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Abstract: Given the complex nonlinear problem between the control and prediction of the surrounding 

surface settlement deformation caused (GWO), the GWO-ELM deep foundation pit excavation 

deformation prediction model was proposed. Extreme learning machine and Grey Wolf optimization 

algorithm combining training and predicting land subsidence. Based on MIDAS GTS NX software, 

we established a finite element simplified model for deep foundation pit construction, conducted 

structural calculations, and utilized the Grey Wolf optimization algorithm to optimize the deep 

foundation pit excavation and its influencing factors, input weights, and hidden layer thresholds in the 

ELM neural network. Taking the deep foundation pit project of Baoding Automobile Science and 

Technology Industrial Park as an example, the actual monitoring value is compared with the simulated 

value, verifying the model’s accuracy. The number of soil nails in the finite element model, the 

excavation depth, the settlement of surrounding buildings and other factors are taken as the input 

factors of the prediction model. The DB-2 surface settlement of the monitoring point in the finite 

element model is taken as the output factor of the prediction model. The predicted value of the GWO-

ELM model was compared with that of the ELM model. We draw three main conclusions from the 

results. First, the surface settlement of a bottomless foundation pit can be predicted in advance by 

using finite element software and the distribution law of surface settlement and horizontal  

displacement is consistent with the measured values. Second, the Grey Wolf optimization algorithm 

optimizes the input weights and thresholds in the extreme learning machine neural network. The 

GWO-ELM prediction model has good generalization ability, can effectively reduce human errors 

and can improve the accuracy of the prediction model. Third, through practical engineering 

verification, the average absolute error of the GWO-ELM model is 0.26145, the mean square error 
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is 0.31258 and the R2 is 0.98725, all of which are superior to the ELM model and are an effective 

method for predicting deformation and settlement of deep foundation pit excavation. 

Key words: deep foundation pit; neural network; Grey Wolf optimization algorithm; numerical 

simulation; extreme learning machine; prediction of settleme 

 

1. Introduction 

With the continuous development of our country’s economy and society and continuous urban 

construction, above-ground resources can no longer meet people’s needs and urban construction has 

gradually turned to underground development [1]. Underground engineering continues to expand in 

the direction of “long, large and deep”, and the construction scale and difficulty of foundation pit 

engineering are increasing daily [2]. The construction of an urban foundation pit often has a complex 

surrounding environment and the excavation construction significantly impacts the surrounding 

environment [3]. Foundation pit engineering has the characteristics of solid regionalization and the 

monitoring and warning value varies significantly in different regions. For safe construction, it is 

significant to carry out construction control and deformation prediction for foundation pits [4−6]. 

In recent years, with the continuous development of computer science, finite element calculation 

and artificial neural networks have also been rapidly developed. They are widely used in the fields of 

mining and civil engineering. Machine learning is often used to predict flying rock distance and ground 

vibration during blasting, the ultimate bearing capacity of the single-driven pile and the performance 

of tunnel boring machines, etc. [7–10]. Armaghani et al. [11] used particle swarm optimization 

algorithm (PSO) -artificial neural network (ANN) and imperialist competitive algorithm (ICA)-

artificial neural network and ordinary artificial neural network to predict the penetration rate of tunnel 

boring machine (TBM). It is found that ICA-ANN and PSO-ANN hybrid models are better than 

ordinary neural network prediction. With the continuous development of computer science, many 

advanced models are often used in time series prediction, such as ELM-PSOGWO, ANN-EMPA, 

LSTM-INFO, ELM-SAMOA, RVM-IMRFO [12–16]. Machine learning and optimization models have 

become powerful tools to approach and solve engineering problems due to the flexibility of technology. 

Because of the high complexity and nonlinearity of deep foundation pit excavation deformation 

prediction, a neural network is often used to research deep foundation pit excavation deformation 

prediction. Hong et al. [17] used convolutional neural networks and long short-term memory neural 

networks to integrate spatial features. They found that the accuracy and reliability of the combined 

model considering spatial-temporal correlation were higher than that of the LSTM model considering 

only temporal correlation. Niu et al. [18] adopted an ARIMA-NAR neural network combination model 

based on Kalman denoising for prediction analysis. Jiang et al. [19] proposed a (PSO-VMD)-NARX-

GRU prediction model for landslide displacement, whose accuracy was significantly higher than that 

of BP, SVM and ARIMA prediction models in static models. Zhang et al. [20] optimized and modified 

the wavelet network model using weight parameters and gradient descent method and proved by 

engineering examples that the improved model could make the predicted value close to the measured 

value. Meng et al. [21] analyzed the horizontal displacement of containment through multi-step rolling 

prediction based on the BP neural network and found that the method was efficient and reliable. Based 

on the background of deep foundation pit engineering of a subway station in Suzhou, Zhao et al. [22] 
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adopted the 10-break cross-validation method based on the BP neural network and LSTM deep 

network to test the accuracy of the dynamic prediction model. They found that it has high reliability 

and generalization ability, which can provide a reference for construction information management. 

In summary, many researchers have studied the deformation prediction method of deep 

foundation pits utilizing numerical simulation and machine learning neural networks. However, due to 

various errors, the prediction of environmental deformation around deep foundation pit excavation has 

certain limitations and the problems of large data dimension, slow model learning speed and low 

accuracy exist in the above prediction methods. This paper establishes a finite element simulation 

model based on engineering practice, the Grey Wolf optimization algorithm optimizes the extreme 

learning machine neural network and the GWO-ELM deep foundation pit excavation deformation 

prediction model is proposed. The ELM algorithm model is used to predict the excavation deformation 

of the foundation pit and the defects of slow learning speed and poor generalization performance of 

traditional neural networks are improved. GWO algorithm is used to optimize the ELM model to obtain 

the optimal input weight matrix and hidden layer deviation of the ELM algorithm, further improve the 

model’s accuracy and provide specific theoretical reference and application value for the prediction of 

deep foundation pit engineering. 

2. Project overview 

2.1. Engineering background 

The research relies on the construction of a new rainwater and sewage pipeline laying project in 

Baoding Science and Technology Park. The size of the top pipe working well for the entire pipeline 

construction is a rectangular well with an internal clearance of 8.5  6 m and the receiving well is a 

rectangular well with an internal clearance of 5  5 m, with a depth of approximately 6.16–8.77 m. 

The foundation pit support is soil nail wall support and the safety level of the side of the foundation 

pit is Level 2. 

 

Figure 1. Sectional drawing of foundation pit support. 
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2.2. Geological conditions 

The soil layer parameter indicators and their distribution of this project are shown in Table 1. 

Table 1. Soil layer parameter indicators and their distribution. 

Soil layer 

name 

Thickness/m Unit weight of soil/

（kN·m-3） 

Cohesion/kPa Angle of internal 

friction/（°） Plain fill 0.30–1.00 18.8 17.5 22.9 

silt 2.40–7.40 19.3 18.4 21.9 

Silty clay 0.80–1.90 19.4 16.1 21.9 

silt 1.00–2.50 19.6 19.4 21.7 

Fine sand 2.00–7.80 19.5 17.2 21.1 

2.3. Monitoring program 

The monitoring level of the foundation pit of this project is Level 1 and the soil nail support is 

Level 2. The impact of construction on the ground and underground pipelines, the safety of 

surrounding buildings, the stability monitoring of open caisson and the impact of construction on the 

stability of surrounding slopes are the key points of this monitoring plan. The specific monitoring 

point layout is shown in Figure 2. 

 

Figure 2. Layout of monitoring points. 
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3. GWO-ELM neural network model 

3.1. Extreme learning machine model 

ELM is a new single hidden layer feedforward neural network algorithm [23–26]. Its biggest 

advantage is that the connection weights of the input layer and the hidden layer and the threshold of 

the hidden layer are randomly generated in the model training process. It does not need to be adjusted 

again after setting. It has the characteristics of simple structure and good generalization ability and has 

a fast rate. 

Given a different training sample, ( ) ( ), 1,2, ,n m

i ix t R R i N  =  , SLFN output with N   hidden 

nodes is available. 

 ( ) ( )
1 1

; ,
N N

j i i j i j i i

i i

o f x f x a b 
= =

= =  1, ,j N=  (1) 

where jo
 
is the output of the network. 

 1 2, , ,
T

i i i ina a a a= and 
ib
 
are the learning parameters randomly generated by the JTH hidden node, 

respectively.  1 2, , ,
T

i i i im   =   is the output weight of the output node; ( ); ,j i if x a b   is the 

activation function of the original ELM. Let i ja x  be the inner product of 
ia  and jx . Equation (1) 

can be succinctly written as Eq (2). 
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where H  is the output matrix of hidden layer nodes; β is the output weight; O is the training set 

objective matrix. 

 
ˆ H T +=

 (3) 

Therefore, the three-step ELM algorithm can be summarized as follows. 

Input: Training set ( ) ( ), 1,2, ,n m

i ix t R R i N  = , activation function f , hidden node number N . 

Output: Output weight  . 

1) Randomly assign hidden node parameter ( ),i ia b , 1, ,i N= . 

2) Calculate the output matrix of hidden layer H . 
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3) Calculate the output weight  , H T += . 

3.2. Grey Wolf optimization algorithm 

The GWO is a new meta heuristic algorithm with strong search capabilities proposed by Negi et al. [27]. 

This algorithm is based on the framework of systematization, recursive evolution and hierarchy. Due 

to its strong convergence performance and fewer parameters, its optimization performance is more 

reliable than other biomimetic algorithms [28–29]. 

The GWO optimization algorithm includes hunting and trapping of gray wolves and the hunting of 

prey is achieved through generation after generation. The main definitions of the algorithm are as follows: 

a. The direct distance between the prey and the Wolf D  is determined before the prey is eaten. 

 
( ) ( )PD C X t X t=  −

 (4) 

where t is the current number of iterations; C  is the oscillation coefficient, 12C r= ; 
1r  is the spatial 

distance coefficient ( )1 0,1r random= ; ( )pX t
 
is the position vector of the t-generation gray wolf prey; 

( )X t  is the current position vector of the t-generation gray wolf. 

b. The position of the next generation of gray wolves is constantly updated to a shortened D . 

 
( ) ( )1 pX t X t D+ = − 

 (5) 

 22a r a =  −
 (6) 

where ( )1X t +  is the position vector of the t + 1 generation gray wolf;   is the coefficient; 2r  is a 

random number of [0,1]; During the entire iteration process, a  decreased from 2 to 0. 

c. During predation,    wolves,    wolves and    wolves are closest to the prey. The 

distance between the other gray wolves of the t generation and these three wolves can be determined 

by the equation. 

 
( ) ( )k i kD C X t X t=  −

 (7) 

 i k i kX X D= − 
 (8) 

Predation direction is determined according to the following formula: 

 
( ) 1 2 31

3
p

X X X
X t

+ +
+ =

 (9) 

where , ,k   =  and 1,2,3i = . 
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4. Engineering application 

4.1. Finite element simulation 

Use MIDAS GTS NX software to establish a three-dimensional finite element calculation model 

for deep foundation pit excavation and analyze and study the surface deformation and settlement 

during the excavation process. The model size is the same as the physical engineering size, with a 

foundation pit side length of 18.5 m. According to engineering experience, the horizontal influence 

range is 4–6 times the physical engineering side length and the vertical influence range is 3–5 times 

the depth. The outer model has a side length of 60 m and a depth of 40 m. The foundation pit support 

adopts the method of spray anchor support. The boundary constraint adopts automatic constraints to 

constrain the translational degrees of freedom of the side and bottom nodes. Limit the horizontal 

displacement of the side, limit the horizontal displacement and normal displacement of the bottom. 

The modified Moore-Coulomb model is selected as the soil constitutive model [30]. Compared 

with the ordinary Moore-Coulomb model, the simulated results of the modified Moore-Coulomb 

model are more appropriate to the unloading process of soil in deep foundation pit excavation. The 

results of model extraction are mainly concentrated in the vicinity of the foundation pit model, so the 

grid division of this part is relatively fine. The number of units in this calculation model is 12460 and 

the number of nodes is 10718. The model is shown in Figure 3. 

 

Figure 3. Excavation model of foundation pit. 

Based on the excavation and support sequence at the construction site, the simulation of the 

foundation pit is divided into ten working conditions. Before excavation, balance the initial geostress 

and reset the displacement in the Z direction to zero. 

Condition 1: Excavate the soil to –2 m. 

Condition 2: Drive the first row of soil nails into the soil and spray concrete on the grid. 

Condition 3: Excavate the soil to –4 m. 

Working condition 4: Drive the second row of soil nails into the soil and spray concrete on the grid. 

Working condition 5: Excavate the soil to –6 m. 
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Working condition 6: Drive the third row of soil nails into the soil and spray concrete on the grid. 

Condition 7: Excavate the soil to a depth of –8 m. 

Working condition 8: Drive the fourth row of soil nails into the soil and spray concrete on the grid. 

Condition 9: Excavate to the bottom of the pit. 

Working condition 10: Drive the fifth row of soil nails into the soil and spray concrete on the grid. 

4.2. Settlement analysis of surrounding buildings 

Figure 4 Vertical displacement cloud map of some excavation conditions and Figure 5 contrast 

curve between measured and simulated settlement values of surrounding buildings. 

(a) Working condition one        (b)Working condition five 

 

(c) Working condition nine 

Figure 4. Simulation of vertical displacement of soil under various working conditions. 
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Figure 5. Comparison curve between measured and simulated settlement values at each 

monitoring point. 

From Figures 4 and 5, it can be seen that as the construction progresses, the settlement of the 

garage on the northwest side of the foundation pit gradually increases. The shape of the actual value 

change curve is roughly the same as that of the simulated value change curve, but there is still a certain 

deviation. Overall, the simulated value is slightly larger than the measured value, which may be due 

to the software having a certain warning and protection effect. The measured value of monitoring point 

CK-1 is slightly greater than the simulated value because the monitoring point CK-1 is relatively close 

to the foundation pit and is greatly affected by the construction of the foundation pit. Some nearby 

loads and the impact of surrounding construction are not considered in the software. The maximum 

value monitored on site was 7.93 mm and the maximum value simulated by finite element analysis 

was 7.8709 mm, both of which did not exceed the warning value of 15 mm, indicating that the support 

structure was applied in a timely and effective manner. 
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(b) Monitoring point CK-2 
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4.3. Deep horizontal displacement analysis 

Figure 6 shows the cloud map of the deep horizontal displacement of the soil during the 

excavation of the foundation pit. Figure 7 shows the comparison curve between the monitoring values 

of the deep horizontal displacement of the soil after excavation and the finite element numerical 

simulation values. 

Figure 6. Cloud map of deep horizontal displacement of foundation pit under different 

working conditions. 

(a) Working condition one (b) Working condition five 

(c) Working condition five 
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Figure 7. Comparison of measured and simulated horizontal displacement in deep 

foundation pit. 

As can be seen from Figure 6, with the excavation of the foundation pit, each point on the side 

wall of the foundation pit moves toward the interior of the foundation pit and the horizontal 

displacement gradually increases. The horizontal displacement difference of each point in the same 

working condition does not exceed 10 mm. The maximum horizontal displacement of the side wall of 

the foundation pit is located in the middle of the slope. With the excavation of the foundation pit, the 

horizontal displacement reaches the maximum value. As can be seen from Figure 7, the overall trend 

of the measured horizontal displacement of deep foundation pit is roughly the same as that of the 

simulated value, which increases first and then decreases with the increase of the depth of foundation 

pit. However, there is still a deviation between the simulated value and the measured value and the 

maximum difference is 3.0887 mm. The simulated value is smaller than the measured value because 

mechanical vibration and vehicle flow are not taken into account in the simulation process. 

To sum up, the measured value and the simulated value are compared and analyzed from two 

aspects: the settlement of surrounding buildings and the horizontal displacement in deep soil layer. 

From the results, there is still a certain error between the simulated value and the measured value, but 

the error is small. It can be used as the input data of the neural network. 

4.4. Surface settlement prediction 

The monitoring point DB-2 in the north of the foundation pit was selected as the surface 

settlement prediction point, the excavation depth, the number of soil nails and the settlement of the 

building were taken as the input factors and the monitoring point DB-2 settlement value was taken as 

the output factors. The specific forecasting process is as follows: 

(1) Weighted smoothing processing. In order to avoid the influence of accidental data on the 

prediction accuracy of the model, all the sample data are weighted with smooth noise reduction and 

balanced sample data. 
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(2) Data normalization processing. In order to eliminate the influence of different data 

dimensions, the prediction of excavation depth, number of soil nails and settlement value is 

normalized to the interval [0,1]. 

(3) Model parameter setting. The collected 60 data sets are sorted, the first 45 groups are selected 

as the training set, and the last 15 groups are selected as the test set. The network topology is 3  20  1. 

The number of iterations is 1000 and the learning rate is 0.01. The depth of excavation, the number of 

soil nails and the settlement of the building are selected as the influencing factors, so the input layer 

node is set to 3. The model output is the surface settlement value, so the number of nodes in the output 

layer is set to 1. The number of neuron nodes in the hidden layer is set to 20. The Grey Wolf 

optimization algorithm optimizes the input weight and hidden layer threshold in ELM neural network. 

The size of the wolves is 40 and the number of iterations is 100. At the same time, the results are 

compared with those of the unoptimized ELM prediction model under the same conditions. 

(4) Analysis of model prediction results. The predicted value of land surface settlement was 

obtained using the GWO-ELM prediction model and the test set results were shown in Table 2. The 

comparison diagram of DB-2 predicted value and error curve at monitoring points is shown in Figures 8 

and 9. The prediction accuracy of different models is shown in Table 3. 

Table 2. Neural network test set. 

Table 3. Precision comparison of models. 

Model name Mean absolute error Mean square error R2 

GWO-ELM 0.26145 0.31258 0.98725 

ELM 0.32412 0.45261 0.71243 

Group 

number 

Input factor Output factor 

Excavation 

depth/m 

Number of 

soil nails/row 
Building settlement/mm 

Surface 

settlement value 

46 9 4 7.2653 −7.195 

47 9 4 7.4235 –7.18 

48 9 4 7.3598 –7.18 

49 10 4 7.5089 –7.11 

50 10 5 7.6214 –7.11 

51 10 5 7.5647 –7.17 

52 10 5 7.7851 –7.17 

53 10 5 7.6217 –7.325 

54 10 5 7.5236 –7.325 

55 10 5 7.6789 –7.45 

56 10 5 7.8452 –7.45 

57 10 5 7.8214 –7.67 

58 10 5 7.8687 –7.67 

59 10 5 7.7568 –7.805 

60 10 5 7.8951 –7.805 
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Figure 8. Comparison of DB-2 predicted values. 
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Figure 9. Comparison of error curves of DB-2 predicted value. 

It can be seen from Figures 8 and 9 and Table 3 that the obtained root mean square error and 

average absolute error are 0.31258 and 0.26145, respectively, which are closer to the actual surface 

settlement and have smaller errors than the ELM prediction model. The determination coefficient 

R2 = 0.98725 is higher than the ELM prediction model and the surface fitting effect is better, the 

prediction accuracy is higher and it has relative reliability. 

5. Limitations and future works 

The GWO-ELM and ELM prediction models adopted in this paper are used to predict the data in 

foundation pit excavation projects. These can provide a reference for the informatization construction 

of deep foundation pit excavation. Then, various unique data monitoring points can be further 

considered, monitored and predicted, such as vehicle load vibration, unpredicted rainfall and snow 
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amount of continuous rainfall and snowfall, earthquake impact, etc. This paper’s monitoring and 

prediction project is based on the deep foundation pit project of Baoding Automobile Science and 

Technology Industrial Park. In the future, different foundation pit projects can be considered to be added 

or the engineering situation of all foundation pit projects in a particular area can be sorted out and the 

influencing factors and deformation causes of foundation pits can be comprehensively analyzed. 

6. Conclusions 

This article takes the excavation depth of the finite element model, the number of soil nails and 

the settlement of surrounding buildings as input factors and the surface settlement as output factors. 

Unlike using actual monitoring data as samples, it can achieve advanced prediction and is an effective 

analysis method. 

The GWO-ELM based deformation prediction model for deep foundation pit construction 

excavation is significantly better than the ELM model and has achieved good prediction results. The 

model has good generalization ability and reduces human interference during the modeling process, 

making it an effective prediction method. 

The mean absolute error of the extreme learning machine neural network optimized by gray wolf 

is 0.26145, the mean squared error is 0.31258 and the R2 is 0.98725, which are better than the extreme 

learning machine neural network non-optimized. 
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