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Abstract: With the rapid development of network technology and small handheld devices, the amount
of data has significantly increased and various kinds of data can be supplied to us at the same time.
Recently, hashing technology has become popular in executing large-scale similarity search and image
matching tasks. However, most of the prior hashing methods are mainly focused on the choice of the
high-dimensional feature descriptor for learning effective hashing functions. In practice, real world
image data collected from multiple scenes cannot be descriptive enough by using a single type of
feature. Recently, several unsupervised multi-view hashing learning methods have been proposed based
on matrix factorization, anchor graph and metric learning. However, large quantization error will be
introduced via a sign function and the robustness of multi-view hashing is ignored. In this paper we
present a novel feature adaptive multi-view hashing (FAMVH) method based on a robust multi-view
quantization framework. The proposed method is evaluated on three large-scale benchmarks CIFAR-10,
CIFAR-20 and Caltech-256 for approximate nearest neighbor search task. The experimental results
show that our approach can achieve the best accuracy and efficiency in the three large-scale datasets.
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1. Introduction

The rise of mobile phone and internet users is also fueling the explosive growth of data. This brings
two challenges, i.e., (1) how to save the storage cost [1, 2]; (2) how to achieve fast nearest neighbor
retrieval [3,4]. The storage cost of saving the original feature is prohibitively high for the first challenge.
The classic linear scan solution to nearest neighbor search is not scalable in practical applications for
the second challenge. For the second challenge, approximate nearest neighbor search gives faster search
speed than nearest neighbor retrieval by balancing accuracy and speed of arithmetic. Among them,
tree-based search schemes perform well for low-dimensional data by partitioning the data space via
various tree structures [5, 6]. For high-dimensional data, these methods cannot achieve satisfactory
performance and do not guarantee faster search compared to linear scan [7].

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023297


5846

For the first challenge, hash methods [7, 8] have been proposed to encode large-scale data, such as
images, videos, documents and so on, into a sequence of bits, called hash code. They are designed to
embed data from high dimensional feature space into a similarity-preserving low dimensional Hamming
space. Hash methods can be categorized into two main categories of hashing algorithms, namely
data-independent and data-dependent methods. Data-independent methods include the famous locality
sensitive hashing (LSH). The hash codes are generated by a random hash functions satisfying the local
sensitive property for various distance measures [9–12] followed by rounding. Data-dependent methods
can be categorized into unsupervised hashing methods and supervised hashing methods. In unsupervised
hashing methods, graph-based [8,13–17] and vector quantization hashing [18–20] methods have attracted
considerable attention in hashing. In graph-based hashing methods, data-dependent compact binary codes
can be obtained by graph based dimensionality reduction. In vector quantization based hashing methods,
the feature space is divided into a set of subspaces and compact binary codes are obtained via quantizing
each subspace separately into clusters. For example, Jégou et al. [18] introduced a product quantization
based approach for approximate nearest neighbor search. The basic idea is to divide the feature space
into a Cartesian product of low dimensional subspaces and then to quantize each subspace separately
into clusters. Norouzi et al. [19] extended product quantization and introduced a rotation matrix into
quantization loss. Zhang et al. [20] proposed a novel compact coding approach. The basic idea is to use
the composition of several elements selected from the dictionaries to accurately approximate a vector. A
constraint condition is introduced into the objective function that the summation of the inner products
of all pairs of elements that are used to approximate the vector from different dictionaries is constant.
In the supervised hashing method, the class labels information approximate nearest neighbor search.
Shakhnarovich [21] designed a boosted similarity sensitive coding to learn a similarity from weighted
Hamming distance for task-specific similarity search. Hinton et al. [22] proposed a binary encoding
method with stacked restricted boltzmann machines (RBMs), which can be applied to learn binary codes.
Kulis et al. [23] proposed a binary reconstructive embedding (BRE) hashing method based on explicitly
minimizing the reconstruction error between the metric space and Hamming metric. Wang et al. [24]
proposed a semi-supervised hashing (SSH) method, which minimized empirical error over the labeled
set and maximized the variance of each hash function at the same time.

Most of the prior data-dependent hashing methods take only a single type of feature into consideration,
referred to as single-view hashing. In practice, images captured from different scenes in the real world
should be represented by different kinds of features to obtain a comprehensive and accurate description.
These features describe different characteristics of the given image from different views. Incorporating
the multiple features into hash learning, which is referred to as multi-view hashing, has been explored
widely. The multi-view hashing methods can be divided into two categories: view-specific hashing
methods and view-integrated hashing methods. View-specific hashing methods learn independent hash
codes for each view of an instance, and then concatenate multiple view-specific binary codes into
the final hash codes. Bronstein et al. [25] proposed a framework for supervised similarity learning
based on embedding data from different feature spaces into the Hamming space. The hash codes are
learned using AdaBoost framework. Kumar et al. [26] proposed a cross-view hashing method, which
is based on a spectral hashing framework. The similarity of pairwise instances in the Hamming
space is computed by summing the Hamming distance of inter views and intra views. Zhen and
Yeung [27] proposed a Co-Regularized hashing method, which is based on the large-margin strategy
while effectively preserving the inter-modality similarity. The view-integrated hashing methods learn
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unified hash codes for each instance. Zhang et al. [28] proposed a composite hashing with multiple
information sources (CHMIS) method, which is based on spectral hashing and the maximum margin
framework. The affinity matrix is computed by the summation of the affinity matrix from each
view. A consistency constraint that the output of hash functions should be close to final integrated
hash codes is introduced. Kim et al. [29] proposed a multi-view anchor graph hashing (MVAGH)
method, which extended single view spectral hashing to multi-view hashing. All single view anchor
graphs are combined to approximate the averaged neighborhood graph. Then a random walk method on
the multi-view anchor graph is utilized to compute the similarity of pairwise instances. Kim et al. [30]
proposed a multi-view spectral hashing (MVSH) method, which integrated multi-view information into
binary codes, and uses the product of codewords to avoid undesirable embedding. Wang et al. [31]
proposed a partial multi-modal, i.e., some views of the instances are missing, hashing method. This type
of hashing method combines the formulation of matrix decomposition that can find the latent shared
semantics, and spectral clustering. Liu et al. [32] proposed a multi-view alignment hashing method
based on regularized kernel nonnegative matrix factorization. Liu et al. [33] proposed a multiple
feature kernel hashing method, which preserved certain similarities with linearly combined multiple
kernels corresponding to different features. However, large quantization error will be introduced via a
sign function and the robustness of multi-view hashing is ignored.

View
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View 

Dictionary 1 

Dictionary 2 

Dictionary n 

…
 

Quantized Code

…
 

Quantizer_1 

Quantizer_2

Quantizer_n

…
 

Figure 1. The motivation of the proposed multi-view quantization method.

In this paper, we propose a novel feature adaptive multi-view hashing (FAMVH) method based on
a robust multi-view quantization framework as shown in Figure 1. Specifically, we utilize multiple
feature representations for each image and learning adaptive weights in the vector quantization
process. In addition, the ℓ2,1-norm loss is embedded in minimizing the reconstruction error and
alleviating the impact of outliers. Finally, our approach is evaluated on three large-scale datasets
for an approximate nearest neighbor (ANN) search task. All in all, our method is a view-integrated
hashing method based on ℓ2,1-norm loss, which is robust to outlier data. Our contributions in this
paper are summarized in the following:
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• We propose a novel feature adaptive hashing method which can integrate multi-view to generate
compact and integrated hash codes.
• An efficient algorithm is designed to optimize the proposed method.
• Our approach achieves superior performances in ANN experiments on three large scale datasets.

The remainder of this paper is organized as follows: In Section 2, we briefly introduce the related
work. Section 3 presents the detail of our proposed approach. Discussions and analyses are given in
Section 4. Section 5 provides extensive experimental validation on three datasets. The conclusions and
future work are given in Section 6.

2. Related work

2.1. Product quantization

Product quantization (PQ) [18] splits each P dimensional feature xi into M disjoint subvectors, where
the dimension of each subvector is S m and ΣM

m=1S m = P. The PQ method formulates the encoding
problem as follows:

min L (C,B) =
N∑
i

∥xi −


C1b1

i
...

CMbM
i

 ∥2
s.t. bm

i ∈ H1/K

∥bm
i ∥1 = 1, i ∈ {1, · · · ,N},m ∈ {1, · · · ,M},

(2.1)

where N is the number of sample instances, Ci is m-th sub codebook and each column is a S m

dimensional sub codeword, H1/K ≡ {b|b ∈ {0, 1}K and ∥b∥ = 1}, i.e., b is a binary vector comprising
a 1-of-K encoding. The disadvantages of this method are as follows: 1) the ℓ2-norm used in the objective
function is not robust to the outlier data, 2) the reconstruction error is high and thus leads to limited
search accuracy.

2.2. Cartesian k-means

The original p-dimensional feature space is splitted into m subspaces. m subcenters can be obtained
by sub-quantizing the features in each subspace into h centers. In [19], each center of original feature
space is modeled with a compositional parameterization of m subcenters, each with h elements. The
learning objective for Cartesian k-means is to minimise the within-cluster squared distances:

min L (C,B) =
∑
x∈D

min
{b(i)}mi=1

∥x −
m∑

i=1

C(i)b(i)∥2

s.t. b(i) ∈ H1/h,

(2.2)

where D ≡ {x j}
n
j=1 denotes a dataset comprising n p-dim data points. C ≡ [C(1), · · · ,C(m)] ∈ Rp×mh

is block diagonal matrix comprising m subcenters set, where C(i)
∈ Rp×h is a matrix whose columns

comprise the elements of the ith subcenter set and C(i)T C( j) = 0h×h,∀i , j. C can be expressed as a
product RD, where R ∈ Rp×p is an orthogonal matrix, i.e., RT R = Ip×p, and D ∈ Rp×mh is a block
diagonal matrix.
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R = [R(1), · · · ,R(m)]

D =


D(1) 0 . . . 0

0 D(2) 0
...

. . .
...

0 0 . . . D(m)


Then C(i) = R(i)D(i). D(i) ∈ Rsi×h and R(i) ∈ Rp×si , where si = rank(Ci),

∑m
i=1 si ≤ p.

The objective in Eq (2.2) can be solved by an iterative coordinate descent method. Since the rotation
matrix R is optimally learned, the CKM can achieve lower quantization error than PQ. The performance
with ℓ2-norm embedded in the objective function is susceptible to the outlier data. In addition, the CKM
is a single view hashing method and can not integrate multiple features naturally.

2.3. Multi-view k-means clustering

Cai et al. [34] proposed a heterogeneous features clustering method by sharing the same clustering
results in different views. X(v) ∈ Rdv×n,v = 1, . . . ,M, is used to represent the input data matrix with n
instances and dv-dim features in the v-th view. F(v) ∈ Rdv×K is the cluster centroid matrix in the v-th
view. G ∈ RK×n is the shared cluster assignment matrix and each row of G satisfies the 1-of-K encoding
scheme, i.e.,H1/K . The proposed multi-view K-means clustering method can be solved:

min
Fv,G,α(v)

M∑
v=1

(α(v))γ∥X(v) − F(v)G∥2,1

s.t. Gki ∈ {0, 1},
K∑

k=1

Gki = 1,
M∑

v=1

α(v) = 1,

(2.3)

where ∥X∥2,1 =
∑n

i=1 ∥xi∥2, xi is the i-th column of X. ℓ2,1-norm has been proved robust to noise
points [35–37].

The solution of the energy function in Eq (2.3) can be obtained by alternate optimizing over all the
variables and the intermediate auxiliary variable. It can not generate compact hash codes as the cost of
storing the centers grows linearly with K.

3. Proposed method

The framework of the proposed method is demonstrated in Figure 2. In this section, we first define
some terms and notations that will be utilized throughout the paper. In the following subsection,
we introduce our feature adaptive multi-view hashing approach, referred as FAMVH. The alternate
optimization algorithm is presented in the next subsection. The convergence analysis of FAMVH is
given in the end.

3.1. Terms and notations

Let V denote the number of views, N be the number of instances, Xv = [xv
1, x

v
2, . . . , x

v
N] ∈ Rdv×N

denote the feature matrix corresponding to the v-th view of all the instances. Each xv
i is split into
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M disjoint subvectors {[xv
i ]

m}. Assume the m-th subvector {[xv
i ]

m} contains sv
m dimensions and then∑M

m=1 sv
m = dv.
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Figure 2. The framework of the proposed FAMVH method.

3.2. Formulation

The straight-forward way of combining all views of features is to concatenate all features together,
which has been used in scene classification [38], object recognition [39] and etc. Feature concatenation
preserves the raw information such that hashing methods can utilize the correlation among views.
However, in such method, these features are often very high dimension, at the same time, the important
view of features and the less important view of features are treated equally, which may not yield optimal
hash codes since the structural information of each view has been lost. It is ideal to simultaneously
perform the encoding using each view of features and unify their results based on their importance to
the encoding task. To achieve the above purpose, three challenging problems have to be solved: 1)
how to naturally assemble the multiple encoding losses, 2) how to learn the importance of views to the
encoding task, 3) how to learn a compact hash code.

When performing a multi-view clustering algorithm, the clustering results in different views are
required to be unique. Therefore, in multi-view hashing, we force the hash codes to be the same across
different views. In the meantime, the data outliers can greatly affect the performance of hashing. To
alleviate the effect of outlier data in the iterative optimization process, the sparsity-inducing norm, i.e.,
ℓ2,1-norm, is utilized in our quantization loss. The formulation of robust multi-view k-means hashing is
as follows:

min
Rv,Dm

v ,bm
i ,α

(v)

N∑
i=1

V∑
v=1

(α(v))γ∥xv
i − Rv


D1

vb1
i
...

DM
v bM

i

 ∥2,1
s.t. (Rv)T Rv = I,

V∑
v=1

α(v) = 1,

∥bm
i ∥1 = 1,bm

i ∈ {0, 1}
K

∀ i ∈ {1, · · · ,N},m ∈ {1, · · · ,M},

(3.1)

where Dm
v ∈ R

sv
m×K is the m-th sub codebook for v-th view and each column is a sv

m-dimensional sub
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codeword. bm
i is the 1-of-K encoding on the m-th subvector. Rv ∈ Rdv×dv is a rotation matrix for the v-th

view. α(v) is the weight factor for the v-th view and γ is the parameter to control the weights distribution.

3.3. Optimization algorithm

The problem in Eq (3.1) is NP hard and difficult to solve with the discrete variable bm
i . There are

four types of unknown variables, Rv,Dm
v , bm

i and α. An alternating iteration process is performed where
three of them are fixed, and the other one is optimized. Before performing optimization, we introduce
some symbols for convenience as follows:

Xv ≜ [xv
1, x

v
2, · · · , x

v
N], (3.2)

D̂v ≜


D1

v
. . .

DM
v

 , (3.3)

b̂i = [b1
i

T
,b2

i
T
, · · · ,bM

i
T ]T , (3.4)

B ≜ [̂b1, b̂2, · · · , b̂N]. (3.5)

The object function is re-written in a matrix form as

min
Rv,D̂v,B,α

V∑
v=1

(α(v))γ∥Xv − RvD̂vB∥2,1

s.t. (Rv)T Rv = I,
V∑

v=1

α(v) = 1,

∥bm
i ∥1 = 1,bm

i ∈ {0, 1}
K

∀ i ∈ {1, · · · ,N},m ∈ {1, · · · ,M},

(3.6)

where B ∈ {0, 1}MK×N has been defined in Eq (3.5).
To solve the problem in Eq (3.6), we add intermediate variables {Λv} and reformulate the object

function as

L0 = min
Rv,D̂v,B,α(v)

V∑
v=1

(α(v))γHv, (3.7)

where Hv = Tr{(Xv − RvD̂vB)Λv(Xv − RvD̂vB)T }. Λv ∈ RN×N is the diagonal matrix for v-th view. The
i-th entry on the diagonal is defined as follows:

Λv
ii =

1
2∥Ev

i ∥2 + δ
, ∀ i = 1, 2, · · · ,N, (3.8)

where δ is a very small positive value to avoid the denominator being zero and Ev
i is the i-th column of

Ev, which is defined as follows:
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Ev = Xv − RvD̂vB. (3.9)

• Solve Rv with D̂v, Λv, B and α fixed:
The objective function can be written as

min
Rv

Tr{(Xv − RvD̂vB)Λv(Xv − RvD̂vB)T }

s.t. (Rv)T Rv = I.
(3.10)

Equation (3.10) can be rewritten as

min
Rv
∥Xv(Λv)

1
2 − RvD̂vB(Λv)

1
2 ∥22

s.t. (Rv)T Rv = I,
(3.11)

where (Λv)
1
2 denotes the square root of entries on the diagonal of matrix Λv. Then optimizing Rv is

the standard Procrustes Problem [40]. The solution of the problem can be obtained by single value
decomposition (SVD): XvΛv(D̂vB)T = UΣVT , the optimal Rv will be UVT .
• Solve D̂v with Rv, Λv, B and α fixed:

With straightforward algebraic manipulation, Eq (3.11) can be written as

min
D̂v

∥(Rv)T Xv(Λv)
1
2 − D̂vB(Λv)

1
2 ∥22 (3.12)

since
∥Xv(Λv)

1
2 − RvD̂vB(Λv)

1
2 ∥22

=∥(Rv)T Xv(Λv)
1
2 − D̂vB(Λv)

1
2 ∥22 + ∥(R

v)⊥T Xv(Λv)
1
2 ∥22

(3.13)

where columns of (Rv)⊥ span the orthogonal complement of the column-space of Rv, i.e., the
block matrix [Rv (Rv)⊥] is orthogonal. The second term in the formula described above is
independent of D̂v.
Taking the derivative of L1 = ∥(Rv)T Xv(Λv)

1
2 − D̂vB(Λv)

1
2 ∥22 with respect to D̂v, we can get

∂L1

D̂v
= 2D̂vBΛvBT − 2RvXvΛvBT . (3.14)

Setting Eq (3.14) as 0, each D̂v can be updated as RvXvΛvBT (BΛvBT )†, where (·)† denotes the
matrix pseudo inverse. As the pseudo inverse will cause numerical instability, we will adopt
another optimization method which is more simple. Since D̂v is a diagonal block matrix and Λv is
a diagonal matrix where the entries in the diagonal are positive, the Eq (3.13) can rewritten as

min
{Dm

v }
M
m=1

N∑
i=1

M∑
m=1

Λv
ii∥[(R

v)T xv
i ]

m − Dm
v bm

i ∥
2
2, (3.15)

where [(Rv)T xv
i ]

m is the m-th subvector of (Rv)T xv
i . {D

m
v }

M
m=1 can be optimized independently

by solving
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min
Dm

v

N∑
i=1

Λv
ii∥[(R

v)T xv
i ]

m − Dm
v bm

i ∥
2
2, (3.16)

where bm
i is the class label vector Eq (3.16) is similar to the weighted k-means clustering. Let K

be the number of classes. Then Dm
v can be updated as

[Dm
v ]p =

∑
bm

i ∈Ck
Λv

ii[(R
v)T xv

i ]
m∑

bm
i ∈Ck
Λv

ii
, (3.17)

where Ck denotes class label k, p is the index corresponding to the p-th entry in vector bm
i whose

value is 1 and [Dm
v ]p denotes the p-th column of Dm

v .
• Solve B with Rv, Λv, D̂v and α fixed:

From Eq (3.6), B can be decoupled into columns and optimized column by column.

min
bm

i

V∑
v=1

(α(v))γ∥xv
i − RvD̂vb̂i∥2

s.t. ∥bm
i ∥1 = 1,bm

i ∈ {0, 1}
K

∀ m ∈ {1, · · · ,M},

(3.18)

where b̂i has been given in Eq (3.4). With the intermediate variableΛv, Eq (3.18) can be reformulated

min
bm

i

V∑
v=1

(α(v))γΛv
ii∥x

v
i − RvD̂vb̂i∥

2
2

s.t. ∥bm
i ∥1 = 1,bm

i ∈ {0, 1}
K

∀ m ∈ {1, · · · ,M},

(3.19)

Equation (3.18) can be expanded as in Eq (3.13). The formula is given as

min
bm

i

V∑
v=1

M∑
m=1

(α(v))γΛv
ii∥[(R

v)T xv
i ]

m
− Dm

v bm
i ∥

2
2 + const

s.t. ∥bm
i ∥1 = 1,bm

i ∈ {0, 1}
K

∀ m ∈ {1, · · · ,M},

(3.20)

where [(Rv)T xv
i ]

m is the m-th subvector of (Rv)T xv
i , const is independent of variable bm

i . bm
i can be

solved by optimizing
min

bm
i

∥x̃i
(m)
− D̃

(m)
bm

i ∥
2
2

s.t. ∥bm
i ∥1 = 1,bm

i ∈ {0, 1}
K ,

(3.21)

where
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x̃i
(m)
= [(α(1))γΛ1

ii([(R
1)T x1

i ]m)T , · · · , (α(V))γΛV
ii ([(R

V)T xV
i ]m)T ]T ,

D̃
(m)
= [(α(1))γΛ1

ii(D
m
1 )T , · · · , (α(V))γΛV

ii (D
m
V )T ]T ,

(3.22)

The bm
i can be obtained by performing nearest neighbor (NN) search for x̃i

(m) to find the assignments
coefficients. Λv can be updated by Eq (3.8).

min
α(v)

V∑
v=1

(α(v))γHv

s.t.
V∑

v=1

α(v) = 1, α(v) ≥ 0.

(3.23)

The Lagrange function associated with Eq (3.23) is defined as

L3(α(v), λ) =
V∑

v=1

(α(v))γHv + λ(
V∑

v=1

α(v) − 1). (3.24)

Taking the derivative of L3 with respect to α(v), we can find the optimum α(v) by setting the
derivative to zero.

L3

α(v) = γ(α
(v))γ−1Hv + λ = 0, (3.25)

which yields the optimal

α(v) = (−
λ

γHv )
1
γ−1 . (3.26)

Substitute the optimal α(v) in Eq (3.26) into the constraint
∑V

v=1 α
(v) = 1, we get

α(v) =
(γHv)

1
1−γ∑V

v=1(γHv)
1

1−γ

. (3.27)

The optimization process is performed by alternatively updating Λv, Rv, D̃
(m)

, bm
i and α(v) until conver-

gence. The whole algorithm is summarized in Algorithm 1.
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Algorithm 1 The Algorithm of FAMVH.
Input:

The training set for V views {X1, · · · ,XV} and Xv ∈ Rdv×N , v = 1, · · · ,V;
The number of splitting feature subvectors M;
The number of sub codewords K;
The parameter γ;

Output:
The rotation matrix Rv ∈ Rdv×dv for each view;
The codebook on m-th subvector D̂v ∈ R

sv
m×K for v-th view;

The learned weight α(v) for each view;
The learned hash codes B ∈ {0, 1}KM×N;

Initialization:
Initialize α(v) = 1

M , v = 1, · · · ,V;
Rv is initialized as the identity matrix I;
Dm

v is initialized by selecting K data points from the m-th subvector of v-th view randomly;
bm

i ∈ {0, 1}
K is initialized by optimizing Eq (3.21);

1: repeat
2: Compute the diagonal matrix Λv via Eq (3.8);
3: Update Rv through optimizing Eq (3.11);
4: Update Dm

v with Eq (3.17);
5: Update bm

i via optimizing Eq (3.20);
6: Update α(v) by Eq (3.26);
7: until Converges

3.4. Convergence analysis

The convergence proof of our proposed method is given as follows. Let the original objective
function in Eq (3.6) be L(R, D̂,B,α), where R = {Rv}Vv=1, D̂ = {D̂v}

V
v=1. For the t-step iteration, the

alternate update procedure contains the following four subproblems:

R(t) ←− argmin
R
L(R, D̂

(t−1)
,B(t−1),α(t−1)),

D̂
(t)
←− argmin

D̂
L(R(t), D̂,B(t−1),α(t−1)),

B(t) ←− argmin
B
L(R(t), D̂

(t)
,B,α(t−1)),

α(t) ←− argmin
α
L(R(t), D̂

(t)
,B(t),α),

(3.28)

where the update procedure of auxiliary variables {Λv}Vv=1 is omitted for convenience. Thus we have the
following inequality:
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L(R(t−1), D̂
(t−1)
,B(t−1),α(t−1)),

≥ L(R(t), D̂
(t−1)
,B(t−1),α(t−1)),

≥ L(R(t), D̂
(t)
,B(t−1),α(t−1)),

≥ L(R(t), D̂
(t)
,B(t),α(t−1)),

≥ L(R(t), D̂
(t)
,B(t),α(t)) ≥ · · · ,

(3.29)

It indicates that L(R(t), D̂
(t)
,B(t),α(t)) are monotonic nonincreasing as t → ∞. Finally, the algorithm will

converge to a local optimal solution.

4. Discussion and analysis

4.1. Computation complexity analysis

The update of the diagonal matrix Λv depends on the matrix Ev in Eq (3.8). The time complexity to
compute Ev is O(Nd2

v ). The complexity of updating the diagonal matrix Λv is O(Ndv). The complexity
of updating Rv requires O(Nd2

v + Ndv + d3
v ) time. The complexity of updating the dictionary Dm

v is
O(N(K + sv

m) + Nsv
mdv). The complexity of updating bm

i is O(K +
∑V

v=1 sv
mdv + K

∑V
v=1 sv

m). The updating
of D̂v and B can be implemented in parallel computating. The complexity of updating α is O(V). The
total time complexity of the proposed method is O(T N

∑V
v=1 d2

v ), where T is the number of iterations.

4.2. Approximate nearest neighbor search

In this subsection, we discuss the ANN for comparing quantization techniques. Let qv ∈ Rdv be the
v-th view of a query instance and xv

i ∈ R
dv be the v-th view of the i-th database point. The i-th instance

is encoded as b̂i ∈ {0, 1}MK which has been defined in Eq (3.4). The asymmetric quantizer distance
between a query q and the binary code b̂i of i-th instance is

distAQD(q, b̂i) =
V∑

v=1

(α(v))γ∥qv − RvD̂vb̂i∥2. (4.1)

Given a query, these distances for each v, and all K × M possible values of b̂i can be pre-computed
and stored in a query-specific V × K × M lookup table. Finally, there are V addition operations to
compute the distance distAQD(q, b̂i). If the query point is also represented by the binary codes, the
symmetric quantizer distance between the query binary codes b̂q and b̂i is given by

distS QD(̂bq, b̂i) =
V∑

v=1

(α(v))γ∥RvD̂vb̂q − RvD̂vb̂i∥2. (4.2)

We can pre-compute (α(v))γ∥RvD̂vb̂q − RvD̂vb̂i∥2 and store them in an V × M × K × K lookup table.
Finally, there are V addition operations to compute the distance distS QD(̂bq, b̂i).
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5. Experiments

5.1. Evaluation metric

For each dataset, we use each instance in the testing set as a query example to retrieve instances in
the training set. The Hamming ranking by the approximate distance criteria is adopted to perform fair
evaluation. In our following experiments, we use three different metrics [24]: the precision, recall and
mean average precision (MAP) for the top N retrieved instances.

precision@top(N) =
Nt

N
, (5.1)

where Nt and Rt denotes the true number of retrieved true nearest neighbor instances in top N
retrieved instances.

recall@top(N) =
Nt

T
, (5.2)

where T denotes the number of relevant true nearest neighbors.
Average precision (AP) of top N retrieved instances is defined as [41]:

AP =
1
Nt

N∑
i=1

precision@top(i) × δ(i), (5.3)

where δ(i) is a indicator function, i.e., if the item at rank i is a relevant true nearest neighbor of the
given query, δ(i) = 1, otherwise δ(i) = 0. Then MAP can be computed as the mean of AP.

5.2. Experimental settings

In this section, we evaluate our proposed methods for the high dimensional nearest neighbour search
problem with multiple features. Our experiments are carried on three different datasets: Caltech-256*,
CIFAR-10 and CIFAR-20 †. The images from Caltech-256 dataset spans 256 object categories ranging
from grasshopper to tuning fork with rich color information and texture detail information. The CIFAR-10
and CIFAR-20 datasets share the same images, which are widely used in the community of image retrieval.

Caltech-256. It consists of 30,607 images, each of which is associated with 256 object categories
with more than 80 images per category.

CIFAR-10. It consists of 60,000 32 × 32 color images collected from a subset of 80-million tiny
images dataset‡ [42]. It contains 10 class labels with 6,000 images in each class.

CIFAR-20. It consists of 60,000 32 × 32 color images, which belong to 20 superclasses. It is
referred as the CIFAR-100 dataset with the 100 fine classes label removed.

For all datasets, we randomly select 1000 images as the query set and the rest of the dataset is used
as the training set, following the experimental setting in [29, 43]. We use scene descriptor GIST [44],
shape descriptor HOG [45], local binary descriptor LBP [46], color histogram descriptor, and the bag of
visual words descriptor BOW. More concretely, the experimental settings are listed as follows:

-GIST: Gabor filters are applied with 8 different orientations and 4 scales. Each Gabor-filtered image
is then averaged over 4 × 4 grid, which leads to a 512-dimensional vector (8 × 4 × 16 = 512).

*http://www.vision.caltech.edu/Image_Datasets/Caltech256/
†https://www.cs.toronto.edu/˜kriz/cifar.html
‡http://horatio.cs.nyu.edu/mit/tiny/data/index.html
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-HOG: The image gradients are computed in non-overlapping windows, where the orientation of
gradients is quantized into 9 bins and normalized with 4 different normalization factors. Each image is
resized into 64 × 64. We use the publicly available VLFeat toolbox§ [47] to extract HOG features. The
cell size is set to 8 × 8. The length of the ultimate feature vector is 1984-dimensions (8× 8× 31 = 1984).

-LBP: The uniform LBP labels the pixels of an image by thresholding a 4 × 4 neighborhood, and the
response is mapped to a 243-dimensional vector.

-ColorHist: The intensities are quantized into 64 bins for each color channel which yield a 192-
dimensional color histogram vector (3 × 64 = 192).

-BOW: The dense SIFT features are quantized into 300-dimensional visual words.
In the test phase, a retrieved point is regarded as a true nearest neighbor if it lies in the top 100,

500 and 500 points closest to a query for Caltech-256, CIFAR-10 and CIFAR-20, respectively, similar
to [32]. Since we use ℓ2,1-norm in our model, we also verify the existing methods based on ℓ2,1-norm
distance for fair comparison. The distance between a query q and an instance x in the database is
calculated as dist(q, x) =

∑V
v=1 ∥qv − xv∥2, where qv, xv are the v-th view of q and x, respectively. The

experiments are performed using Matlab 2014a on a server configured with a 2-core processor and 32
GB of RAM running the Windows OS.

5.3. Evaluation on large scale datasets

In order to validate the efficiency of our approach, we design two experiments: approximate nearest
neighbor experiments and comparison experiments on multiple views.

5.3.1. Approximate nearest neighbor experiments

In ANN experiments, we compare our FAMVH with CKM [19] hash and PQ [18]. We set K = 256
to make lookup tables small as the same in [19]. All the features are normalized. For CKM and PQ, the
normalized multiple features are concatenated into a single representation. We use the publicly available
source codes of CKM and PQ to perform the comparison experiments. In our approach, a parameter γ
is used to control the weight factor distribution among all views. The optimal γ is selected from one of
{0.001, 0.01, 0.1, 1.01, 10, 100} which yields the best performance. We report the experimental results with
M being set to 4, 8, 16 for code length 32, 64, 128. The maximal number of iterations for the whole
algorithm was set to 10. In Figures 2, 3 and 4, the abbreviations AQ and SQ denote the asymmetric quantizer
distance and symmetric quantizer distance metrics in approximate nearest neighbor search, respectively.

Figures 3, 4 and 5 illustrate the recall on Caltech-256, CIFAR-10 and CIFAR-20, respectively. As
shown in Figure 3, our approach and CKM outperform PQ for the code length 32, 64 and 128 under the
same type of approximate nearest neighbor distance metric. The performances of our approach and CKM
are competitive. FAMVH does not seem to have a significant advantage over CKM. The main reason
can be attributed to the larger category sizes and larger clutter categories. From the results on CIFAR-10
and CIFAR-20 as shown in Figures 4 and 5, we can see that our approach outperforms all the others
under the same type of approximate nearest neighbor distance metric. The performance of methods with
the AQ metric significantly outperforms the corresponding methods with the SQ metric. The reason
is that the symmetric quantizer distance encodes both the query and the database instances, while the
asymmetric quantizer distance only encodes the database instances. As the code length increases, the

§http://www.vlfeat.org/
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performances of our approach and CKM increase too. The performance of PQ increases as the code
length increases from 32 bit to 64 bit and decreases from 64 bit to 128 bit. The possible reason is that
the lack of an optimal rotation matrix yields inconsistent results with the true nearest neighbors.
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Figure 3. Recall for ANN search based on different quantizers and corresponding distance
functions on Caltech256 dataset. The suffix ‘AQ’ or ‘SQ’ in the bracket refers to the asymmet-
ric quantization distance or the symmetric quantization distance in ANN search.
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Figure 4. Recall for ANN search based on different quantizers and corresponding distance
functions on CIFAR-10 dataset. The suffix ’AQ’ or ’SQ’ in the bracket refers to the asymmetric
quantization distance or the symmetric quantization distance in ANN search.
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Figure 5. The precision-recall curves of all compared algorithms on Caltech-256 dataset.
The suffix ‘AQ’ or ‘SQ’ in the bracket refers to the asymmetric quantization distance or the
symmetric quantization distance in ANN search.

5.3.2. Comparison experiments on multiples views

In the multiple views experiment, we compare our approach (FAMVH) against four popular unsu-
pervised multiview hashing algorithms, i.e., MVAGH [29], Sequential Update for Multi-View Spectral
Hashing (SU MVSH) [30], Multi-View Hashing (MVH CS) [26] and LSH. Since LSH is a data in-
dependent hashing method, it can be extended to deal with the multiple views hashing problem with
multiple features being concatenated into a single representation. The experimental settings are the
same in ANN experiments. It is worth noting that these benchmark methods including MVAGH,
SU MVSH and MVH CS share similar ideas of feature clustering with the proposed method. The
source codes of [26, 29, 30] have not been published. We implement them ourselves. The results in
terms of precision-recall curves are reported in Figures 6, 7 and 8 respectfully. The corresponding MAP
values are listed in Table 1. As shown in Figures 6, 7 and 8, our approach achieves the most superior
performance gain of all the compared algorithms on Caltech-256, CIFAR-10 and CIFAR-20 datasets.
The performance of LSH is next to us on the three datasets. MVAGH performs the worst over the three
datasets. The main possible reason is that the computation of similarities is based on the low-rank
approximation of the averaged similarity, which is computed by random walk, while the true nearest
neighbor is calculated by the summation of the square root of distances in each view.
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Figure 6. The precision-recall curves of all compared algorithms on CIFAR-10 dataset.
The suffix ‘AQ’ or ‘SQ’ in the bracket refers to the asymmetric quantization distance or the
symmetric quantization distance in ANN search.

Electronic Research Archive Volume 31, Issue 9, 5845–5865.



5861

recall

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
32-bit encoding

FAMVH(AQ)

FAMVH(SQ)

MVAGH

SU_MVSH

MVH_CS

LSH

recall

0 0.2 0.4 0.6 0.8 1
p

re
c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
64-bit encoding

FAMVH(AQ)

FAMVH(SQ)

MVAGH

SU_MVSH

MVH_CS

LSH

recall

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
128-bit encoding

FAMVH(AQ)

FAMVH(SQ)

MVAGH

SU_MVSH

MVH_CS

LSH

Figure 7. The precision-recall curves of all compared algorithms on CIFAR-20 dataset.
The suffix ’AQ’ or ’SQ’ in the bracket refers to the asymmetric quantization distance or the
symmetric quantization distance in ANN search.

Table 1. The comparison results of MAP on Caltech-256, CIFAR-10 and CIFAR-20 datasets.

Methods
Caltech-256 CIFAR-10 CIFAR-20

32 bits 64 bits 128 bits 32 bits 64 bits 128 bits 32 bits 64 bits 128 bits

MVAGH 0.0150 0.0160 0.0191 0.0084 0.0090 0.0080 0.0080 0.0095 0.0092

SU MVSH 0.0312 0.0312 0.0312 0.0413 0.0408 0.0405 0.0370 0.0369 0368

MVH CS 0.0381 0.0392 0.0374 0.0229 0.0242 0.0239 0.0226 0.0227 0.0220

LSH 0.0930 0.1542 0.2591 0.0529 0.1250 0.2825 0.0574 0.1338 0.2700

FAMVH(SQ) 0.3169 0.4188 5254 0.3808 0.4855 0.5675 0.3705 0.4532 0.5588

FAMVH(AQ) 0.4114 0.5154 0.6125 0.4800 0.5809 0.6532 0.4619 0.5506 0.6408

6. Conclusions

In this paper, we propose a feature adaptive multi-view hash method, which aims to generate a binary
code to approximate the nearest neighbor (NN) search in multiple views. The method extends the classic
cartesian k-means hashing method to multi-view. It not only integrates the multi-view naturally, but
also generates compact hash codes. In experiments on large scale ANN search tasks, the experimental
results are good. In our future work, the kernel extension of our method will be investigated in dealing
with nonlinear feature mapping.
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