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Abstract: With the increasing need for public health and drug development, combination therapy
has become widely used in clinical settings. However, the risk of unanticipated adverse effects
and unknown toxicity caused by drug-drug interactions (DDIs) is a serious public health issue for
polypharmacy safety. Traditional experimental methods for detecting DDIs are expensive and time-
consuming. Therefore, many computational methods have been developed in recent years to predict
DDIs with the growing availability of data and advancements in artificial intelligence. In silico methods
have proven to be effective in predicting DDIs, but detecting potential interactions, especially for newly
discovered drugs without an existing DDI network, remains a challenge. In this study, we propose
a predicting method of DDIs named HAG-DDI based on graph attention networks. We consider the
differences in mechanisms between DDIs and add learning of semantic-level attention, which can focus
on advanced representations of DDIs. By treating interactions as nodes and the presence of the same
drug as edges, and constructing small subnetworks during training, we effectively mitigate potential
bias issues arising from limited data availability. Our experimental results show that our method
achieves an F1-score of 0.952, proving that our model is a viable alternative for DDIs prediction.
The codes are available at: https://github.com/xtnenu/DDIFramework.

Keywords: drug-drug interaction; graph attention network; machine learning; graph embedding;
computational biology

1. Introduction

Drug-drug interactions (DDIs) are a change in the effect of one drug due to the presence of another
drug [1]. It can promote the efficacy or reduce the side effects and affect the drug absorption or produce
adverse side effects. With the development of drugs, combination therapy is widely used clinically, and
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DDIs play an important part [2]. Therefore, the research of DDIs has great importance for new drugs
and clinical pharmacy treatment. The medical research methods of DDIs are very diverse, including
in vitro experiments, animal experiments and pharmaceutical experiments, as well as the research
according to the clinical results. However, the above methods also have limitations which cannot
predict DDIs on large scale datasets and it is important development of low-cost and high-efficiency
DDIs research methods [3]. Hence, In silico methods provide a possibility and can provide certain
references for clinical experiments. There are two types of computer experiments for DDI prediction
[4]. The first type uses medical literature, databases and clinical records as research objects, and
analyzes them using natural language processing [5, 6] or data mining methods [7–14]. Deep learning
methods have been widely employed in various studies [5, 6, 8, 13]. The second type directly uses
drug features to predict whether there is a DDI between two drugs [15–22]. In order to focus on the
experimental results of predicting the potential interactions of new drugs with limited information, we
will focus on the second type.

Conventional machine learning methods of DDI predictions use data features flexibly, and generally
do not require high-level experimental environments. Kastrin et al. [15] took the prediction of DDI as
a link prediction problem, and used data from five databases to train five classifiers. Yan et al. [16]
developed DDIGIP based on Gaussian interaction profile kernels. Qian et al. [17] developed a gradient
boosting-based classifier and demonstrate that targets of adversely DDIs are significantly more likely
to have synergistic genetic interactions than non-interacting drug pairs.

The deep learning methods of DDI predictions have higher requirements on computing power of
the experimental equipment. Compared with conventional machine learning, deep learning can learn
more abstract data representation. Rohani et al. [18] developed a deep learning model based on drug
substructure, target, side effect, off-label side effect, pathway, transporter and indication data, making
full use of the computing power of deep learning. Ryu et al. [19] developed a deep learning
framework that can simultaneously predict DDIs and drug-food interactions. Deng et al. [20]
developed an architecture that integrates four deep learning sub-models that learn different features.
Liu et al. [21] developed an autoencoder-based deep learning framework that can predict new drugs
with unknown interaction relationships.

The network-based methods of DDI predictions compute the graph structure of data. Because many
data in biology and medicine exist in the network structure, the network methods can more easily reflect
the similarity between data features. Chen et al. [22] applied the Laplace regularized least squares
method to the synergistic drug combination to develop the model NLLSS. Tripodi et al. [23] proposed a
semantic-reasoning-based approach that can infer DDIs through network computing through biological
knowledge bases. Yan et al. [24] proposed IDNDDI, which uses a cosine similarity calculation tool to
calculate the similarity of drug features and infer whether a DDI exists. Huang et al. [25] developed a
prediction method based on the S-score calculation mechanism.

In recent years, with the advancement of deep learning technology, the integration of deep learning
and network analysis methods for DDI research has been on the rise. Karim et al. [26], Wang et
al. [27] and Xu et al. [28] have each proposed their own deep network model to address various issues
encountered in previous DDI studies. Graph convolutional neural networks and graph attention
networks, widely used algorithms in the field of bioinformatics, have also been applied to DDI
research. Graph neural networks [29] have been proposed as a powerful method for processing graph
representations based on deep learning. The graph structure can effectively represent various complex
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network structure data. Although graph neural networks can predict known graph structures, handling
unknown graph structures remains challenging. To overcome this limitation, researchers have
developed graph attention networks [30]. In DDI research, Nyamabo et al. [31] proposed a graph
attention network model based on drug substructures, while Feng et al. [32] proposed a graph
attention network model based on chemical molecular graph calculations. Both studies have
demonstrated the potential of graph attention networks in DDI research.

Although methods based on drug features have made progress in DDI research and have been
confirmed feasible in in silico methods, there are still some limitations. First, deep learning methods
are mostly trained based on independent samples, and a large amount of data is required to discover
the similarity and correlation between samples. Second, the network-based models is lacking a
mining ability for advanced representations and some methods using graph structure cannot predict
for a drug outside the network. Third, for new drugs, many methods are unable to extract their
features and predict their related interactions.

In this study, we propose a novel DDI prediction model based on heterogeneous graph attention
networks named HGA-DDI. The HGA-DDI uses DDIs as nodes and the same drugs as edges. To
accommodate predictions for new drugs, we use only substructure molecular fingerprints of Pubchem
as features. To strengthen the attention of the model to advanced features, we use the node-level
attention and the semantic-level attention mechanisms originally used in heterogeneous graph attention
networks. Our experimental results show that this new model achieves good performance.

In summary, the major contributions of this work are:

• We develop a better performing graph attention DDI prediction method. This is the first attempt to
apply heterogeneous graph attention network algorithm to predict DDIs based on drug molecular
fingerprints. Moreover, the performance of the model in this paper is relatively good, which can
help with research on new drugs.
• In terms of algorithm innovation, this work successfully applies the method of heterogeneous

network to a homogeneous network. Although the graph structure of drug interactions is a
homogeneous network, multiple different mechanisms exist between drug interactions, making it
critical to pay attention to advanced representations that conventional graph attention network
methods cannot. The semantic-level attention mechanism of this method becomes a solution.
• The HGA-DDI only utilizes structural features from drugs, and innovatively treats each

interaction as a node and the existence of same drugs as edges. This allows for the construction
of a graph structure based on a large amount of existing known data when predicting interactions
between new drugs, without compromising the performance of the model.

2. Materials and methods

2.1. Datasets

Our data is sourced from two databases, Drugbank and Twosides. Drugbank [33] consists of two
parts: bioinformatics data and cheminformatics data. It integrates a vast amount of drug biochemical
data, target structure and other information for drug research. Twosides [34–36] database collects
only DDIs and is a sub-database of adverse DDIs derived from the FAERS (FDA Adverse Event
Reporting System) database. We screened 1017 small molecule drugs and 202,304 DDIs that fit the

Electronic Research Archive Volume 31, Issue 9, 5632–5648.



5635

FDA standards and feature extraction requirements of this work from Drugbank version 5.1.7.
Subsequently, we selected 39,813 intersections recorded in Twosides as positive samples. To facilitate
experimental grouping and address the imbalance of actual drug effects, we randomly generated
60,187 negative samples that did not appear in both databases, which brings the dataset total to
100,000 by selecting records that do not appear in Drugbank and Twosides.

Molecular fingerprint [37] encodes molecule information into a bit string where each bit represents
a molecular feature. In this study, we used molecular fingerprints to represent drugs. Through the
Pubchem database, we extracted the substructure fingerprint of drugs as the learning features. The
substructure fingerprint has 881 bits, covering a wide range of different substructures and functional
groups. To build the graph data structure, we used the DDIs as nodes of the graph, and edges represent
whether a drug is involved in two DDIs. For each DDI, we integrate the features of the relationship
by comparing the features of each position between the two corresponding drugs. If a position is the
same and equal to 1 for both drugs, it is set as 1 in the integrated feature. If the position is the same
and equal to 0 for both drugs, it is set as 0 in the integrated feature. Otherwise, it is set as 0.5. Finally,
each DDI is encoded as a 881-dimensional vector.

To verify the model on unknown drugs with limited data, we divided the data into 200 random
sub-nets for batch training and randomly selected 2% of each sub-net as public validation and testing
datasets. The final data distribution is shown in Figure 1:

Figure 1. Construction of datasets.
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2.2. Prediction framework

The HGA-DDI includes two parts as shown in Figure 2.

Figure 2. Overview of HGA-DDI. (a) The subnets retrieve drug molecular fingerprints from
the PubChem database. (b) The heterogeneous graph attention network layer extracts graph
embeddings of DDIs, which are then fed into the MLP classifier for classification. (c) We
compare the performance of our proposed graph attention network layer with baseline graph
embedding algorithms. (d) We conduct an analysis of the model to evaluate its effectiveness.

Because DDIs networks are complex graph structures, in this work, we applied graph attention
network [30], which is suitable for graph problems, as the core algorithm. The graph attention
network employs an attention mechanism as its main algorithm, eliminating the need for complex
calculations involving matrices like Laplace. Instead, it updates node features through the
representation of neighboring nodes. In the graph attention network, the learning weights from target
nodes to neighbor nodes differ. The adjacency matrix defines the representation of the relevant node,
and the calculation of the relationship weights depends on the features of both the node and its
neighbor. Specifically, the weight of the neighbor to the node is calculated as follows:
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ei j = a(Whi,Wh j) (2.1)

αi j =
exp(ei j)

exp(
∑

K eik)
(2.2)

where e is attention coefficient, a is attention mechanism, hi is input feature vector and h j is output
feature vector, ai j is the importance from node j to node i.

In this work, we added the semantic-level attention which has applied in heterogeneous network
by Wang et al. [38]. Meta-path is defined by Wang et al. as different connection modes of nodes, and
each meta-path can represent a semantic-level information of nodes. Learning the attention mechanism
node embeddings of different meta-paths can provide the different importance. The following formula
is represent features from graph attention layer output as the input of semantic level attention:

(βΦ0 , βΦ1 , .., βΦp) = attsem(ZΦ0 ,ZΦ1 , . . . ,ZΦp) (2.3)

The importance WΦi of each meta-path Φ is calculated as following:

WΦi =
1
|V |

∑
i∈V

qT . tan h(WzΦi + b) (2.4)

where V is node, W is the weight matrix, b is the bias vector and q is the semantic-level attention
vector.

After normalization, the final embedding of model is:

Z =
P∑

i=1

βΦi .ZΦi (2.5)

where βΦi is the weight of meta path Φi, ZΦi is the embedding of meta-path Φi.

The overall process of graph attention network is as follows:
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Algorithm 1: The overall process of graph attention network.
Input: The graph G = (V, E). The node feature {hi,∀i ∈ V}. The mata-path set {ϕ0, ϕ1, ..., ϕp}.
Output: The final embedding Z. The node-level attention weight α. The semantic-level

attention weight β
for Φi ∈

{
Φ0,Φ1, . . . ,Φp

}
do

for k = 1, 2, ...K do
Type-specific transformation hi − Mϕi · hi,;
for i ∈ V do

Find the meta-path based neighbors NΦi ;
for j ∈ Nϕi do

Calculate the weight coefficient aϕi j;
end for
Calculate the semantic-specific node embedding ZΦi = σ(

∑
j∈Nϕi α

Φ
i j · h

′
j);

end for
Concatenate the learned embedding from all attention head ZΦi = ||

K
k=iσ(
∑

j∈Nϕi α
Φ
i j · h

′
j);

end for
Calculate the weight of meta-path βϕi;
Fuse the semantic-specific embedding Z p

ϕi=1βϕi · Zϕ;
end for
Calculate Cross-Entropy L = −

∑
l∈yL

Yl ln(C · Zl);
Back propagation and update parameters in this model;
return Z, α, β.

After computing the embeddings of drug nodes, the second part of HGA-DDI is a Multilayer
Perceptron (MLP) classifier by using the embeddings as input. To train the MLP classifier, we
performed ten-fold cross-validation. In each fold, 10% of the data from the test set was randomly
selected as the testing portion for evaluating the performance of the MLP classifier, while the
remaining 90% of the data was used for training the MLP classifier. We repeated this process ten
times, each time using a different 10% portion for testing and the rest for training. The final
performance of the model was determined by averaging the results of these ten folds, taking into
account the performance of each individual model.

In this study, we propose two meta-paths: the Interaction Independent Feature Meta-Path (IIFM)
and the Interaction-Drug-Interaction Meta-Path (IDIM). IIFM is represented by a diagonal matrix,
which indicates that the network uses its own features. The mathematical expression of IIFM is as
follows:

IIFM =


1 0 · · · 0
0 1 · · · 0
...
...
...
...

0 · · · · · · 1

 (2.6)

IDIM refers to the Interaction-Drug-Interaction Matrix. For a given node, if there exists a shared
drug between that node and another node, the corresponding element in IDIM is set to 1. Conversely,
if there is no shared drug, the element is set to 0. Notably, all diagonal elements in the matrix are set
to 1.
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2.3. Baseline models

To validate the overall effectiveness of the model, we compared two state-of-the-art open-source
drug-drug interaction (DDI) models based on graph attention networks. The first model, SSI-DDI
[31], has released all its training code, while the second model, GNN-DDI [32], has shared its model
architecture. We successfully reproduced both models and compared the results by extracting the
SMILES representations of drug molecules from the test set used in this study.

Additionally, in order to test the ability of the graph attention network used in HGA-DDI to extract
embeddings, we compared the embedding features extracted by five baseline models based on graph
algorithms, and also used MLP classifier for comparison. The introductions of the five algorithms are
as follows:

1) Deepwalk
DeepWalk [39] is a network-based language modeling algorithm that utilizes local information

obtained from truncated random walks to learn latent representations. It treats walks as the equivalent
of sentences and consists of a random walk generator and an update procedure.

2) SDNE
Structural Deep Network Embedding (SDNE) [40] is a semi-supervised deep learning algorithm

that incorporates two orders of similarity. The first-order similarity primarily reflects the local
characteristics of the graph and is used as supervised information in the supervised component. The
second-order similarity mainly reflects the global characteristics of the graph, which is used by the
unsupervised component.

3) LINE
Large-scale Information Network Embedding (LINE) [41] optimizes an objective function and

proposes an edge-sampling algorithm that improves both the effectiveness and efficiency of stochastic
gradient descent.

4) Node2Vec
Node2Vec [42] learns continuous feature representations of networks and maps nodes to

low-dimensional feature representations to maximize the likelihood representation of network
neighbor nodes. It defines a flexible notion of a node’s network neighborhood, designs a biased
random walk procedure and learns to explore a variety of neighbor representations.

5) Struc2Vec
Struc2Vec [43] uses a hierarchy to measure node similarity at different scales and constructs a

multi-layer graph to encode structural similarities and generate structural context for nodes.
To validate the rationality of the MLP classifier of HGA-DDI, we compared it with several

machine learning methods. They are Support Vector Machines (SVM), Random Forests (RF),
Gradient Boosting Decision Tree (GBDT) and K-Nearest Neighbor (KNN) Classifier.

3. Results and discussion

3.1. Metrics

In order to evaluate the performance, we use precision (PRE), sensitivity (SEN), specificity (SPE),
accuracy (ACC), F1 score and Matthews correlation coefficient (MCC) as metrics, and their formulas
are as follows:

PRE =
T P

T P + FP
(3.1)
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S EN =
T P

T P + FN
(3.2)

S PE =
T N

T N + FP
(3.3)

ACC =
T P + T N

T P + T N + FP + FN
(3.4)

MCC =
(T P × T N) − (FP × FN)

√
(T P + FP) × (T P + FN) × (T N + FP) × (T N + FN)

(3.5)

F1 = 2 ×
PRE × S EN
PRE + S EN

(3.6)

where TP is the number of the true positive, TN is the number of the true negative, FP is the number
of the false positive and FN is the number of the false negative.

3.2. Analysis of the comparison with other methods

To validate the effectiveness of the model, we compared the performance of HGA-DDI with SSI-
DDI and GNN-DDI models on the same test dataset. The comparison results are in Table 1.

Table 1. Comparison with other algorithm models.

Model ACC PRE SEN SPE F1 MCC
SSI-DDI 0.931 0.920 0.943 0.918 0.931 0.862
GNN-DDI 0.908 0.913 0.903 0.912 0.908 0.816
HGA-DDI 0.952 0.964 0.939 0.965 0.952 0.904

In comparison to two state-of-the-art graph attention networks, HGA-DDI demonstrated the best
performance across all metrics, showcasing the overall computational superiority of the model.
However, during the comparison, it was noted that one limitation of HGA-DDI is its inability to
predict the types of drug interactions. This will be addressed and improved upon in our future work.

3.3. Sensitivity analysis of graph embedding methods

To verify the graph attention network, we conduct five baseline models which used to calculate drug
graph embedding on testing datasets of this work. The results are in Table 2.

Table 2. Comparison with other graph embedding algorithms.

Model ACC PRE SEN SPE F1 MCC
Deepwalk 0.834 0.972 0.688 0.980 0.806 0.698
SDNE 0.779 0.941 0.595 0.963 0.729 0.600
LINE 0.809 0.958 0.645 0.972 0.771 0.653
Node2Vec 0.846 0.978 0.708 0.984 0.821 0.720
Struct2Vec 0.761 0.921 0.570 0.951 0.704 0.564
HGA-DDI 0.952 0.964 0.939 0.965 0.952 0.904
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The Table 2 presents the comparison results, demonstrating the superior performance of HGA-DDI
in terms of ACC, SEN, F1-score and MCC. These results indicate the competence of HGA-DDI in DDI
prediction. While other graph embedding algorithms may exhibit a bias towards encoding data towards
positive samples due to data imbalance, this results in HGA-DDI not achieving the best performance
in terms of PRE and SPE metrics. However, when considering comprehensive metrics such as F1 and
MCC, it becomes evident that HGA-DDI possesses better capability in distinguishing between positive
and negative samples. This discriminative ability highlights the advantage of the heterogeneous graph
attention network employed by HGA-DDI. Furthermore, the highest ACC value obtained by our model
suggests its accuracy in identifying DDI samples and its effective extraction of graph embeddings using
the graph attention network. Figure 3 provides a visual representation of the comparison results.

Figure 3. Visualization of graph embedding methods comparison results.

3.4. Sensitivity analysis of classifier algorithms

To validate the rationale and performance of the MLP classifier model, we compared it with several
machine learning methods. The results are in Table 3.
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Table 3. Comparison with other classifier algorithms.

Model ACC PRE SEN SPE F1 MCC
SVM 0.946 0.951 0.939 0.952 0.945 0.891
RF 0.939 0.938 0.941 0.937 0.939 0.878
GBDT 0.928 0.927 0.929 0.927 0.928 0.856
KNN 0.943 0.967 0.918 0.967 0.941 0.887
MLP 0.952 0.964 0.939 0.965 0.952 0.904

Figure 4. Visualization of classifier algorithms comparison results.

In Table 3, similar to the comparison with other graph embedding algorithms, the MLP algorithm
did not outperform in all metrics. These slight differences may be attributed to algorithmic errors and
the learning tendency of the classifier itself. However, the MLP classifier performed the best in terms
of ACC, F1, and MCC, which are comprehensive measures of the model’s predictive ability for both
positive and negative samples. This aligns with our expectations, and thus we can consider MLP as the
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most suitable classifier algorithm for HGA-DDI among the current options. Figure 4 provides a visual
representation of the comparison results.

3.5. Analysis of meta-paths

In this work, we propose and use two meta-paths, IIFM and IDIM. The weights of the two
meta-paths which indicate the learning of the importance assigned by our method are 0.964 and 0.036
respectively. The visualized results as shown in Figure 5:

Figure 5. Visualization of classifier algorithms comparison results.

As shown in the Figure 5, the meta-path IDIM is given a higher weight on our training datasets,
which means that the method regards IDIM as the most critical meta-path for identifying drug
interactions. The experimental results also reflect that IDIM has more effective features than IIFM. It
also further confirms the validity of semantic-level attention and the difference in the effectiveness of
the meta-paths.

3.6. Case study

To verify the ability of this method to predict real data, we conduct database and literature studies
as case studies. In the database study, to demonstrate the advancement of the model in considering
interaction relationships with shared drugs as edges, we focused on studying newly developed drugs
related to COVID-19. We collected a total of 1734 drugs related to Covid-19 from PubChem,
differentiating them by whether they were included in PubChem between 2021 and 2022, resulting in
57 new drugs. We predicted a total of 98,718 potential relationships between each drug and all drugs.
Using HGA-DDI for prediction, a total of 19,055 interactions were predicted as positive, with 8128
interactions classified as high-confidence samples (predicted probability of being positive greater than
95%).
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We statistically analyzed these high-confidence samples to identify the top 20 sensitive new drugs
in terms of drug interactions. The results are in Table 4 (as some compounds were not named, they are
represented by their PubChem ID and molecular formula):

Table 4. The top 20 most sensitive new drugs in terms of drug interactions.

PubChem ID PubChem inclusion date Molecular formula Number of related DDIs
155803731 20210305 C27H18Cl2N4O4 1734
156599206 20210922 C96H126N12Na6O21-6 1652
155803730 20210305 C27H19ClN4O4 1444
155801622 20210226 C26H30N4O2S 1418
155803732 20210305 C27H20ClN3O2 1314
155801623 20210226 C28H34N4O2S 1208
155294426 20210114 C8H16N2O3S 889
155294427 20210114 C12H17NO2 839
155804576 20210316 C29H44N4O6 793
155294420 20210114 C9H18N2O3S 768
155294419 20210114 C8H14N2O2S 723
155801621 20210226 C29H36N4O2S 683
156592231 20210908 C31H53N3NaO49S8 601
155804534 20210316 C9H19BrN5O4P 577
155804577 20210316 C29H46N4O7 542
155804568 20210316 C25H33N3O4 430
162396309 20220119 C23H26ClN5O3 359
165360157 20221011 C54H83N15O21S2 339
155804583 20210316 C13H18N4O 288
155804575 20210316 C29H38N4O6 256

Through database research, we have demonstrated the potential of HGA-DDI in predicting
interactions for new drugs. Additionally, in the literature study, we collected the reports on DDIs from
PubMed in recent three years, and found a total of 36 DDIs, including clinical, pharmaceutical and in
vitro experimental methods. Twenty DDIs are not all composed of small molecule drugs, and among
16 DDIs that are composed with two small molecule drugs and have substructure molecular
fingerprints on PubChem, only 2 of them not be included by Drugbank. They are interaction between
voriconazole and tamsulosin hydrochloride [44] and interaction between voriconazole and
methotrexate [45], which are also predicted to be positive samples. The results show that our method
has the ability to correctly predict data outside our datasets.

4. Conclusions

Drug-drug interactions have high value for medical and clinical studies, especially drug
development. Capturing more and richer comprehensive information about DDIs is one of the key
tasks in public health and drug development. In silico methods to predict drug interaction can
effectively guide the medical experiment, and modeling DDIs as a graph structure can effectively
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analyze the correlation. In this work, we propose an interaction prediction method based on graph
attention mechanism, and the learning of semantic-attention mechanism is effectively used in the
method. Finally, the prediction performance of this model is better than five comparison models on
our testing datasets. Moreover, through the analysis of the meta-paths selection, the importance of the
reference neighbor node weight of this problem is verified. Finally, through several testing cases, it
demonstrated the availability of our method.
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