, <y such that

. . Cn * " Cy
Z()’; i, ko) < Z # logk)’-

_, (m
Nj<nj<2Nj,1<j<k
a#0

(4/(—2_4—1)

Suppose Ni < -+ < N; < y. According to Lemma 2, we know that |a| > N . For some

~(42-47) 1/4 :
N, < A <y'* by using Lemma 4 we can get

DEEEEY &
Cl’l] Cl’lk y

<
(- n)lal Ny N)TFA

AN, -+ N iy, 5 ipm13A)

Nj<nj52N_,-,lsj§k
a#0
&

y
<« —
(N, ---Ny)/8A
s

k=2 4k=2.4 k=10
S (Nk8 + N, )

b(k)+e

(AN]?MNI “ N1 + Ny "'Nk—l) (3.5)

<y

where b(k) = 42 + &J2. Therefore we have

T+H
f S 4(x, k)dx < HY4Tk/8reyb®), (3.6)
T

-H
According to (3.1)-(3.6), we have

e k By(c) T 9k/8 9k/8 3/4 3/4+9k/8+e b(k)
= +e,,— +9k/8+¢&
j;_H REdx = S o fT_H Bdx + O (HT* Py 4 T y®) G

3.2. Higher-power moments of R,
From the definition of K, (K := min{n € N : n > Ap, 2|n} in [9] we write

0=

k+1, kisodd,
k+ 2, otherwise.

Suppose that y < (HT3/4)1/0o) et N = T in the formula (2.1) of Lemma 1. Then, we can obtain

Ry =Q2m) 22" Y e cos(8nnx — 1/4) + O(T'*%)
n

y<n<T

< + T,

Cn
4y e )

y<n<T
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Thus, we have

T+H T+H c 2
Ridx < HT** + f ¥/ Z 7—’1/86(4 Vnx)| dx
T-H T-H y<n<T n
2
C c,C
<HT™ +HT?* " a1 ) nm

7/4 T/8( 3 _ 3

y<n<T n y<m<n<T (mn) / (\/_ m)

HT®*log’ T

< HT** + T +
y3/4

HT°*log’ T
y3/4

From (3.7) we can obtain that

T+H
f IR|Kodx <« HT¥o/8+¢
T

-H
By Holder’s inequality and the above formula we have
T+H
f IR[Adx <« HT/3+¢
T-H
for Ag = k+ 0, here 0 < 6 < 1 is a fixed constant. From (1.5) and (3.9) we get
T+H T+H
f IR [*odx < f (IA(x; o + |R|A0)dx <« HT/8%¢
T-H T-H
For any 2 < A < Ay, by (3.8), (3.10) and Holder inequality we have
T+H T+H 2(A0-A)+A0<A-2)
f (R dx = f [Ry| A0 " A0 dx
T T

-H -H

(A-2)

(Ap-4)
T+H Ag-2 T+H Ay—2
< ( f R%dx) ( f |R1|A°dx)
T-H T-H

3(Ag-4)

< HT ¥y 300D
Thus we have

Lemma 5. Suppose T® <y < (HT3/*)1/0K0) 2 < A < A,. Then, we have

T+H 3(Ag-A)
A My~
IR |"dx < HT 8 "¢y %02

T

-H

3.3. Proof of Theorem 1

Suppose 3 < k < Ay. By the elementary formula (a + b)* — a* < |b|* + |a*~!b| we have

T+H T+H T+H T+H
f Ak (x; )dx = Ridx + 0( f |R"‘1R1|dx) +0 ( f |721|kdx).
T-H T-H T-H T-H

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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By (3.9), Lemma 5 and Holder inequality we have
-1 Ag—k+1

T+H T+H Ao T+H Ag ™
f (R R, ldx < ( f IRAOIdx) ( f Ry Idx)
T-H T-H T-H (3.14)

ok _ 3(Ag—k)
< HT %y %D

1
3

Taking y = (HT-34)"*0* @21 | From (3.13), (3.14), (3.7) and Lemma 5, we can obtain

fT+H Ak(x_ Ydx = Bi(c) fT+H K8 gy 4 0(T3/4+9k/8+5 b(Ko) HT%kJ“S —iﬁj;g’;;)
T-H e 261 2m)* iy Y Y

B0 i %84y + O HT ¥+ (HT 314y woissars (3.15)
_—zk—l oE X X+ ( ) .

By(c) T s Upp 34
=5 Gy, ¥ o(HT T E)

From this we can easily get Theorem 1.
4. Proof of Theorem 2

In this section, we will give the proof of Theorem 2. Let N = 7%/, By (2.1) we can obtain

A (x; ) < x85.

Suppose % << % be a fixed real number. Let A;(x; ¢) < x7*1.

Suppose T — H < x; < -+ < xg < T + H satisfies |x, — x,| >V (r # s <R), T'® < V < T and
|A1(x,50)| > VT (r = 1,--- ,R). Dividing interval [T — H,T + H] into the subinterval of length not
exceeding T (Ty > V). Let Ry denotes the number of x, which exists in the subinterval of length not
exceeding Ty. Then, we have

R < Ry(1 + H/Ty).

Tanigawa, Zhai and Zhang [9] proved that
R<TV?L +HTV LY, 4.1)

it Ty = VRT 2L Ry < TIH*V2,

Now we consider TT_;H |A1(x; ©)[*dx, where 2 < A < 24 be a fixed real number. According to [9],
we have

T+H
f A @)t dx < HTPVS 4 3"V 3" A (s o)l (4.2)
T-H V. r<Ry

where T8 <V =2"<T VT <|Ai(x;0)| <2VT (r=1,--- ,Ry)and |x, — x;| > Vforr # s <R <
Ry. By (4.1) we have

VZ |A1(xr;g0)|A < RVTAVA+1 < LSTHAYA=2 L p¥gri+aya-24
<Ry 4.3)
< T1+AVA_2.£5 + HT9A/8.£39
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Combining (4.2) and (4.3), we get

T+H
f |A1(X; (,o)IAdx < HT9A/8+s + T1+A+9(A_2)+8.
T-H

Now suppose 2 < A < 20/(8 — 1/8). If H > T'*%A-2-4/8 then we have

T+H
f |A1(x, (p)lAdx < HT9A/8+8_
T

-H

We notice that 20/(6 — 1/8) = 16/3 = 5.33---,if @ = 1/5. In Theorem 1, taking 6 = 4/36; /& for
3 <k <5, we can get Theorem 2.

5. Proof of Theorem 3

Suppose A (x; ¢) < x*/4*%, Then,

T+H
f A (x; @)[FT0dx <« HTO*k+O8+
T-H

where €’ = (k + 1)e. From Theorem 1, we can get asymptotic formula

fT+H Ak(x, (p)dx _ Bk(c) fT+H x9k/8dx +0 (HT%+€' (HT—3/4)—36/6k)
reu 281 2my* Jrp

for T%% < H <T. Taking 6 = %6k(k + 1) v/e in Theorem 1, we can get Theorem 3.
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