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1. Introduction

It is well known that if a series,
∞∑

k=1
ak is convergent, then its ‘tail’ lim

n→∞

(
∞∑

k=n
ak

)
n
= 0. This means

lim
n→∞

(
∞∑

k=n
ak

)−1

n
= ∞. To understand the values of

∞∑
k=1

ak, it would be helpful to understand the values of
∞∑

k=n
ak. In the past years, many scholars have been interested in studying the properties and forms of

the reciprocal ‘tails’
(
∞∑

k=n
ak

)−1

, where {an} is related to some recurrence sequences. This problem starts

from the reciprocal sum of Fibonacci sequences.
For any positive integer n, the Fibonacci sequence {Fn} is recursively defined as F0 = 0, F1 = 1,

and Fn+2 = Fn+1 + Fn. In [1], Ohtsuka and Nakamura considered the partial infinite sums of reciprocal
Fibonacci sequence, for n ≥ 2, the authors proved that:

 ∞∑
k=n

1
Fk

−1 =
Fn−2, i f n is even;

Fn−2 − 1, i f n is odd,
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and 
 ∞∑

k=n

1
F2

k

−1 =
Fn−1Fn − 1, i f n is even;

Fn−1Fn, i f n is odd,

where ⌊z⌋ denotes the floor function.
For any positive integer n, the Pell sequence {Pn} is defined from the recurrence relation P0 = 0,

P1 = 1, and Pn+2 = 2Pn+1 + Pn. In [2], for n ≥ 2, Zhang and Wang considered the partial infinite sums
of reciprocal Pell sequence, and proved that:

 ∞∑
k=n

1
Pk

−1 =
Pn + Pn−2, i f n is even;

Pn + Pn−2 − 1, i f n is odd.

For any positive integer n, the k-Fibonacci sequence {Gn} is defined by the recurrence G0 = 0,
G1 = 1, and Gn+2 = kGn+1 +Gn. In [3], for n ≥ 2, Holliday and Komatsu considered the partial infinite
sums of reciprocal k-Fibonacci sequence, and proved that:

 ∞∑
k=n

1
Gk

−1 =
Gn −Gn−1, i f n is even;

Gn −Gn−1 − 1, i f n is odd.

For more facts in this topic, we recommend to the reader the papers [4–9]. In addition, we found
the series of papers [10–15], where the partial sums related to the Riemann zeta function ζ (s). For
example, in [11], for n ≥ 1, Lin proved that:

 ∞∑
k=n

1
k2

−1 = n − 1,

and 
 ∞∑

k=n

1
k3

−1 = 2n(n − 1).

For any positive integers a1, a2, . . . , am, the mth-order linear recursive sequence {un} is defined from
the recurrence relation as follows:

un = a1un−1 + a2un−2 + · · · + amun−m, i f n > m, (1.1)

where initial values ui ∈ N for 0 ≤ i < m, at least one of them is different from zero. If m = 2,
a1 = a2 = 1, and initial values u0 = 0, u1 = 1, then {un} reduces to the Fibonacci sequence. If m = 2,
a1 = 2, a2 = 1, and initial values u0 = 0, u1 = 1, then {un} reduces to the Pell sequence. If m = 2,
a1 = k, a2 = 1, and initial values u0 = 0, u1 = 1, then {un} reduces to the k-Fibonacci sequence. The
characteristic polynomial of the sequence {un} is given by

f (x) = xm − a1xm−1 − · · · − am−1x − am = (x − α1)m1 · · · (x − αl)ml ,

where the αi are distinct for i = 1, . . . , l, which are called the ‘roots’ of the recurrence. Moreover, the
recurrence {un} has a ‘dominant root’ if one of its roots has strictly largest absolute value.
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Recently many papers discussed to reciprocal sums of mth-order linear recursive sequence. In [17],
for any positive integers a1 ≥ a2 ≥ · · · ≥ am ≥ 1, Wu and Zhang proved that there exists a positive
integer n1 such that ∥∥∥∥∥∥∥

 ∞∑
k=n

1
uk

−1∥∥∥∥∥∥∥ = un − un−1, n ≥ n1.

where ∥z∥ denotes the nearest integer. Clearly that ∥x∥ =
⌊
x + 1

2

⌋
.

For more discussion of the mth-order linear recursive sequence studies, see [16,18–20]. Specifically,
in [19], Trojovský considered by finding a sequence which is “asymptotically equivalent” to partial
infinite sums of {un} , and proved that

 ∞∑
k=n

1
P (uk)

−1 and {P (un) − P (un−1)}

are asymptotically equivalent, where P (z) ∈ C [z] be a non-constant polynomial. Specifically, we
called that two sequences {Gn} and {Hn} are called asymptotically equivalent, if {Gn} / {Hn} tends to 1
as n→ ∞.

In this paper, we continue the discussion to reciprocal sums of mth-order linear recurrence se-
quences. Different from previous studies, we mainly consider that a series of sequences are asymptoti-
cally equivalent to the reciprocal sums of products and the products interleaving terms of any mth-order
linear recurrence sequences {un}. In addition, we extend these results to equidistant sub-sequences of
{un}. We separate the main term and the error term, and in order to control the range of the error term
during the specific operation, the reciprocal and the form of the general term in it should be properly
constructed. The major results are as follows:
Theorem 1. Let {un} be mth-order linear recurrence sequence defined by (1.1), where the restriction
a1 ≥ a2 ≥ · · · ≥ am ≥ 1. Then for any positive integers p1, p2, . . . , ps and s.

(i) The sequences

∞∑

k=n

a(s+1)k
1

uk

s∏
i=1

uk+pi


−1 and


un

s∏
i=1

un+pi

a(s+1)n
1

−

un−1

s∏
i=1

un+pi−1

a(s+1)(n−1)
1

 ,
are asymptotically equivalent.

(ii) The sequences

∞∑

k=n

(−a1)(s+1)k

uk

s∏
i=1

uk+pi


−1 and

(−1)(s+1)n


un

s∏
i=1

un+pi

a(s+1)n
1

+ (−1)s
·

un−1

s∏
i=1

un+pi−1

a(s+1)(n−1)
1


 ,

are asymptotically equivalent.
Theorem 2. Let {un} be mth-order linear recurrence sequence defined by (1.1), where the restriction
a1 ≥ a2 ≥ · · · ≥ am ≥ 1. Then for any positive integers q, p1, p2, . . . , ps with 0 ≤ pi < q for 0 ≤ i ≤ s.
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(iii) The sequences

∞∑

k=n

a(s+1)qk
1

uqk

s∏
i=1

uqk+pi


−1 and


uqn

s∏
i=1

uqn+pi

a(s+1)qn
1

−

uqn−q

s∏
i=1

uqn+pi−q

aq(s+1)(n−1)
1

 ,
are asymptotically equivalent.

(iv) The sequences

∞∑

k=n

(−a1)(s+1)qk

uqk

s∏
i=1

uqk+pi


−1 and

(−1)(s+1)qn


uqn

s∏
i=1

uqn+pi

a(s+1)qn
1

+ (−1)δ(sq+q+1)
·

uqn−q

s∏
i=1

uqn+pi−q

aq(s+1)(n−1)
1


 ,

are asymptotically equivalent, where δ (z) = z − 2
⌊

z
2

⌋
is the parity function.

From these two theorems we may immediately deduce the following corollaries:
Corollary 1. Let {un} be mth-order linear recurrence sequence defined by (1.1), where the restriction
a1 ≥ a2 ≥ · · · ≥ am ≥ 1. Then for any positive integers p and q with 0 ≤ p < q.

(i) The sequences 
 ∞∑

k=n

(±a1)2k

ukuk+p

−1 and
{

unun+p

a2n
1

−
un−1un+p−1

a2n−2
1

}
,

are asymptotically equivalent.
(ii) The sequences 

 ∞∑
k=n

(±a1)2qk

uqkuqk+p

−1 and

uqnuqn+p

a2qn
1

−
uqn−quqn+p−q

a2q(n−1)
1

 ,
are asymptotically equivalent.
Corollary 2. Let {un} be mth-order linear recurrence sequence defined by (1.1), where the restriction
a1 ≥ a2 ≥ · · · ≥ am ≥ 1. Then for any positive integer q.

(iii) The sequences 
 ∞∑

k=n

asqk
1

us
qk

−1
 and

 us
qn

asqn
1

−
us

qn−q

asq(n−1)
1

 ,
are asymptotically equivalent.

(iv) The sequences
 ∞∑

k=n

(−a1)sqk

us
qk

−1 and

(−1)sqn

 us
qn

asqn
1

+ (−1)δ(sq+1)
·

us
qn−q

asq(n−1)
1


 ,

are asymptotically equivalent, where δ (z) = z − 2
⌊

z
2

⌋
is the parity function.
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2. Auxiliary results

In this section, we give two lemmas that are necessary in the proofs of the theorems.
Lemma 1. ( [17] ) Let {un} be mth-order linear recursive sequence defined by (1.1). The coefficients of
the characteristic polynomial f (x) are satisfied that a1 ≥ a2 ≥ · · · ≥ am ≥ 1. Then the closed formula
of {un} is given by:

un = aαn + O
(
c−n) , (n→ ∞) ,

where a > 0 is a constant, c > 1, α is the positive real dominant root of f (x) for a1 < α < a1 + 1, and
“O” (the Landau symbol) denotes if g (x) > 0 for all x ≥ a, we write f (x) = O (g (x)) to mean that the
quotient f (x) /g (x) is bounded for x ≥ a.
Lemma 2. Let {un} be mth-order linear recursive sequence defined by (1.1). Then

uk

s∏
i=1

uk+pi = as+1α
(s+1)k+

s∑
i=1

pi
+ O

αsk+
s∑

i=1
pi

c−k

 . (2.1)

where a > 0 is a constant, c > 1, α is the positive real dominant root of the characteristic polynomial
f (x) for a1 < α < a1 + 1.

Proof. We prove (2.1) by mathematical induction. When s = 1, by Lemma 1,

ukuk+p1 =
(
aαk + O

(
c−k

)) (
aαk+p1 + O

(
c−k−p1

))
= a2α2k+p1 + O

(
αkc−k−p1

)
+ O

(
αk+p1c−k

)
+ O

(
c−2k−p1

)
= a2α2k+p1 + O

(
αk+p1c−k

)
.

That is, (2.1) is true for s = 1, suppose that for any integers s − 1, we have

uk

s−1∏
i=1

uk+pi = asα
sk+

s−1∑
i=1

pi
+ O

α(s−1)k+
s−1∑
i=1

pi
c−k

 .
Then for s, by Lemma 1, we have

uk

s∏
i=1

uk+pi =

asα
sk+

s−1∑
i=1

pi
+ O

α(s−1)k+
s−1∑
i=1

pi
c−k

 · (aαk+ps + O
(
c−(k+ps)

))
= as+1α

(s+1)k+
s∑

i=1
pi
+ O

αsk+
s∑

i=1
pi

c−k

 + O αsk+
s−1∑
i=1

pi
c−(k+ps)


+ O

α(s−1)k+
s−1∑
i=1

pi (
c−(2k+ps)

)
= as+1α

(s+1)k+
s∑

i=1
pi
+ O

αsk+
s∑

i=1
pi

c−k

 .

(2.2)

Now (2.1) follows form (2.2) and mathematical induction, which completes the proof. □
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3. Proof of the theorems

Here, we only prove that Theorem 1, and Theorem 2 are proved similarly.

Proof of Theorem 1. First, we prove (i), from the geometric series as ϵ → 0, we find:

1
1 ± ϵ

= 1 ∓ ϵ + O
(
ϵ2

)
= 1 + O (ϵ) . (3.1)

Using Lemma 2, we have

a
(s+1)k+

s∑
i=1

pi

1

uk

s∏
i=1

uk+pi

=
a

(s+1)k+
s∑

i=1
pi

1

as+1α
(s+1)k+

s∑
i=1

pi
+ O

αsk+
s∑

i=1
pi

c−k


=

a
(s+1)k+

s∑
i=1

pi

1

as+1α
(s+1)k+

s∑
i=1

pi (
1 + O

(
α−kc−k))

=
a

(s+1)k+
s∑

i=1
pi

1

as+1α
(s+1)k+

s∑
i=1

pi

(
1 + O

(
α−kc−k

))
(by (3.1))

=
a

(s+1)k+
s∑

i=1
pi

1

as+1α
(s+1)k+

s∑
i=1

pi

+ O

 a
(s+1)k+

s∑
i=1

pi

1

α
(s+2)k+

s∑
i=1

pi
ck

 ,

Thus,

∞∑
k=n

a
(s+1)k+

s∑
i=1

pi

1

uk

s∏
i=1

uk+pi

=
a

s∑
i=1

pi

1

as+1α

s∑
i=1

pi

∞∑
k=n

(
as+1

1

αs+1

)k

+ O


∞∑

k=n

a
(s+1)k+

s∑
i=1

pi

1

α
(s+2)k+

s∑
i=1

pi
ck


=

a
(s+1)n+

s∑
i=1

pi

1

as+1α
(s+1)n+

s∑
i=1

pi

(
αs+1

αs+1 − as+1
1

)
+ O

 a
(s+1)n+

s∑
i=1

pi

1

α
(s+2)n+

s∑
i=1

pi
cn

 ,
Electronic Research Archive Volume 31, Issue 9, 5766–5779.
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Taking reciprocal, we get
∞∑

k=n

a
(s+1)k+

s∑
i=1

pi

1

uk

s∏
i=1

uk+pi


−1

=
1

a
(s+1)n+

s∑
i=1

pi

1

as+1α
(s+1)n+

s∑
i=1

pi

(
αs+1

αs+1−as+1
1

)
+ O

 a
(s+1)n+

s∑
i=1

pi

1

α
(s+2)n+

s∑
i=1

pi
cn


=

1

a
(s+1)n+

s∑
i=1

pi

1

as+1α
(s+1)n+

s∑
i=1

pi

(
αs+1

αs+1−as+1
1

) (
1 + O

(
1
αncn

))

=
as+1α

(s+1)n+
s∑

i=1
pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1 − as+1

1

αs+1

) (
1 + O

(
1
αncn

))
, (by (3.1))

which yields that 
 ∞∑k=n

a
(s+1)k+

s∑
i=1

pi

1

uk
s∏

i=1
uk+pi


−1 un

s∏
i=1

un+pi

a
(s+1)n+

s∑
i=1

pi

1

−
un−1

s∏
i=1

un+pi−1

a
(s+1)(n−1)+

s∑
i=1

pi

1



=

as+1α
(s+1)n+

s∑
i=1

pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1−as+1

1
αs+1

) (
1 + O

(
1
αncn

))
as+1α

(s+1)n+
s∑

i=1
pi
+O

αsn+
s∑

i=1
pi

c−n


a

(s+1)n+
s∑

i=1
pi

1

−

as+1α
(s+1)(n−1)+

s∑
i=1

pi
+O

αs(n−1)+
s∑

i=1
pi

c−n+1


a

(s+1)(n−1)+
s∑

i=1
pi

1

=

as+1α
(s+1)n+

s∑
i=1

pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1−as+1

1
αs+1

) (
1 + O

(
1
αncn

))
as+1α

(s+1)n+
s∑

i=1
pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1−as+1

1
αs+1

) (
1 + O

(
1
αncn

)
+ O

(
as+1

1
αn+scn

))

(3.2)

We obtain that 
 ∞∑k=n

a
(s+1)k+

s∑
i=1

pi

1

uk
s∏

i=1
uk+pi


−1 un

s∏
i=1

un+pi

a
(s+1)n+

s∑
i=1

pi

1

−
un−1

s∏
i=1

un+pi−1

a
(s+1)(n−1)+

s∑
i=1

pi

1


tends to 1, as n→ ∞,
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Therefore, the sequences



∞∑

k=n

a(s+1)k
1

uk

s∏
i=1

uk+pi


−1 and


un

s∏
i=1

un+pi

a(s+1)n
1

−

un−1

s∏
i=1

un+pi−1

a(s+1)(n−1)
1

 ,

are asymptotically equivalent.

Now we prove (ii), using Lemma 2, we have

(−a1)
(s+1)k+

s∑
i=1

pi

uk

s∏
i=1

uk+pi

=
(−a1)

(s+1)k+
s∑

i=1
pi

as+1α
(s+1)k+

s∑
i=1

pi
+ O

αsk+
s∑

i=1
pi

c−k


=

(−a1)
(s+1)k+

s∑
i=1

pi

as+1α
(s+1)k+

s∑
i=1

pi (
1 + O

(
α−kc−k))

=
(−a1)

(s+1)k+
s∑

i=1
pi

as+1α
(s+1)k+

s∑
i=1

pi

(
1 + O

(
α−kc−k

))
(by (3.1))

=
(−a1)

(s+1)k+
s∑

i=1
pi

as+1α
(s+1)k+

s∑
i=1

pi

+ O

 a
(s+1)k+

s∑
i=1

pi

1

α
(s+2)k+

s∑
i=1

pi
ck

 ,

Thus,

∞∑
k=n

(−a1)
(s+1)k+

s∑
i=1

pi

uk

s∏
i=1

uk+pi

=
(−a1)

s∑
i=1

pi

as+1α

s∑
i=1

pi

∞∑
k=n

(
(−a1)s+1

αs+1

)k

+ O


∞∑

k=n

a
(s+1)k+

s∑
i=1

pi

1

α
(s+2)k+

s∑
i=1

pi
ck

 .

For an odd s,

∞∑
k=n

(−a1)
(s+1)k+

s∑
i=1

pi

uk

s∏
i=1

uk+pi

=
(−1)

s∑
i=1

pi
· a

(s+1)n+
s∑

i=1
pi

1

as+1α
(s+1)n+

s∑
i=1

pi

(
αs+1

αs+1 − as+1
1

)
+ O

 a
(s+1)n+

s∑
i=1

pi

1

α
(s+2)n+

s∑
i=1

pi
cn

 ,
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Taking reciprocal, we get


∞∑

k=n

(−a1)
(s+1)k+

s∑
i=1

pi

uk

s∏
i=1

uk+pi


−1

=
1

(−1)

s∑
i=1

pi
·a

(s+1)n+
s∑

i=1
pi

1

as+1α
(s+1)n+

s∑
i=1

pi

(
αs+1

αs+1−as+1
1

)
+ O

 a
(s+1)n+

s∑
i=1

pi

1

α
(s+2)n+

s∑
i=1

pi
cn


=

1

(−1)

s∑
i=1

pi
·a

(s+1)n+
s∑

i=1
pi

1

as+1α
(s+1)n+

s∑
i=1

pi

(
αs+1

αs+1−as+1
1

) (
1 + O

(
1
αncn

)) (by (3.1))

= (−1)
s∑

i=1
pi
·

as+1α
(s+1)n+

s∑
i=1

pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1 − as+1

1

αs+1

) (
1 + O

(
1
αncn

))
,

which yields that


 ∞∑

k=n

(−a1)
(s+1)k+

s∑
i=1

pi

uk
s∏

i=1
uk+pi


−1(−1)

s∑
i=1

pi
·

 un
s∏

i=1
un+pi

a
(s+1)n+

s∑
i=1

pi

1

−
un−1

s∏
i=1

un+pi−1

a
(s+1)(n−1)+

s∑
i=1

pi

1




=

(−1)
s∑

i=1
pi
· as+1α

(s+1)n+
s∑

i=1
pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1−as+1

1
αs+1

) (
1 + O

(
1
αncn

))

(−1)
s∑

i=1
pi
·


as+1α

(s+1)n+
s∑

i=1
pi
+O

αsn+
s∑

i=1
pi

c−n


a

(s+1)n+
s∑

i=1
pi

1

−

as+1α
(s+1)(n−1)+

s∑
i=1

pi
+O

αs(n−1)+
s∑

i=1
pi

c−n+1


a

(s+1)(n−1)+
s∑

i=1
pi

1



=

as+1α
(s+1)n+

s∑
i=1

pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1−as+1

1
αs+1

) (
1 + O

(
1
αncn

))
as+1α

(s+1)n+
s∑

i=1
pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1−as+1

1
αs+1

) (
1 + O

(
1
αncn

)
+ O

(
as+1

1
αn+scn

)) .
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We obtain that


 ∞∑

k=n

(−a1)
(s+1)k+

s∑
i=1

pi

uk
s∏

i=1
uk+pi


−1(−1)

s∑
i=1

pi
·

 un
s∏

i=1
un+pi

a
(s+1)n+

s∑
i=1

pi

1

−
un−1

s∏
i=1

un+pi−1

a
(s+1)(n−1)+

s∑
i=1

pi

1




tends to 1, as n→ ∞,

For an even s,

∞∑
k=n

(−a1)
(s+1)k+

s∑
i=1

pi

uk

s∏
i=1

uk+pi

=
(−a1)

(s+1)n+
s∑

i=1
pi

as+1α
(s+1)n+

s∑
i=1

pi

(
αs+1

αs+1 + as+1
1

)
+ O

 a
(s+1)n+

s∑
i=1

pi

1

α
(s+2)n+

s∑
i=1

pi
cn

 ,

Taking reciprocal, we get


∞∑

k=n

(−a1)
(s+1)k+

s∑
i=1

pi

uk

s∏
i=1

uk+pi


−1

=
1

(−1)
(s+1)n+

s∑
i=1

pi
·a

(s+1)n+
s∑

i=1
pi

1

as+1α
(s+1)n+

s∑
i=1

pi

(
αs+1

αs+1+as+1
1

)
+ O

 a
(s+1)n+

s∑
i=1

pi

1

α
(s+2)n+

s∑
i=1

pi
cn


=

1

(−1)
(s+1)n+

s∑
i=1

pi
·a

(s+1)n+
s∑

i=1
pi

1

as+1α
(s+1)n+

s∑
i=1

pi

(
αs+1

αs+1+as+1
1

) (
1 + O

(
1
αncn

))

= (−1)
(s+1)n+

s∑
i=1

pi
·

as+1α
(s+1)n+

s∑
i=1

pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1 + as+1

1

αs+1

) (
1 + O

(
1
αncn

)) , (by (3.1))
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which yields that 
 ∞∑

k=n

(−a1)
(s+1)k+

s∑
i=1

pi

uk
s∏

i=1
uk+pi


−1(−1)

(s+1)n+
s∑

i=1
pi
·

 un
s∏

i=1
un+pi

a
(s+1)n+

s∑
i=1

pi

1

+
un−1

s∏
i=1

un+pi−1

a
(s+1)(n−1)+

s∑
i=1

pi

1




=

(−1)
(s+1)n+

s∑
i=1

pi
·

as+1α
(s+1)n+

s∑
i=1

pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1+as+1

1
αs+1

) (
1 + O

(
1
αncn

))
(−1)

(s+1)n+
s∑

i=1
pi
·


as+1α

(s+1)n+
s∑

i=1
pi
+O

αsn+
s∑

i=1
pi

c−n


a

(s+1)n+
s∑

i=1
pi

1

+

as+1α
(s+1)(n−1)+

s∑
i=1

pi
+O

αs(n−1)+
s∑

i=1
pi

c−n+1


a

(s+1)(n−1)+
s∑

i=1
pi

1



=

as+1α
(s+1)n+

s∑
i=1

pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1+as+1

1
αs+1

) (
1 + O

(
1
αncn

))
as+1α

(s+1)n+
s∑

i=1
pi

a
(s+1)n+

s∑
i=1

pi

1

(
αs+1+as+1

1
αs+1

) (
1 + O

(
1
αncn

)
+ O

(
as+1

1
αn+scn

)) .
For an even s, n, we obtain that,

 ∞∑
k=n

(−a1)
(s+1)k+

s∑
i=1

pi

uk
s∏

i=1
uk+pi


−1(−1)

s∑
i=1

pi
·

 un
s∏

i=1
un+pi

a
(s+1)n+

s∑
i=1

pi

1

+
un−1

s∏
i=1

un+pi−1

a
(s+1)(n−1)+

s∑
i=1

pi

1




tends to 1, as n→ ∞,

are asymptotically equivalent.
For an even s and an odd n, we obtain that

 ∞∑
k=n

(−a1)
(s+1)k+

s∑
i=1

pi

uk
s∏

i=1
uk+pi


−1(−1)

s∑
i=1

pi+1
·

 un
s∏

i=1
un+pi

a
(s+1)n+

s∑
i=1

pi

1

+
un−1

s∏
i=1

un+pi−1

a
(s+1)(n−1)+

s∑
i=1

pi

1




tends to 1, as n→ ∞,

Therefore, the sequences

∞∑

k=n

(−a1)(s+1)k

uk

s∏
i=1

uk+pi


−1 and

(−1)(s+1)n


un

s∏
i=1

un+pi

a(s+1)n
1

+ (−1)s
·

un−1

s∏
i=1

un+pi−1

a(s+1)(n−1)
1


 ,

are asymptotically equivalent, which completes the proof. □
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Remark. We will now discuss relative error of an asymptotic behavior of the result in (i) of Theorem 1.
By identity (3.2) we obtain

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 ∞∑k=n

a
(s+1)k+

s∑
i=1

pi

1

uk
s∏

i=1
uk+pi


−1

un
s∏

i=1
un+pi

a
(s+1)n+

s∑
i=1

pi

1

−
un−1

s∏
i=1

un+pi−1

a
(s+1)(n−1)+

s∑
i=1

pi

1

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
1 + O

(
1
αncn

)
1 + O

(
1
αncn

)
+ O

(
as+1

1
αn+scn

) − 1

∣∣∣∣∣∣∣∣∣∣
= O

(
1
αncn

)
+ O

(
as+1

1

αn+scn

)
(by (3.1))

(3.3)

Determine the dominant root αwell as the magnitude of the relative error of asymptotic equivalence
by identity (3.3) for n= 100, for the following two sequences {un} defined by linear recurrences of the
fourth-order:

un = 5un−1 + 3un−2 + un−3 + un−4,

un = 5un−1 + 3un−2 + 2un−3 + un−4.

Requested computations are in Table 1. We used software Mathematica.

Table 1. The fourth-order linear recurrences with c = 2, s = 3.

un α O
(

1
αncn

)
+ O

(
as+1

1
αn+scn

)
un = 5un−1 + 3un−2 + un−3 + un−4 5.5760 3.02896 × 10−105

un = 5un−1 + 3un−2 + 2un−3 + un−4 5.6046 1.80125 × 10−105

4. Conclusions

In this paper, we discuss the reciprocal sums of products of any mth-order linear recurrence se-
quences. We use the idea of “asymptotic equivalence” to consider the reciprocal infinite sums of
products and the products interleaving terms of any mth-order linear recurrence sequences {un}. In ad-
dition, we generalize this conclusion to equidistant sub-sequences of {un}. Of course, as a special form
of conclusion, we can obtain the reciprocal infinite sums of the products of any Fibonacci sequences,
Pell sequences or k-Fibonacci sequences and other classical linear recursive sequences. Obviously, we
have obtained the estimation formula of the reciprocal infinite sums of the products of any mth-order
linear recursive sequences, and whether we can get more accurate results is an open problem.
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