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Abstract: The goal of this paper is to introduce a non-autonomous environmental transmission model
for most respiratory and enteric infectious diseases to study the impact of periodic environmental
changes on related infectious diseases. The transmission and decay rates of pathogens in the envi-
ronment are set as periodic functions to summarize the influence of environmental fluctuations on
diseases. The solutions of the model are qualitatively analyzed, and the equilibrium points and the
reference criterion, R0, for judging the infectivity of infectious diseases are deduced. The global sta-
bility of the disease-free equilibrium and the uniform persistence of the disease are proved by using
the persistence theory. Common infectious diseases such as COVID-19, influenza, dysentery, pertussis
and tuberculosis are selected to fit periodic and non-periodic models. Fitting experiments show that
the periodic environmental model can respond to epidemic fluctuations more accurately than the non-
periodic model. The periodic environment model is reasonable and applicable for seasonal infectious
diseases. The response effects of the periodic and non-periodic models are basically the same for peren-
nial infectious diseases. The periodic model can inform epidemiological trends in relevant emerging
infectious diseases. Taking COVID-19 as an example, the sensitivity analysis results show that the
virus-related parameters in the periodic model have the most significant influence on the system. It
reminds us that, even late in the pandemic, we must focus on the viral load on the environment.

Keywords: non-autonomous model; environmental transmission; global attractivity; uniform
persistence; sensitivity analysis

1. Introduction

According to early research, environmental transmission is a crucial driver of infectious diseases,
especially enteric and respiratory diseases [1]. Some infectious diseases, such as influenza, pertussis
and dysentery, show cyclical fluctuations in their transmission dynamics. The cyclical fluctuations of
these infectious diseases are mostly strongly associated with seasonal changes and generally consistent
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with environmental cyclical changes [2]. Mathematical models allow the study of disease transmission
risks and the dynamic prediction of disease trends. Because the above diseases are highly sensitive
to environmental climate fluctuations, autonomous models with constant parameters are no longer
applicable, and non-autonomous models are more suitable [3, 4]. Taking COVID-19 as an example,
researchers have proposed many mathematical models and control measures during the first wave of the
pandemic to explore the transmission patterns of an early-onset COVID-19 pandemic [5–15]. Several
groups of researchers [16–19] have found that the turning point of pandemic fluctuation occurred at the
turn of the seasons. Environmental transmission is one of the most critical drivers of the multi-phase
outbreak. Other researchers have incorporated viral loads into the environment in mathematical models
to study the impact of indirect transmission on pandemics [20–22]. Musa et al. [23] proposed a model
of time-varying propagation rates influenced by the environment. However, the periodic oscillations of
the environment constitute an essential point that the authors ignore.

Taking into consideration COVID-19, is there a simple and universal mathematical model that can
effectively summarize the transmission dynamics of most environmentally transmitted infectious dis-
eases? Several articles [24–26] show that asymptomatic infected individuals constitute a compartment
that cannot be ignored when modeling infectious diseases such as tuberculosis, pertussis and influenza.
Others papers [2,27,28] show that the transmission rate of some infectious diseases with cyclical fluc-
tuations is closely related to seasonal changes, rather than being static. The study of periodic forcing
systems is naturally divided into two main directions: theoretical analysis and application. Researchers
focusing on theory have mainly concentrated on system stability and bifurcation analysis. Chithra and
Mohamed [29] found the existence of strange non-chaotic attractors by using bifurcation and Lya-
punov exponents in a single periodic forcing system. M. de Carvalho and Rodrigues [30, 31] made
a breakthrough in the analysis of the bifurcations of periodic forcing systems. They considered the
logistic growth in the periodic model and proved the existence of persistent strange attractors. Some
researchers [32, 33] have developed threshold dynamics and defined the next infection operator to
analyze the global dynamical behavior of periodic epidemic models. Researchers focusing on model
applications have mainly concentrated on the study of the prediction and control of periodic epidemics.
Various scholars have set the transmission rates in the model as periodic functions to explore the dy-
namical behavior of a given disease [28, 34–36]. However, few articles have examined a universal
model for environmentally transmitted infectious diseases. Based on the work of the above authors,
we propose an environmental periodic model to explore the applicability of the model to relevant infec-
tious diseases. The model can inform epidemiological trends in relevant emerging infectious diseases.

The following sections provide model analysis and discussion. Section 2 includes model devel-
opment, qualitative analysis and stability analysis. Section 3 provides parameter estimation and a
comparison of the periodic and non-periodic models for different infectious diseases. Section 4 in-
cludes a sensitivity analysis and simulation experiments to explore the impact of changes in the main
parameters influencing pandemic transmission dynamics. Section 5 gives an overall discussion of the
paper.

2. Model formulation and qualitative analysis

In contrast to the traditional epidemiological compartmental model, S EIR, the periodic environ-
ment model is more consistent with the pathogenesis of enteric and respiratory infectious diseases be-
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cause of the introduction of cyclic environmental changes. Taking COVID-19 as an example, according
to a published study recently released by the University of Michigan [37], the risk of transmission of
the novel coronavirus through aerosols could be thousands of times higher than that of transmission
through contact with surfaces. The same is true for the spread of common respiratory infectious dis-
eases such as pertussis, influenza and tuberculosis [38]. Enteric infectious diseases like dysentery can
spread disease through pathogens in the external environment, such as sewage and feces [39]. For this
reason, we include the environmental pathogen load, V(t), in the dynamic model.

Figure 1. Model diagram of infectious diseases as affected by the environment.

The model considers two ways of transmission, i.e., direct human-to-human transmission and in-
direct environment-to-human transmission. Furthermore, five mutually independent epidemiological
classes of the host populations are considered: susceptible group S (t), exposed group E(t), asymp-
tomatic infected group A(t), symptomatic infected group I(t) and recovered group R(t) at time t. The in-
cubation period is a phase that cannot be ignored for many diseases, and COVID-19 is no exception. In
the early stage of infection, some patients do not show symptoms associated with the disease, but they
can expel germs or viruses from the body. So, we consider the infectiousness of the exposure period in
our model [40]. Both asymptomatic and symptomatic patients are confirmed patients. Therefore, we
set E, A and I as infectious groups. The total population is given as N(t) = S (t)+E(t)+A(t)+ I(t)+R(t).

Only the symptomatic compartment I(t) has a disease fatality rate, d. µ represents the natural
mortality rate for host compartments. The susceptible populations are increased by recruitment at a
constant rate Λ. Let βi, i = 1, 2, 3, be the contact transmission rate from E(t), A(t) or I(t) to sus-
ceptible S (t). The external environment in which pathogens survive changes periodically and the
transmission and decay rates of pathogens are closely related to the fluctuation period of the environ-
ment. Therefore, we consider two time-varying functions, β4(t) and w(t), to summarize the cycle vari-
ation characteristics, where β4(t) is the function for transmission from the environmental pathogens
through cospatial contact or on the surface of objects, and w(t) is the decay function for pathogens.
β(t) = β1

E(t)
N(t) + β2

A(t)
N(t) + β3

I(t)
N(t) + β4(t) V(t)

V(t)+λ is the total infectivity of a specific infectious disease through
all transmission routes. θ is the proportion of E(t) converted to I(t), and 1 − θ is the proportion of E(t)
converted to A(t). The progression rate of class E(t) is denoted by κ. c is the ratio of A(t) converted
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to I(t). γi, i = 1, 2 represents the recovery rate for A(t) and I(t), respectively. ηi, i = 1, 2, 3 represents
the rate of pathogens released into the environment by E(t), A(t) and I(t) through exhalation, talking
or some other physical activity such as defecation. Given the actual biological significance of model
(2.1), we assume that all parameters in model (2.1) are non-negative. Table 1 details the biological im-
plications of each parameter of the model. Figure 1 gives a more specific flow of the six compartments
interacting with each other. The model is given by



dS
dt

= Λ −

(
β1

E
N

+ β2
A
N

+ β3
I
N

+ β4(t)
V

V + λ

)
S − µS ,

dE
dt

=

(
β1

E
N

+ β2
A
N

+ β3
I
N

+ β4(t)
V

V + λ

)
S − (k + µ)E,

dA
dt

= (1 − θ)kE − (c + γ1 + µ)A,

dI
dt

= θkE + cA − (γ2 + µ + d) I,

dR
dt

= γ1A + γ2I − µR,

dV
dt

= η1E + η2A + η3I − w(t)V,

(2.1)

where  β4(t) = β4(1 + a1sin(ωt)),
w(t) = w(1 + a2sin(ωt)).

(2.2)

We introduce the periodic function sin(ωt) to describe the effect of periodic changes in the environment
on pathogens. T = 2π

ω
is the period of environmental fluctuations, such as T = 12 months, T = 365

days, etc. β4 is the transmission rate without environmental fluctuations, and w is the decay rate without
environmental fluctuations. ai (i = 1, 2) is the magnitude of environmental fluctuations with 0 < ai <

1. a1 = 0 indicates that the transmission rate of pathogens is entirely unaffected by environmental
changes, and a1 = 1 indicates that changes in the transmission rate are fully consistent with the overall
trend of environmental change. These two cases are ideal, so we exclude them. Similarly, a2 has the
same interpretation. The initial values for each compartment of model (2.1) are non-negative. The
other five compartments, i.e., S , E, A, I and V, are independent of R. Model (2.1) can be reduced as
follows: 

dS
dt

= Λ −

(
β1

E
N

+ β2
A
N

+ β3
I
N

+ β4(t)
V

V + λ

)
S − µS ,

dE
dt

=

(
β1

E
N

+ β2
A
N

+ β3
I
N

+ β4(t)
V

V + λ

)
S − (k + µ)E,

dA
dt

= (1 − θ)kE − (c + γ1 + µ)A,

dI
dt

= θkE + cA − (γ2 + µ + d) I,

dV
dt

= η1E + η2A + η3I − w(t)V.

(2.3)
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Table 1. Description of model (2.1) parameters.

Parameter Definition
Λ Recruitment rate
β1 Transmission rate for the exposed persons
β2 Transmission rate for the asymptomatic infected persons
β3 Transmission rate for the symptomatic persons
β4(t) Function describing the transmission of pathogens
β4 The basic transmission rate of pathogens without environmental fluctuations
κ Rate of progression from exposed class to infected class
θ Proportion of individuals progressing from exposed class to symptomatic class
c Rate of conversion from asymptomatic infected persons to symptomatic persons
γ1 The recovery rate for the asymptomatic patients
γ2 The recovery rate for the symptomatic patients
η1 Weight of pathogen load contribution by exposed persons
η2 Weight of pathogen load contribution by asymptomatic infected persons
η3 Weight of pathogen load contribution by symptomatic persons
w(t) Decay function for pathogens
w The basic rate of decay of pathogens without environmental fluctuations
µ Natural mortality rate in host classes
d Unnatural mortality rate caused by disease
λ The minimum amount of pathogens that can infect an individual

2.1. Qualitative properties of solutions

Here, we concentrate on the qualitative analysis of system (2.1).

Theorem 1. The solution set {S (t), E(t), A(t), I(t),R(t),V(t)} of model (2.1) is positive when the initial
value for each compartment of the model is non-negative.

Proof. We use the contradiction to prove that (S (t), E(t), A(t), I(t),R(t),V(t)) ∈ R6
+ is a solution of

system (2.1) for t ≥ 0. Suppose that S (t) loses positivity for t1 > 0. When S (t1) = 0 holds, we can get
dS (t1)

dt ≤ 0. However, we know that dS (t1)
dt = Λ > 0. It is a contradiction. Therefore, the hypothesis is not

valid. The above analysis gives that S (t) > 0 for any t ≥ 0. The second differential equation in model
(2.1) can be given by

dE
dt
≥ −(κ + µ)E. (2.4)

Solving inequality (2.4) by integration yields

E(t) ≥ e−(κ+µ)tE(0) ≥ 0.

Using the same method, from the third to sixth differential equations of model (2.1), A(t), I(t),R(t) and
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V(t) are given, respectively, by

A(t) ≥ e−(c+γ1+µ)tA(0) ≥ 0,
I(t) ≥ e−(γ2+µ+d)tI(0) ≥ 0,
R(t) ≥ e−µtR(0) ≥ 0,

V(t) ≥ e−wt+ wa2
ω cos(ωt)V(0) ≥ 0.

Therefore, the above analysis demonstrates that all six state variables remain non-negative at any t ≥ 0
in model (2.1).

Theorem 2. The solutions of model (2.1) are uniformly bounded in the invariant region Ω, as follows:

Ω =

{
(S , E, A, I,R,V) ∈ R6

+ : 0 < N(t) ≤
Λ

µ
, 0 ≤ V(t) ≤

(η1 + η2 + η3)Λ
µw(1 − a2)

}
.

Proof. Simplifying model (2.1) yields
dN
dt

= Λ − µN − dI,

dV
dt

= η1E + η2A + η3I − w(t)V.
(2.5)

Theorem 1 states that each state variable is non-negative at any t ≥ 0. Therefore, Eq (2.5) is further
simplified as follows: 

dN
dt
≤ Λ − µN,

dV
dt
≤ (η1 + η2 + η3)N − w(t)V.

(2.6)

Integrating (2.6) and taking the limit at t → +∞ yields

lim
t→∞

supN(t) ≤
Λ

µ
,

lim
t→∞

supV(t) ≤
(η1 + η2 + η3)Λ
µw(1 − a2)

.

All of the possible solutions of model (2.1) at any t > 0 initiating in R6
+ are confined in the following

region: Ω =
{
(S , E, A, I,R,V) ∈ R6

+ : 0 < N(t) ≤ Λ
µ
, 0 ≤ V(t) ≤ (η1+η2+η3)Λ

µw(1−a2)

}
.

2.2. Equilibrium points and basic reproduction number

2.2.1. Disease-free equilibrium point

When E = A = I = V = 0, there is no disease in the system and the disease-free equilibrium, X0, can
be obtained as follows:

X0 =
(
S 0, E0, A0, I0,R0,V0

)
=

(
Λ

µ
, 0, 0, 0, 0, 0

)
.

It shows that the system (2.1) has a unique disease-free equilibrium.
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2.2.2. The basic reproduction number

The basic reproduction number, R0, is an essential epidemiological parameter. It indicates the
severity of infectious diseases and can be used as a reference indicator for the degree of prevention
and control [41]. R0 represents the average number of secondary infections in susceptible individuals
through direct contact with a patient or environmental pathogens [42].

R0 of system (2.1) is now solved by using the method in [43]. The matrix f represents the in-
troduction of the new-infection part, and v represents the generation of the transition part, which are
respectively given by

f =


β1ES

N +
β2AS

N +
β3IS

N +
β4(t)VS

V+λ

0
0
0

 ,

v =


(κ + µ)E

−(1 − θ)κE + (c + γ1 + µ)A
−θκE − cA + (γ2 + µ + d)I
−η1E − η2A − η3I + w(t)V

 .
(2.7)

Calculating the Jacobian matrices of (2.7) and then substituting the disease-free equilibrium point
yields

F = ( fi j)4×4 =


β1 β2 β3

β4(t)Λ
µλ

0 0 0 0
0 0 0 0
0 0 0 0

 ,

V = (vi j)4×4 =


κ + µ 0 0 0
−(1 − θ)κ c + γ1 + µ 0 0
−θκ −c γ2 + µ + d 0
−η1 −η2 −η3 w(t)

 .
Then, R0 of time-averaged autonomous systems is defined as [R0] = ρ([F][V−1]), where ρ([F][V−1]) is
the spectral radius of the next-generation matrix [F][V−1]. [R0] [43] is given by

[R0] = [RE] + [RA] + [RI] + [RV], (2.8)

where

[RE] =
β1

κ + µ
,

[RA] =
β2 (1 − θ) κ

(κ + µ) (c + γ1 + µ)
,

[RI] =
β3

[
θκ (c + γ1 + µ) + c (1 − θ) κ

]
(κ + µ) (c + γ1 + µ) (γ2 + µ + d)

,

[RV] =
β4Λ

[
η1 (c + γ1 + µ) (γ2 + µ + d) + η2κ (1 − θ) (γ2 + µ + d) + η3κ (θ (γ1 + µ) + c)

]
µλw (κ + µ) (c + γ1 + µ) (γ2 + µ + d)

.

[RE] is the secondary infection caused by an exposed person. In other words, [RE] is the number of sus-
ceptible persons who become infected through direct contact with an exposed person. Similarly, [RA] is
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a secondary infection caused by an asymptomatic infected individual, and [RI] is a secondary infection
caused by a symptomatic infected individual. [RV] is a secondary infection caused by pathogens from
the environment. In other words, [RV] is the number of susceptible persons infected through indirect
contact with pathogens, such as aerosols and waterborne transmission.

However, [R0] may overestimate or underestimate the risk of disease prevalence. This makes the
proposed control measures either too relaxed or too restrictive. Wang and Zhao extend the classical
framework described in [44] and introduced the next infection operator [32, 33] in a periodic environ-
ment. R0 [32] is given by

(Lφ)(t) =

∫ ∞

0
Y(t, t − s)F(t − s)φ(t − s)ds, (2.9)

where F(s) is the newly introduced infected class at time s, and φ (s) is the distribution of the initial-
ization state of the infected class. Then, F(s)φ (s) is a function that descirbes the distribution of new
infections generated by the newly introduced infected class at time s. Y(t, s), t ≥ s is a developmen-
tal operator for linear ω-periodic systems dy

dt = −V(t)y. The 4 × 4 matrix Y(t, s) [34], of model (2.1)
satisfies

Y (t, s) =


y11 0 0 0
y21 y22 0 0
y31 y32 y33 0
y41 y42 y43 y44

 ,
where

y11 = e−(κ+µ)(t−s),

y22 = e−(c+γ1+µ)(t−s),

y33 = e−(γ2+d+µ)(t−s),

y44 = e−w(t−s)+ wa2
ω (cos(ωt)−cos(ωs)),

y21 = e−
∫ t

s v22da

[∫ t

s
−v21y11e−

∫ t
s v22dada + C21

]
,

y31 = e−
∫ t

s v33da

[∫ t

s
− (v31y11 + v32y21) e

∫ t
s v33dada + C31

]
,

y32 = e−
∫ t

s v33da

[∫ t

s
−v32y22e

∫ t
s v33dada + C32

]
,

y41 = e−
∫ t

s v44da

[∫ t

s
− (v41y11 + v42y21 + v43y31) e

∫ t
s v44dada + C41

]
,

y42 = e−
∫ t

s v44da

[∫ t

s
− (v42y22 + v43y32) e

∫ t
s v44dada + C42

]
,

y43 = e−
∫ t

s v44da

[∫ t

s
−v43y33e

∫ t
s v44dada + C43

]
,

(2.10)

with the initial conditions yii(0, 0) = 1, i = 1, 2, 3, 4, and yi j(0, 0) = 0, i , j.
R0 of the periodic environment system is defined by the spectral radius of the next-infection operator
L:

R0 = ρ(L).
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Lemma 1. (see [32], Theorem 2.2) R0 is strongly correlated with the spectral radius of the next-
infection operator, and it satisfies that

(1) R0 = 1 if and only if ρ (ΦF−V(ω)) = 1.

(2) R0 < 1 if and only if ρ (ΦF−V(ω)) < 1.

(3) R0 > 1 if and only if ρ (ΦF−V(ω)) > 1.

If R0 satisfies condition (2), it follows that X0 is locally asymptotically stable; if R0 satisfies condition
(3), it follows that X0 is unstable.

Lemma 2. (see [33], Lemma 2.1) Let r = 1
ω

ln ρ (ΦF−V(ω)); then, there exists a positive ω-periodic
function u(t) such that ertu(t) is a solution to dz

dt = [F(t) − V(t)]z. (The proof is given in Appendix A.)

Theorem 3. X0 is globally asymptotically stable in the invariant region Ω when and only when R0 < 1.

Proof. Lemma 1 states that X0 is locally asymptotically stable when R0 < 1. Therefore, the next step
is to state that X0 is globally attractive. Given that R0 < 1, we have that ρ (ΦF−V(ω)) < 1. Now, restrict
ε to a positive number small enough such that ρ

(
ΦFε−V(ω)

)
< 1, where

Fε =


β1 β2 β3 β4(t)S 0+ε

λ

0 0 0 0
0 0 0 0
0 0 0 0

 .
System (2.1) has non-negative solutions (S (t), E(t), A(t), I(t),R(t),V(t)). Considering the non-disease
compartments, it is obvious that there is only the susceptible class, S . The differential equation for the
susceptible class can be reduced as follows:

dS
dt
≤ Λ − µS . (2.11)

Integrating (2.11) yields S (t) ≤ Λ
µ

+ (S (0) − Λ
µ

)e−µt. It implies that limt→∞ S (t) = Λ
µ

= S 0. Using the
standard comparison principle, it follows that, for any ε > 0, there is a T > 0 such that S (t) ≤ S 0 + ε

for t > T . Thus, the following differential inequalities are obtained:

dE
dt
≤

(
β1

E
N

+ β2
A
N

+ β3
I
N

+ β4(t)
V

V + λ

) (
S 0 + ε

)
− (κ + µ)E,

dA
dt

= (1 − θ)κE − (c + γ1 + µ)A,

dI
dt

= θκE + cA − (γ2 + d + µ)I,

dR
dt

= γ1A + γ2I − µR,

dV
dt

= η1E + η2A + η3I − w(t)V.

(2.12)
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The corresponding auxiliary model can be given by

dĒ
dt

=

(
β1

E
N

+ β2
A
N

+ β3
I
N

+ β4(t)
V

V + λ

) (
S 0 + ε

)
− (κ + µ)E,

dĀ
dt

= (1 − θ)κE − (c + γ1 + µ)A,

dĪ
dt

= θκE + cA − (γ2 + d + µ)I,

dR
dt

= γ1A + γ2I − µR,

dV̄
dt

= η1E + η2A + η3I − w(t)V.

(2.13)

Lemma 2 states that there exists a ω-periodic function u(t) = (u1(t), u2(t), u3(t), u4(t), u5(t))T such that
(Ē, Ā, Ī, R̄, V̄) = ertu(t) is the solution to model (2.13), where r = 1

ω
ln ρ

(
ΦFε−V(ω)

)
. When R0 < 1, we

have that ρ (ΦF−V(ω)) < 1. If ε is a sufficiently small positive number, we can get that ρ
(
ΦFε−V(ω)

)
< 1,

and then r < 0. Therefore, there is a T > 0 such that, for any non-negative initial value x0 and
sufficiently small α, we can get 

E(T, x0)
A(T, x0)
I(T, x0)
R(T, x0)
V(T, x0)


≤ α


u1(0)
u2(0)
u3(0)
u4(0)
u5(0)


.

Following the comparison theorem, for t > T , we have
E(t, x0)
A(t, x0)
I(t, x0)
R(t, x0)
V(t, x0)


≤ αer(t−T )


u1(t − T )
u2(t − T )
u3(t − T )
u4(t − T )
u5(t − T )


.

We can get
lim
t→∞

E(t) = 0, lim
t→∞

A(t) = 0, lim
t→∞

I(t) = 0, lim
t→∞

R(t) = 0, lim
t→∞

V(t) = 0.

The above analysis indicates that limt→∞ S (t) = Λ
µ

, which proves that X0 is globally attractive in Ω only
if R0 < 1. If R0 < 1, the above theorems and analysis show that X0 is globally asymptotically stable.

2.3. Disease persistence

Definition 1. [33] Let ρ (ΦF−V(ω)) > 1; u(t, X1) is a positive ω-periodic solution of model (2.1) if it
satisfies the condition that, for any ε > 0, there exists δ0 > 0 such that, for any X1 ∈ X\ {(S , 0, 0, 0, 0, 0)}
with

∥∥∥X1 − X0
∥∥∥ ≤ δ0, we have ∥∥∥∥u

(
t, X1

)
− u

(
t, X0

)∥∥∥∥ > ε,∀t ≥ 0.
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Lemma 3. [34] The solutions of model (2.1) are uniformly persistent if there exist some positive
numbers ϕ such that

lim
t→∞

inf S (t) ≥ ϕ, lim
t→∞

inf E(t) ≥ ϕ, lim
t→∞

inf A(t) ≥ ϕ, lim inf
t→∞

I(t) ≥ ϕ, lim
t→∞

inf R(t) ≥ ϕ, lim
t→∞

inf V(t) ≥ ϕ.

The initial values of the six state variables are all positive.

Lemma 4. (See [45], Theorem 1.3.1) If f : X −→ X satisfies the following:

(A) f (X0) ⊂ X0 and f has a global attractor A;

(B) The maximal compact invariant set A∂ = A ∩ M∂ of f in ∂X0, possibly empty, admits a Morse
decomposition {M1, · · · ,Mk} with the following properties:

(a) Mi is isolated in X;

(b) W s {Mi} ∩ X0 = ∅ for each 1 ≤ i ≤ k,

then f : X −→ X is uniformly persistent with respect to (X0, ∂X0).

Theorem 4. The solutions of model (2.1) are uniformly persistent, and there is at least one positive
ω-periodic solution when R0 > 1.

Proof. Define

X := {(S , E, A, I,R,V) ∈ X : S > 0, E ≥ 0, A ≥ 0, I ≥ 0,R ≥ 0,V ≥ 0},
X0 := {(S , E, A, I,R,V) ∈ X : E > 0, A > 0, I > 0,R > 0,V > 0},
∂X0 := X\X0 = {(S , E, A, I,R,V) ∈ X : EAIRV = 0},
D∂ := {(S (0), E(0), A(0), I(0),R(0),V(0)) ∈ ∂X0 : Pn(S (0), E(0), A(0), I(0),R(0),V(0)) ∈ ∂X0,∀n ≥ 0} ,
D̃∂ := {(S , 0, 0, 0, 0, 0) : S > 0} .

Assume that model (2.1) has a unique solution with the initial condition X0 = (S 0, E0, A0, I0,R0,V0),
set as u(t, X0). Let P : X −→ X be the Poincaré map for model (2.1), that is, P(X0) = u(ω, X0),∀X0 ∈ X,
where u(0, X0) = X0, Pn(X0) = u(nω, X0),∀n > 0.

First, it is known by definition that X and X0 are positive invariant sets, and that ∂X0 is a relatively
closed set in X. It has been shown that model (2.1) is always eventually bounded. Therefore, P has a
global attractor in X.

Next, we focus on proving that D∂ = D̃∂. It is evident that D̃∂ ⊆ D∂; then, we only need to prove
that D∂ ⊆ D̃∂. We consider any initial values (S (0), E(0), A(0), I(0),R(0),V(0)) ∈ ∂X0\ D̃∂, which is
equivalent to Pn(S (0), E(0), A(0), I(0),R(0),V(0)) < ∂X0. The initial value of the system is discussed
in the following 13 cases for three categories (only one compartment’s initial value is greater than 0
(1 – 4), two compartments’ initial values are greater than 0 (5 – 10) and three compartments’ initial
values are greater than 0 (11 – 13)):

(1) V(0) > 0, and the other three infected compartments E(0) = 0, I(0) = 0, A(0) = 0 hold;

(2) A(0) > 0, and the other three infected compartments E(0) = 0, I(0) = 0,V(0) = 0 hold;

(3) I(0) > 0, and the other three infected compartments E(0) = 0, A(0) = 0,V(0) = 0 hold;

(4) E(0) > 0, and the other three infected compartments I(0) = 0, A(0) = 0,V(0) = 0 hold;
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(5) There are two infected compartments E(0) > 0, I(0) > 0, and the other two infected compartments
A(0) = 0,V(0) = 0 hold;

(6) There are two infected compartments E(0) > 0, A(0) > 0, and the other two infected compartments
I(0) = 0,V(0) = 0 hold;

(7) There are two infected compartments E(0) > 0,V(0) > 0, and the other two infected compartments
I(0) = 0, A(0) = 0 hold;

(8) There are two infected compartments I(0) > 0, A(0) > 0, and the other two infected compartments
E(0) = 0,V(0) = 0 hold;

(9) There are two infected compartments I(0) > 0,V(0) > 0, and the other two infected compartments
E(0) = 0, A(0) = 0 hold;

(10) There are two infected compartments A(0) > 0,V(0) > 0, and the other two infected compartments
E(0) = 0, I(0) = 0 hold;

(11) There are three infected compartments E(0) > 0, I(0) > 0, A(0) > 0, leaving one compartment
V(0) = 0;

(12) There are three infected compartments E(0) > 0, I(0) > 0,V(0) > 0, leaving one infected compart-
ment A(0) = 0;

(13) There are three infected compartments I(0) > 0, A(0) > 0,V(0) > 0, leaving one infected compart-
ment E(0) = 0;

When case (1) holds, we can get

dE(t)
dt
|t=0= β4

V (0) S (0)
V (0) + λ

> 0. (2.14)

Integrating (2.14) yields that E(t) > 0 for any 0 < t � 1. Solving for the remaining four state variables
at 0 < t � 1 yields

A(t) = e−(c+γ1+µ)t
[
A(0) +

∫ t

0
(1 − θ) κE(s)e(c+γ1+µ)sds

]
> 0,

I(t) = e−(γ2+d+µ)t
[
I(0) +

∫ t

0
[θκE(s) + cA (s)] e(γ2+d+µ)sds

]
> 0,

R(t) = e−µt

[
R(0) +

∫ t

0

[
γ1A(s) + γ2I(s)

]
eµsds

]
> 0,

V(t) = e−wt+ wa2
ω cos(ωt)

[
V(0) +

∫ t

0

[
η1E(s) + η2A(s) + η3I(s)

]
ews−wa2

ω cosωsds
]
> 0.

The above results imply that (S (t), E(t), A(t), I(t),R(t),V(t)) < ∂X0 for any 0 < t � 1. The proofs of
cases (5) and (11) in the other two categories are given in Appendix B, respectively, and the proofs of
the other cases in the category can be obtained similarly. It shows that

Pn(S (0), E(0), A(0), I(0),R(0),V(0)) < ∂X0.

Electronic Research Archive Volume 31, Issue 9, 5815–5844.



5827

In other words, if there exists (S (t), E(t), A(t), I(t),R(t),V(t)), which is a solution of the system from
D∂, then the limit of the solution must satisfy that

lim
t→∞

(S (t), E(t), A(t), I(t),R(t),V(t)) = X0.

Therefore, X0 is an isolated invariant set. The above analysis proves that D∂ = D̃∂.
Finally, we prove that W s

(
X0

)
∩ X0 = ∅, where W s

(
X0

)
=

{
X0 : Pn

(
X0

)
→ X0, n→ +∞

}
. The

continuous dependence of the solution of the differential equation on the initial value shows that, for
any ε > 0, there exists δ0 > 0; for any X1 ∈ X0, with

∥∥∥X1 − X0
∥∥∥ ≤ δ0, we have∥∥∥∥u

(
t, X1

)
− u

(
t, X0

)∥∥∥∥ ≤ ε,∀t ∈ [0, ω].

We claim that
lim
n→∞

sup d
(
Pn

(
X1

)
, X0

)
≥ δ0. (2.15)

Proving (2.15) by contradiction yields

lim
n→∞

sup d
(
Pn

(
X1

)
, X0

)
< δ0.

Let us assume that
d
(
Pn

(
X1

)
, X0

)
< δ0,∀n > 0.

Thus, ∥∥∥∥u
(
t, Pn

(
X1

))
− u

(
t, X0

)∥∥∥∥ ≤ ε,∀t ∈ [0, ω].

Furthermore, for any t > 0, we have that t = nω + t′, t′ ∈ [0, ω], n =
[

t
ω

]
.

Then, the following equation can be obtained:∥∥∥∥u
(
t, X1

)
− u

(
t, X0

)∥∥∥∥ =
∥∥∥∥u

(
t′, Pn

(
X1

))
− u

(
t′, X0

)∥∥∥∥ ≤ ε,∀t ≥ 0.

Let (S (t), E(t), A(t), I(t),R(t),V(t)) = u(t, X1) , where

Λ

µ
− ε ≤ S (t) ≤

Λ

µ
+ ε, 0 ≤ E(t) ≤ ε, 0 ≤ A(t) ≤ ε, 0 ≤ I(t) ≤ ε, 0 ≤ R(t) ≤ ε, 0 ≤ V(t) ≤ ε.

Then, we have 

dE
dt
≥

(
β1

E
N

+ β2
A
N

+ β3
I
N

+ β4(t)
V

V + λ

) (
S 0 − ε

)
− (κ + µ)E,

dA
dt

= (1 − θ)κE − (c + γ1 + µ)A,

dI
dt

= θκE + cA − (γ2 + d + µ)I,

dR
dt

= γ1A + γ2I − µR,

dV
dt

= η1E + η2A + η3I − w(t)V.

(2.16)
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Now, restrict ε of model (2.16) to be sufficiently small and consider the following auxiliary system:

dĒ
dt

=

(
β1

E
N

+ β2
A
N

+ β3
I
N

+ β4(t)
V

V + λ

) (
S 0 − ε

)
− (κ + µ)E,

dĀ
dt

= (1 − θ)κE − (c + γ1 + µ)A,

dĪ
dt

= θκE + cA − (γ2 + d + µ)I,

dR̄
dt

= γ1A + γ2I − µR,

dV̄
dt

= η1E + η2A + η3I − w(t)V.

(2.17)

According to Lemma 2, there exists aω-periodic function p(t) = (p1(t), p2(t), p3(t), p4(t), p5(t)) such
that (Ē, Ā, Ī, R̄, V̄) = er1t p(t) is the solution to system (2.17), where r1 = 1

ω
ln ρ

(
ΦFε−V(ω) ). According

to Lemma 1, we have that ρ (ΦF−V(ω) ) > 1 when R0 > 1. Now, restricting ε to be a sufficiently small
positive number yileds that ρ

(
ΦFε−V(ω) ) > 1; then, r1 > 0. Hence, for T1 > 0 and α small enough, we

have 
E(T1)
A(T1)
I(T1)
R(T1)
V(T1)


≥ α


p1(0)
p2(0)
p3(0)
p4(0)
p5(0)


.

Following the comparison theorem yields
E(t)
A(t)
I(t)
R(t)
V(t)


≥ αer1(t−T1)


p1(t − T1)
p2(t − T1)
p3(t − T1)
p4(t − T1)
p5(t − T1)


.

It shows that limt→∞ E(t) = +∞, limt→∞ A(t) = +∞, limt→∞ I(t) = +∞, limt→∞ R(t) = +∞ and
limt→∞ V(t) = +∞. It contradicts what was mentioned earlier, which proves that W s

(
X0

)
∩ X0 = ∅.

Hence, X0 is acyclic in D∂ and P is uniformly persistent with respect to (X0, ∂X0). It shows that the
solutions of model (2.1) are uniformly persistent. The Poincaré map P has a stationary point X̃(0) =

(S̃ (0), Ẽ(0), Ã(0), Ĩ(0), R̃(0), Ṽ(0)) ∈ X0 with S̃ (0) > 0. Thus, X̃(0) ∈ Int(R6
+) and X̃(t) = u(t, X̃(0)) is a

positive ω-periodic solution of the model.

To visualize the uniform persistence of the solutions when R0 > 1, Figure 2 is presented to simulate
the spread of the pandemic through the use of numerical examples. Taking the values of the parameters
in Table 2 and setting w = π

180 , a1 = a2 = 0.8, it is observed that all six compartments eventually oscil-
late periodically with time and persist within a specific range. Two three-dimensional phase diagrams
of the virus-containing compartments are given in Figure 3. The solutions of model (2.1) eventually
stabilize in a range of cycles with different initial conditions.
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(a) Periodic oscillations of suspectible class.
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(b) Periodic oscillations of exposed class.
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(c) Periodic oscillations of asymptomatic infected class.
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(d) Periodic oscillations of symptomatic infected class.
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(e) Periodic oscillations of recovered class.
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(f) Periodic oscillations of pathogen load in the environment.

Figure 2. Periodic oscillations in six compartments with initial conditions S (0) =

548821, E(0) = 80, A(0) = 1, I(0) = 1,R(0) = 0 and V(0) = 0 when R0 > 1.
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(a) Phase diagram for patient classes E, A, I. (b) Phase diagram for pathogens and diagnostic classes
A, I,V .

Figure 3. Phase diagrams for the state variables with different initial values X0. The
blue line denotes the time response route for each of the three infected compartments
with X0 = (548821, 80, 1, 1, 0, 0), the black line indicates the time response route with
X0 = (548821, 1000, 100, 100, 0, 100), the red line is the time response route with X0 =

(248821, 1000, 100, 100, 0, 100) and the purple line represents the time response route with
X0 = (748821, 1000, 100, 100, 0, 100).

3. Model applicability

We selected several typical infectious diseases for data analysis to illustrate the applicability of the
proposed periodic model for respiratory or intestinal infectious diseases. For COVID-19, we calibrated
model (2.1) by fitting actual case data for Shanghai from March 1, 2022 to August 31, 2022 [46]. Daily
new and cumulative cases were taken, and the cumulative asymptomatic cases and symptomatic cases
are denoted as follows:

dA1(t)
dt

= (1 − θ)κE,

dI1(t)
dt

= θκE + cA.

The least squares method was used to fit model (2.1). We fit all parameters and S (0) of model (2.1),
except µ and λ. λ and µ were obtained from published literature [23] and a local government website
[46], respectively. E(0), A(0), I(0) and R(0) were taken from the number of reported cases from
Shanghai’s outbreak statistics on March 1, 2022. Thus, we set E(0) = 80, A(0) = 1, I(0) = 1, R(0) = 0
and assumed that V(0) = 0. The climate is different throughout the year, and there is also a certain
gap in the survivability of the virus in the environment; hence, we set the oscillation period to one
year (ω = π

180 ). After continuous program debugging of the data and model (2.1), we selected a set of
optimal parameters for the environmental oscillation magnitude, that is, a1 = 0.009, a2 = 0.01. Table
2 shows the exact fitting values of model (2.1) parameters.

In Figure 4, we fit model (2.1) to confirmed case data in Shanghai. The red line represents the fitted
curve for the infected class in model (2.1). The blue points represent reported cases. Figure 4(a),(b)
show that the fitted curve of A(t) broadly matches the actual epidemiological trend of the outbreak.
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Figure 4. Fitting results for periodic model (2.1) using six months of epidemic data from
Shanghai.

But, it may ultimately underestimate the cumulative cases. Figure 4(c),(d) show a certain gap in the
fitting of daily new cases for I(t), even though the fitting trend of cumulative cases is consistent. To
further validate the applicability of model (2.1) to COVID-19, the residuals in statistics are used to
assess the merits that

Residuals =
{
D(t) − d(t)|t ∈ N+} ,

where D(t) is the daily predicted value for the asymptomatic or symptomatic infected populations, and
d(t) is the daily observed value for the asymptomatic or symptomatic infected populations. As shown
in Figure 5, the residuals are small and randomly distributed. Therefore, we can conclude that the
proposed periodic model is applicable to COVID-19.

Electronic Research Archive Volume 31, Issue 9, 5815–5844.



5832

03/01/22 04/01/22 05/01/22 06/01/22 07/01/22 08/01/22

time(days)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
e
s
id

u
a
ls

 

10
4

(a) Residuals of A(t).

03/01/22 04/01/22 05/01/22 06/01/22 07/01/22 08/01/22

time(days)

-2000

-1500

-1000

-500

0

500

1000

1500

2000

R
e
s
id

u
a
ls
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Figure 5. System residual diagrams.

Next, to further illustrate the advantages of the periodic environment model compared to the au-
tonomous model, we propose a non-periodic model (3.1) based on model (2.1):



dS
dt

= Λ − β1
ES
N
− β2

AS
N
− β3

IS
N
− β4

VS
V + λ

− µS ,

dE
dt

= β1
ES
N

+ β2
AS
N

+ β3
IS
N

+ β4
VS

V + λ
− (k + µ)E,

dA
dt

= (1 − θ)kE − (c + γ1 + µ)A,

dI
dt

= θkE + cA − (γ2 + µ + d) I,

dR
dt

= γ1A + γ2I − µR,

dV
dt

= η1E + η2A + η3I − wV.

(3.1)

Model (3.1) is fitted to actual epidemiological data and compared with model (2.1). Figure 6 shows that
model (2.1) fits the actual epidemic data much better, while model (3.1) underestimates the epidemic
peak. The sizes of the viral carriage compartments, i.e., (E(t), A(t), I(t)), were all underestimated
based on the overestimation of S (t). In contrast, model (3.1) predicts a much higher viral load on the
environment than model (2.1). The similarity between the two systems is that there are some small
fluctuations after the end of the first wave of the pandemic, suggesting that the trend in the prevalence
of COVID-19 is affected by environmental fluctuations. For this reason, it is timely and reasonable to
consider the periodic environment model.
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Figure 6. Fitting comparison plots for periodic and non-periodic models.
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Figure 7. Time-response diagram for the state variables. The various state variables eventu-
ally stabilize after some slight fluctuations.

To observe the epidemic trend over a long period, Figure 7 was constructed to show the time-
response diagram for system (2.1) over 8 years. Due to the periodic environmental changes, the epi-
demic shows periodic fluctuations, with a decreasing trend in wave peaks and an increasing trend in
wavelengths. As the epidemic continues to develop, the natural immunity of humans will increase to a
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certain extent and eventually develop to the point where the virus coexists with humans, as the message
conveys in Figure 7.

Table 2. The parameter-fitting values of the model and sensitivity indices on R0.

Parameter Range Value Source Sensitivity index on R0

Λ - 956 Fitted 1
β1 [0, 1] 0.1490 Fitted 0.1864
β2 [0, 1] 0.5908 Fitted 0.3360
β3 [0, 1] 0.4129 Fitted 0.0232
β4 [0, 1] 0.0412 Fitted 0.4544
κ [0, 1] 0.3212 Fitted -0.2635
θ [0, 1] 0.0584 Fitted -0.0062
c [0, 1] 0.0399 Fitted -0.0060
γ1 [0, 1] 0.6215 Fitted -0.6423
γ2 [0, 1] 0.8162 Fitted -0.0714
η1 [0, 1] 0.0220 Fitted 0.0894
η2 [0, 1] 0.1715 Fitted 0.3164
η3 [0, 1] 0.2657 Fitted 0.0485
w [0, 1] 0.6965 Fitted -0.4544
µ - 0.004 [46] -
d [0, 0.001] 0.0005 Fitted -4.37 × 10−5

λ 104 − 106 104 [23] -0.4544
S (0) - 548821 Fitted -
E(0) - 80 [46] -
A(0) - 1 [46] -
I(0) - 1 [46] -
R(0) - 0 [46] -
V(0) - 0 Assumed -

To further validate the efficiency of model (2.1) in capturing the cyclical changes in the environ-
ment, we selected seasonal highly prevalent infectious diseases (influenza, dysentery and pertussis)
and perennial diseases (tuberculosis) for our experiments. Since some infectious diseases, such as
tuberculosis, are not contagious during incubation [47], we set β1 = 0. For influenza, we selected
China’s case data from August 2018 to October 2021 [40] and fitted it with model (2.1) and model
(3.1). Figure 8(a) shows that model (2.1) can better capture the dynamics of influenza over time, and
that the model forecasts high disease periods that are entirely consistent with reality. Due to the vari-
ability of influenza viruses, there may be discrepancies between the predicted and actual case data.
The performance of model (3.1) in terms of epidemiological trends and accuracy is quite disappoint-
ing. For dysentery, we used cumulative infections in China from October 2017 to April 2020 for our
analysis [40]. As can be seen in Figure 8(b), model (2.1) fully captures the seasonal high-prevalence
characteristics of dysentery, and the data fitting error is small enough to be negligible. As expected,
model (3.1) failed to reflect the seasonal trend of dysentery incidence. For pertussis, two years of case
data from October 2017 to September 2019 in China were selected [40]. Figure 8(c) shows that the
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periodic and non-periodic models predict the same trend, but the periodic model fits the data relatively
better. For perennial tuberculosis, 24 months of reported cases from January 2021 to December 2022
were selected for China [40]. Figure 8(d) shows that, for infectious diseases with no seasonal char-
acteristics, the sensitivity of the periodic and non-periodic models to the data is basically the same.
The periodicity advantage described by model (3.1) does not apply. In addition, noise may be more
favorable if the effects of environmental oscillations on perennial infectious diseases, or the stochastic
interference of certain uncertainties in contagious diseases, are to be studied [48, 49].
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Figure 8. Results of comparing the fit of the periodic model (2.1) to that of the non-periodic
model (3.1) using monthly case data from China. The red line represents the model (2.1) fit
curve, the black solid or dashed line represents the model (3.1) fit curve and the blue solid
dots represent the number of cases reported.

4. Sensitivity analysis and numerical simulation

This section explores the parameters with critical drivers in model (2.1). Sensitivity analysis has
been used to obtain the parameters that significantly influence R0 of model (2.1). Therefore, some

Electronic Research Archive Volume 31, Issue 9, 5815–5844.



5836

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Sensitivity indices

c

1

2

1

2

3

4

1

2

3

w

d

P
a
ra

m
e
te

rs
 i
n
 R

0

Figure 9. Sensitivity index of R0 against some parameters.

intervention strategies can be proposed to help reduce the impact of infection peaks and environmental
fluctuations. On the other hand, local officials can use the sensitivity analysis results to develop effec-
tive interventions to reduce the impact of infectious diseases for which environmental transmission is
the main driver. Now, the normalized forward sensitivity index of R0 for the parameters is defined by

ΥR0
p =

∂R0

∂p
p

R0
, (4.1)

where p represents the various parameters in R0. If the sensitivity index of a parameter is positive,
it indicates that the parameter has to promote an effect on R0. Similarly, parameters with a negative
sensitivity index have an inhibitory effect on R0.

Using COVID-19 as the subject of the study, for computational convenience, we use the fitted values
in Table 2 to examine the effect of each parameter on R0; we also give the sensitivity index values for
each parameter. Figure 9 clearly shows that the rate of transmission via indirect contact with the virus
(β4) has a much more significant impact on R0 than does direct contact on R0, and that the viral decay
rate w has a great inhibitory effect on R0. Hence, we need to be highly concerned about the viral load
on the environment. This result is the same as in the literature [20–22], which once again demonstrates
the applicability of periodic environment model (2.1) to COVID-19. Based on the above analysis, we
can determine that β4 and w significantly impact R0. For COVID-19, the focus should be on the virus
in the environment.
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Figure 10. Comparison of trends for compartments when β4 changes.
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Figure 11. Comparison of trends for compartments when βi (i = 1, 2, 3, 4) is changed in the
same proportion.
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Therefore, numerical simulation describes the influence of these critical parameters on the system.
First, we focus on the impact of changes in β4 on the system. As shown in Figure 10, the compartments
respond sharply during the initial phase of infection, and the infected population increases with increas-
ing β4. The increase of β4 shortens the outbreak period and causes it to move into the coexistence phase
earlier. This may be due to herd immunity. The red dashed line, shown in Figure 10, represents the
lowest level of β4. The second wave is the latest and has the longest wavelength. If we reduce the
values of β1, β2, β3 and β4 by the same degree, as shown in Figure 11, the system that changes β4 is
the first to respond. Reducing β4 will significantly reduce the number of infected individuals relative
to the original system. It will push back the second wave oscillation, reducing the size of the second
wave. In particular, β4 represents the virus’s transmission rate. We can reduce the number of infections
via indirect contact in the post-epidemic era by washing our hands and ventilating regularly. Finally,
the influence of the decay rate on the system should not be ignored. As shown in Figure 12, although
decreasing the value of w will increase the size of the first wave of infection and make the second
wave arrive earlier, it will shorten the time to reach stability and reach a state of coexistence as soon
as possible. w represents the decay rate of the virus, and we can reduce the impact of infection by
implementing environmental decontamination.
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5. Conclusions

Periodic oscillations of the environment are often considered in dynamic models of respiratory and
enteric infectious diseases. Mitigating the impact of COVID-19 is an expectation of people world-
wide. Inspired by the mechanism of transmission of COVID-19, a new environmental periodic model,
SEAIRV, has been proposed based on the previous SEIR model, considering the infectivity of exposed
and asymptomatic patients and the influence of environmental cycle oscillation on pathogens. It was
our goal to explore the applicability of the periodic model. First, the disease-free equilibrium point
and R0 of the system were calculated. The global asymptotic stability of the disease-free equilibrium
point and the uniform persistence of the disease have been demonstrated. Second, the applicability
of model (2.1) to related infectious diseases was explored. We used the least squares method to fit
model (2.1) with COVID-19-related reported data from Shanghai. The results show that model (2.1)
better reflects the epidemiological trends in Shanghai than model (3.1). Using residuals and model
comparisons powerfully demonstrates that the periodic environment model generalizes the transmis-
sion characteristics of COVID-19 better than the constant-parameter model. Meanwhile, we validated
the applicability of model (2.1) by using case data for four other infectious diseases with similar patho-
geneses to COVID-19. The results show that, for seasonal high-incidence infectious diseases, such as
influenza, dysentery and pertussis, model (2.1) can well reflect the seasonal characteristics of infectious
diseases. In contrast, the deterministic model (3.1) cannot do this. For perennial infectious diseases,
such as tuberculosis, model (2.1) is about as effective as model (3.1). Finally, a sensitivity analysis
of the system was carried out by using the fitted parameter values for COVID-19. The results show
that the parameters related to pathogens in the environment greatly influence the system. Increasing
the transmission rate of the virus or the decay rate of the virus can shorten the time for the system
to stabilize and causing the system to reach equilibrium as quickly as possible. It reveals that, in the
post-pandemic era, we need to focus on viral loads on the environment. With humankind’s combined
efforts, we will finally overcome this epidemic.
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Appendix A. Proof of Lemma 2

Proof. It follows from Lemma 2.1 of [33] that F(t) − V(t) is a continuous, cooperative, irreducible
and ω-periodic k × k matrix function. Φ(F(·)−V(·)) (t) is the fundamental solution matrix of the linear
system dz

dt = [F(t) − V(t)]z, and ρ
(
ΦF(·)−V(·)(ω)

)
is the spectral radius of Φ(F(·)−V(·)) (ω). Assume that

u∗ � 0 is the eigenvector corresponding to the principal eigenvalue ρ
(
ΦF(·)−V(·)(ω)

)
. It is known that

z(t) = ertu(t), the derivation of which yields

u′ (t) = [F (t) − V (t) − rI] u (t) .

Define u (t) := Φ(F(·)−V(·)−rI) (t) u∗ to be a positive solution of the above system. It can be obtained that
ertΦ(F(·)−V(·)−rI) (t) = Φ(F(·)−V(·)) (t). In addition,

u(ω) = Φ(F(·)−V(·)−rI) (ω) u∗ = e−rωΦ(F(·)−V(·)) (ω) u∗ = e−rωρ
(
ΦF(·)−V(·)(ω)

)
u∗ = u∗ = u(0).

Hence, u(t) is a positive ω-periodic solution of the system, which proves Lemma 2.

Appendix B. Proof of cases (5) and (11)

When case (5) holds, we can get
dA(t)

dt
|t=0 = (1 − θ) κE (0) > 0,

dV(t)
dt
|t=0 = η1E(0) + η3I(0) > 0.

Integrating the above equations gives A(t) > 0,V(t) > 0 for any 0 < t � 1. Solving for the remaining
four state variables at 0 < t � 1 gives

E(t) = e−(κ+µ)t
[
E(0) +

∫ t

0
β(s)S (s)e(κ+µ)sds

]
> 0,

I(t) = e−(γ2+d+µ)t
[
I(0) +

∫ t

0
[θκE(s) + cA (s)] e(γ2+d+µ)sds

]
> 0,

R(t) = e−µt

[
R(0) +

∫ t

0

[
γ1A(s) + γ2I(s)

]
eµsds

]
> 0.
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The above results imply that, when case (5) holds, (S (t), E(t), A(t), I(t),R(t),V(t)) < ∂X0 for any 0 <

t � 1.
When case (11) holds, we can get

dV(t)
dt
|t=0= η1E(0) + η2A(0) + η3I(0) > 0.

Integrating the above equation gives V(t) > 0 for any 0 < t � 1. Solving for the remaining four state
variables at 0 < t � 1 gives

E(t) = e−(κ+µ)t
[
E(0) +

∫ t

0
β(s)S (s)e(κ+µ)sds

]
> 0,

A(t) = e−(c+γ1+µ)t
[
A(0) +

∫ t

0
(1 − θ) κE(s)e(c+γ1+µ)sds

]
> 0,

I(t) = e−(γ2+d+µ)t
[
I(0) +

∫ t

0
[θκE(s) + cA (s)] e(γ2+d+µ)sds

]
> 0,

R(t) = e−µt

[
R(0) +

∫ t

0

[
γ1A(s) + γ2I(s)

]
eµsds

]
> 0.

The above results imply that, when case (11) holds, (S (t), E(t), A(t), I(t),R(t),V(t)) < ∂X0 for any
0 < t � 1.
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