Electronic
Research Archive

Research article

Existence and multiplicity of solutions for fractional $p(x)$-Kirchhoff-type problems

Zhiwei Hao* and Huiqin Zheng

School of Mathematics and Computing Science, Hunan University of Science and Technology, Xiangtan 411201, China

* Correspondence: Email: haozhiwei@hnust.edu.cn.

$$
\begin{aligned}
& \text { Abstract: In this paper, we deal with the existence and multiplicity of solutions for fractional } p(x) \text { - } \\
& \text { Kirchhoff-type problems as follows: } \\
& \qquad\left\{\begin{array}{cl}
M\left(\int_{Q} \frac{1}{p(x, y)} \frac{|v(x)-v(y)|^{p(x, y)}}{\left.|x-y|\right|^{d+s p(x, y)}} d x d y\right)\left(-\Delta_{p(x)}\right)^{s} v(x) \\
=\lambda|v(x)|^{r(x)-2} v(x), & \text { in } \Omega, \\
v=0, & \text { in } \mathbb{R}^{d} \backslash \Omega,
\end{array}\right.
\end{aligned}
$$

where $\left(-\Delta_{p(x)}\right)^{s}$ is the fractional $p(x)$-Laplacian. Different from the previous ones which have recently appeared, we weaken the condition of M and obtain the existence and multiplicity of solutions via the symmetric mountain pass theorem and the theory of the fractional Sobolev space with variable exponents.

Keywords: the symmetryic mountain pass theorem; Kirchhoff-type problem; fractional $p(x)$-Laplacian; fractional Sobolev space with variable exponents

1. Introduction and main results

In [1], Kirchhoff studied a stationary version of the equation

$$
\begin{equation*}
\rho_{0} \frac{\partial^{2} v}{\partial t^{2}}-\left(\frac{p_{1}}{h_{1}}+\frac{E_{0}}{2 L} \int_{0}^{L}\left|\frac{\partial v}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} v}{\partial t^{2}}=0 \tag{1.1}
\end{equation*}
$$

where $\rho_{0}, p_{1}, h_{1}, L$ and E_{0} are constants. Such equation extends the classical D'Alembert wave equation by considering the effects of the changes in the length of the string during the vibrations. It is worthwhile to note that the Eq (1.1) received much attention only after Lions [2] put forward an abstract
framework to the Eq (1.1). After this work, various equations of Kirchhoff-type have been studied extensively. For instance, many researchers have studied the Kirchhoff-type equations involving the p-Laplacian, which can be found in [3-6], $p(x)$-Laplacian (see, for example, [7-11]) and fractional $p(x)$-Laplacian (see [12-15]).

Recently, lots of researchers have been interested in the Kirchhoff-type equations involving the p-Laplacian (see [16, 17]). In [5], Liu proved the existence of infinite solutions for the p-Kirchhofftype problems via the fountain theorem. Since the infimum of its principal eigenvalue is zero, the p Laplacian is not homogenous, and generally it does not have the alleged first eigenvalue. Hence, more and more attention has been given to partial differential equations with nonstandard growth conditions. Dai and Hao [18] investigated the existence and multiplicity of solutions to Kirchhoff-type problems associated with the $p(x)$-Laplacian via a direct variational approach. The $p(x)$-Laplacian has more complex nonlinear properties than the p-Laplacian, and we can refer to $[11,19]$ for more details about it.

In the last few years, many researchers have tended to focus on the fractional $p(x)$-Kirchhofftype problems. Kaufmann, Rossi and Vidal [20] introduced the fractional $p(x)$-Laplacian $\Delta_{p(x)} v=$ $\operatorname{div}\left(|\nabla v|^{p(x)-2}\right)$ (see, for example, [21,22]). In [23], the authors investigated the fractional $p(x)$-Laplace operator and associated fundamental properties about new fractional Sobolev spaces with variable exponents. In [14], by using dint of the variational methods, Azroul et al. investigated the existence of solutions for the Kirchhoff-type problems involving fractional $p(x)$-Laplacian as follows:

$$
\left(P_{M}^{s}\right) \begin{cases}M\left(\int_{Q} \frac{1}{p(x, y)} \frac{|v(x)-v(y)|^{p(x, y)}}{|x-y|^{d+s p(x, y)}} d x d y\right)\left(-\Delta_{p(x)}\right)^{s} v(x) & \text { in } \Omega \\ =\lambda|v(x)|^{r(x)-2} v(x), & \text { in } \mathbb{R}^{d} \backslash \Omega \\ v=0, & \end{cases}
$$

where $M \in Q_{1}$, i.e., M satisfies the following: there exist $0<a_{1} \leq a_{2}$ and $\beta>1$ such that

$$
a_{1} \tau^{\beta-1} \leq M(\tau) \leq a_{2} \tau^{\beta-1} \text { for all } \tau \in \mathbb{R}^{d} .
$$

In [24], applying the symmetric mountain pass theorem, Azroul, Benkirane and Shimi resolved the existence solutions to the following Kirchhoff-type problems involving fractional $p(x, \cdot)$-Laplacian in \mathbb{R}^{d} :

$$
\left\{\begin{array}{l}
M\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{1}{p(x, y)} \frac{|v(x)-v(y)|^{p(x, y)}}{\left.|x-y|\right|^{d+s p(x, y)}} d x d y\right)\left(-\Delta_{p(x,)}\right)^{s} v(x) \\
\quad+|v|^{\bar{p}(x)-2} v=f(x, v), \\
v \in W^{s, p(x, y)}\left(\mathbb{R}^{d}\right)
\end{array} \quad \text { in } \mathbb{R}^{d}\right.
$$

where $M \in Q_{2}$, i.e., the continuous function $M: \mathbb{R}_{0}^{+}:=[0,+\infty) \rightarrow \mathbb{R}_{0}^{+}$satisfies the following conditions:
$\left(M_{1}\right)$: Let $\epsilon_{0}>0$ and $\alpha \in\left(1,\left(p_{s}^{*}\right)_{-} / p_{+}\right)$. Suppose that

$$
\begin{equation*}
k M(k) \leq \alpha \widehat{M}(k) \text { for all } k \geq \epsilon_{0} \tag{1.2}
\end{equation*}
$$

where

$$
\widehat{M}(k)=\int_{0}^{k} M\left(\epsilon_{0}\right) d \epsilon_{0}
$$

and $\left(p_{s}^{*}\right)_{-}, p_{+}$and p_{-}will be introduced in Section 2.
$\left(M_{2}\right):$ let $\epsilon>0$. Suppose $l=l(\epsilon)>0$ such that

$$
\begin{equation*}
M(k) \geq l \text { for all } k \geq \epsilon . \tag{1.3}
\end{equation*}
$$

By comparison their definitions, we find that the condition of Q_{2} is weaker than Q_{1}. Hence the spontaneous question is to show which results we can obtain if we replace $M \in Q_{1}$ by $M \in Q_{2}$ in [14].

Inspired by the fractional Sobolev spaces with variable exponents (for more details see [23]) and the papers referred to above, we aim to deal with the existence and multiplicity solutions to the fractional $p(x)$-Kirchhoff-type problem $\left(P_{M}^{s}\right)$ which is introduced in [14], where

- $M \in Q_{2}$ and λ is a positive real constant;
- $Q:=\mathbb{R}^{2 d} \backslash\left(\Omega^{c} \times \Omega^{c}\right)$, where $\Omega \in \mathbb{R}^{d}$ is a Lipschitz bounded open domain and $\Omega^{c}=\mathbb{R}^{d} \backslash \Omega, d \geq 3$;
- the continuous functions $r: \bar{\Omega} \rightarrow(1,+\infty)$ and $p: \bar{Q} \rightarrow(1,+\infty)$ are bounded;
- for $s \in(0,1)$, the operator $\left(-\Delta_{p(x)}\right)^{s}$ is the following fractional $p(x)$-Laplacian

$$
\left(-\Delta_{p(x)}\right)^{s} v(x)=\text { p.v. } \int_{\mathbb{R}^{d}} \frac{|v(x)-v(y)|^{p(x)-2}(v(x)-v(y))}{|x-y|^{d+s p(x, y)}} d y \text { for all } x \in \mathbb{R}^{d},
$$

where p.v. stands for Cauchy principle value for brevity.
We introduce our main conclusions and results as follows:
Theorem 1.1. For the continuous function $r: \bar{\Omega} \rightarrow(1,+\infty)$, let

$$
\begin{equation*}
1<r_{-}:=\inf _{x \in \bar{\Omega}} r(x) \leq r(x)<r_{+}:=\sup _{x \in \bar{\Omega}} r(x)<p_{s}^{*}(x) . \tag{1.4}
\end{equation*}
$$

Suppose that M satisfies (1.3) and $r \in C_{+}(\bar{\Omega})$ such that

$$
\begin{equation*}
1<r(x) \leq r_{+}<p_{-} \text {for all } x \in \bar{\Omega}, \tag{1.5}
\end{equation*}
$$

then problem $\left(P_{M}^{s}\right)$ has a nontrivial weak solution, if there is $\lambda_{1}>0$ such that

$$
\lambda_{1}<\lambda<+\infty .
$$

Theorem 1.2. Suppose that $p \in C_{+}(\bar{Q})$ is symmetric with $s p_{+}<d$ and $s \in(0,1)$. Let $M \in Q_{2}$, $r \in C_{+}(\bar{Q})$ with

$$
\begin{gather*}
\alpha p_{+}<r_{-}, \tag{1.6}\\
r_{+}<p_{s}^{*}(x) \text { for all } x \in \bar{\Omega} . \tag{1.7}
\end{gather*}
$$

Then problem $\left(P_{M}^{s}\right)$ has a sequence $\left\{u_{n}\right\}_{n}$ of nontrivial solutions, if there is a constant $c_{1}>0$ such that

$$
0<\lambda<c_{1} .
$$

Remark 1.3. We discuss the $p(x)$-Kirchhoff-type problem $\left(P_{M}^{s}\right)$ in two situations: if r satisfies (1.5), we apply the direct variational methods; we utilize the symmetric mountain pass theorem if r satisfies (1.6).

The paper is organized as follows: we introduce the fractional Sobolev spaces with variable exponents and some necessary properties of variable Lebesgue spaces in Section 2. In the end, Section 3 gives the proofs of Theorems 1.1 and 1.2.

2. Preliminaries

In this section, we present some useful properties of the fractional Sobolev spaces with variable exponents and the generalized Lebesgue spaces. We can refer to $[17,18,20,25,26]$ and the references therein for more details.

We always suppose that Ω is a Lipschitz bounded open domain in \mathbb{R}^{d} and $\bar{\Omega}$ is a closure of Ω. Consider a continuous function $r: \bar{\Omega} \rightarrow(1,+\infty)$ and set

$$
C_{+}(\bar{\Omega})=\left\{r \in(\bar{\Omega})^{c}: r(x)>1 \text { for all } x \in \bar{\Omega}\right\} .
$$

For a measurable function v and any $r \in C_{+}(\bar{\Omega})$, the modular functional $\rho_{r(x)}(v)$ is defined by

$$
\rho_{r(x)}(v)=\int_{\Omega}|v(x)|^{r(x)} d x
$$

The variable Lebesgue space is defined as

$$
L^{r(x)}:=L^{r(x)}(\Omega)=\left\{v: \rho_{r(x)}(\lambda v)<+\infty\right\}
$$

equipped with the norm

$$
\|v\|_{L^{\prime(x)}}=\inf \left\{\lambda>0: \rho_{r(x)}(f / \lambda) \leq 1\right\} .
$$

Suppose $r \in C_{+}(\bar{\Omega})$ such that $\frac{1}{r(x)}+\frac{1}{r^{\prime}(x)}=1$, where $r^{\prime}(x)$ is the conjugate exponent of $r(x)$. Then the Hölder inequality is as follows:

Lemma 2.1 ([20]). Let $v \in L^{r(x)}$ and $u \in L^{r^{\prime}(x)}$. There exists a positive constant c such that

$$
\left|\int_{\Omega} v(x) u(x) d x\right| \leq c\|v\|_{L^{r(x)}}\|u\|_{L^{\prime^{\prime}(x)}}
$$

Proposition 2.2 ([27]). Let $v \in L^{r(x)}$. The following properties hold:
(i) $\|v\|_{L^{(x)}}=1($ resp. $>1,<1) \Leftrightarrow \rho_{r(x)}(v)=1($ resp. $>1,<1)$;
(ii) $\|v\|_{L^{\prime(x)}}<1 \Rightarrow\|v\|_{L^{(x)}}^{r_{+}^{+}} \leq \rho_{r^{(x)}}(v) \leq\|v\|_{L^{(x)}}^{r_{-}}$;
(iii) $\|v\|_{L^{r^{(x)}}}>1 \Rightarrow\|v\|_{L^{\prime(x)}}^{r_{-}} \leq \rho_{r(x)}(v) \leq\|v\|_{L^{(x)}}^{r^{+}}$;
(iv) $\lim _{k \rightarrow+\infty}\left\|v_{k}-v\right\|_{L^{r(x)}}=0 \Leftrightarrow \lim _{k \rightarrow+\infty} \rho_{r(x)}\left(v_{k}-v\right)=0$.

We show the following proposition, which is from Theorems 1.6 and 1.10 in [26].
Proposition 2.3. Suppose $1<r_{-} \leq r(x) \leq r_{+}<\infty$; then, $\left(L^{r(x)},\|\cdot\|_{L^{\prime(x)}}\right)$ is a reflexive uniformly convex and separable Banach space.

Let the continuous function $p: \bar{Q} \rightarrow(1,+\infty)$ be bounded. We set

$$
\begin{equation*}
1<p_{-}:=\inf _{(x, y) \in \bar{Q}} p(x, y) \leq p(x, y) \leq p_{+}:=\sup _{(x, y) \in \bar{Q}} p(x, y) \tag{2.1}
\end{equation*}
$$

and p is symmetric, if $p(x, y)$ satisfies the following

$$
\begin{equation*}
p(x, y)=p(y, x) \text { for all }(x, y) \in \bar{Q} . \tag{2.2}
\end{equation*}
$$

We assume that

$$
\bar{p}(x):=p(x, x) \text { for all } x=y .
$$

Throughout this paper, $s \in(0,1)$ and the fractional Sobolev space with variable exponents is defined in [14] given by

$$
S=\left\{\begin{array}{l}
v: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { measurable such that }\left.v\right|_{\Omega} \in L^{\bar{p}(x)} \text { with } \\
\int_{Q} \frac{|v(x)-v(y)|^{p(x, y)}}{\lambda^{p(x, y)}|x-y|^{d+s p(x, y)}} d x d y<+\infty \text { for some } \lambda>0
\end{array}\right\} .
$$

The norm of S is as follows

$$
\|v\|_{S}=\|v\|_{L^{\bar{p}}(x)}+[v]_{S},
$$

where $[v]_{S}$ is defined by

$$
[v]_{S}=[v]_{s, p(x, y)}(Q)=\inf \left\{\lambda>0: \int_{Q} \frac{|v(x)-v(y)|^{p(x, y)}}{\lambda^{p(x, y)}|x-y|^{d+s p(x, y)}} d x d y \leq 1\right\}
$$

Also, $\left(S,\|\cdot\|_{S}\right)$ is a separable reflexive Banach space which is introduced in [14].
Now, we denote the linear subspace of S given by

$$
S_{0}=\left\{v \in S: v=0 \quad \text { a.e. in } \mathbb{R}^{d} \backslash \Omega\right\}
$$

the modular norm is as follows

$$
\|v\|_{S_{0}}:=[v]_{S}=\inf \left\{\lambda>0: \int_{Q} \frac{|v(x)-v(y)|^{p(x, y)}}{\lambda^{p(x, y)}|x-y|^{d+s p(x, y)}} d x d y \leq 1\right\} .
$$

We know that $\left(S_{0},\|\cdot\|_{S_{0}}\right)$ is a separable, reflexive and uniformly convex Banach space (see Lemma 2.3 in [14]).

We denote the modular $\rho_{p(x, y)}: S_{0} \rightarrow \mathbb{R}$ by

$$
\rho_{p(x, y)}(v)=\int_{Q} \frac{|v(x)-v(y)|^{p(x, y)}}{|x-y|^{d+s p(x, y)}} d x d y
$$

where

$$
\|v\|_{\rho_{p(x, y)}(v)}=\inf \left\{\lambda>0: \rho_{p(x, y)}(v / \lambda) \leq 1\right\}=[v]_{S} .
$$

Similarly to Proposition 2.1, $\rho_{p(x, y)}$ has the following property:
Lemma 2.4 ([13]). Let p satisfy (2.1) and $s \in(0,1)$. Suppose $v \in S_{0}$; we can obtain
(i) $\|v\|_{S_{0}} \leq 1 \Rightarrow\|v\|_{S_{0}}^{p_{+}} \leq \rho_{p(x, y)}(v) \leq\|v\|_{S_{0}}^{p_{-}}$;
(ii) $\|v\|_{S_{0}} \geq 1 \Rightarrow\|v\|_{S_{0}}^{p_{-}} \leq \rho_{p(x, y)}(v) \leq\|v\|_{S_{0}}^{p_{+}}$.

We will introduce a continuous compact embedding theorem as follows.

Theorem 2.5 ([13]). Let $s \in(0,1)$ and p satisfy (2.1) and (2.2) with $s p_{+}<d$. If r satisfies (1.4), i.e.,

$$
1<r_{-} \leq r(x)<p_{s}^{*}(x):=\frac{d \bar{p}(x)}{d-s \bar{p}(x)} \text { for all } x \in \bar{\Omega} .
$$

Then we have

$$
\|v\|_{L^{r^{(x)}}} \leq c\|v\|_{S} \text { for any } v \in S
$$

where c is a positive constant depending on p, s, r, d and Ω. In other words, the embedding $S \hookrightarrow L^{r(x)}$ is continuous and this embedding is compact.
Remark 2.6. (i) Theorem 2.5 still holds if we replace S by S_{0}.
(ii) Since $1<r_{-} \leq r(x)<p_{s}^{*}(x)$, then according to Theorem 2.5 , we can get that $\|\cdot\|_{S_{0}}$ and $\|\cdot\|_{S}$ are equivalent on S_{0}.

We need to introduce the functional $\mathcal{L}: S_{0} \rightarrow S_{0}^{*}$ defined by

$$
\langle\mathcal{L}(v), \varphi\rangle=\int_{Q} \frac{\mid v(x)-v(y)^{p(x, y)-2}(v(x)-v(y))(\varphi(x)-\varphi(y))}{|x-y|^{d+s p(x, y)}} d x d y
$$

for all $\varphi \in S_{0}$, where S_{0}^{*} is the dual space of S_{0}.
Lemma 2.7 ([23]). Suppose that p satisfies (2.1), (2.2) and $s \in(0,1)$. Then the following results hold:
(i) \mathcal{L} is a bounded and strictly monotone operator;
(ii) \mathcal{L} is a homeomorphism;
(iii) \mathcal{L} is a mapping of type $\left(S_{+}\right)$, i.e., $v_{n} \rightarrow v$ in S_{0}, if $v_{n} \rightharpoonup v$ in S_{0} and \mathcal{L}

$$
\limsup _{n \rightarrow+\infty}\left\langle\mathcal{L}\left(v_{n}\right)-\mathcal{L}(v), v_{n}-v\right\rangle \leq 0
$$

3. Proof of the main results

Definition 3.1. We say that $v \in S_{0}$ is a weak solution of problem $\left(P_{M}^{s}\right)$, if

$$
\begin{aligned}
& M\left(\sigma_{p(x, y)}(v)\right) \int_{Q} \frac{|v(x)-v(y)|^{p(x, y)-2}(v(x)-v(y))(\varphi(x)-\varphi(y))}{|x-y|^{d+s p(x, y)}} d x d y \\
& \quad-\lambda \int_{\Omega}|v(x)|^{r(x)-2} v(x) \varphi(x) d x=0
\end{aligned}
$$

for all $\varphi \in S_{0}$, where

$$
\sigma_{p(x, y)}(v)=\int_{Q} \frac{1}{p(x, y)} \frac{|v(x)-v(y)|^{p(x, y)}}{|x-y|^{d+s p(x, y)}} d x d y .
$$

For the purpose of formulating the variational method of problem $\left(P_{M}^{s}\right)$, we present the functional $I_{\lambda}: S_{0} \rightarrow \mathbb{R}$ given by

$$
\begin{aligned}
I_{\lambda}(v) & =\widehat{M}\left(\int_{Q} \frac{1}{p(x, y)} \frac{|v(x)-v(y)|^{p(x, y)}}{|x-y|^{d+s p(x, y)}} d x d y\right)-\lambda \int_{\Omega} \frac{1}{r(x)}|v(x)|^{r(x)} d x \\
& =\widehat{M}\left(\sigma_{p(x, y)}(v)\right)-\lambda \int_{\Omega} \frac{1}{r(x)}|v(x)|^{r(x)} d x .
\end{aligned}
$$

It is not tough to demonstrate that $I_{\lambda} \in C^{1}\left(S_{0}, \mathbb{R}\right)$ and I_{λ} is well defined. Moreover, for all $v, \varphi \in S_{0}$, the Gateaux derivative of I_{λ} is introduced by

$$
\begin{aligned}
\left\langle I_{\lambda}^{\prime}(v), \varphi\right\rangle & =M\left(\sigma_{p(x, y)}\right)(v) \int_{Q} \frac{|v(x)-v(y)|^{p(x, y)-2}(v(x)-v(y))(\varphi(x)-\varphi(y))}{|x-y|^{d+s p(x, y)}} d x d y \\
& -\lambda \int_{\Omega}|v(x)|^{r(x)-2} v(x) \varphi(x) d x=0 .
\end{aligned}
$$

Thus, the weak solutions of $\left(P_{M}^{s}\right)$ correspond to the critical points of I_{λ}.
To prove Theorem 1.1, we need to introduce the next result:
Lemma 3.2. For $\lambda \in \mathbb{R}$, the functional I_{λ} is coercive on S_{0}.
Proof. We assume $\|v\|_{s_{0}}>1$. By $\left(M_{2}\right)$ we obtain that

$$
I_{\lambda}(v) \geq l \sigma_{p(x, y)}(v)-\frac{\lambda}{r_{-}} \rho_{p(x, y)}(v) .
$$

According to Remark 2.6 (i), we have

$$
I_{\lambda}(v) \geq \frac{l}{p_{+}}\|v\|_{S_{0}}^{p_{-}}-\frac{\lambda c^{r_{-}}}{r_{-}} \min \left\{\|v\|_{S_{0}}^{r_{-}},\|v\|_{S_{0}}^{r_{+}}\right\},
$$

where c is a positive constant depending on d, s, p, r and Ω. It follows from (1.5) that

$$
I_{\lambda}(v) \rightarrow \infty, \quad \text { as }\|v\|_{S_{0}} \rightarrow \infty .
$$

Next, we prove Theorem 1.1.
Proof of Theorem 1.1: According to Lemma 3.2, we know that I_{λ} is coercive on S_{0}. Moreover, I_{λ} is weakly lower semi-continuous on S_{0}. Applying Theorem 1.2 in [28], we find that there exists $\bar{v}_{1} \in S_{0}$ which is a global minimizer of I_{λ}; thus, the problem $\left(P_{M}^{s}\right)$ has a weak solution.

Now, we claim that the weak solution \bar{v}_{1} is nontrivial for all λ large enough. Indeed, let $\delta_{0}>1$ and $\left|\Omega_{1}\right|>0$, where Ω_{1} is an open subset of Ω. Suppose $\eta_{0} \in C_{0}^{\infty}(\bar{\Omega})$ such that $\eta_{0}(x)$ satisfies

$$
\begin{cases}\eta_{0}(x)=\delta_{0} & \text { for all } x \in \bar{\Omega}_{1} \\ 0 \leq \eta_{0}(x) \leq \delta_{0} & \text { for all } x \in \Omega \backslash \Omega_{1}\end{cases}
$$

Then we have that

$$
\begin{aligned}
I_{\lambda}\left(\eta_{0}\right) & =\widehat{M}\left(\sigma_{p(x, y)}\left(\eta_{0}\right)\right)-\lambda \int_{\Omega} \frac{1}{r(x)}\left|\eta_{0}(x)\right|^{r(x)} d x \\
& \leq c_{3}-\frac{\lambda}{r_{+}} \int_{\Omega}\left|\eta_{0}(x)\right|^{r(x)} d x \leq c_{3}-\frac{\lambda}{r_{+}} \delta_{0}^{r_{-}}\left|\Omega_{1}\right|,
\end{aligned}
$$

where c_{3} is a constant. Therefore, we get

$$
I_{\lambda}\left(\eta_{0}\right)<0 \text { for all } \lambda \in\left(\lambda_{1},+\infty\right),
$$

if the nonnegative λ_{1} is large enough. The proof is now complete.
We say that I_{λ} satisfies $(\mathrm{Ce})_{c}$-condition for any $c \in \mathbb{R}$ if every sequence $\left\{v_{n}\right\}$ such that

$$
I_{\lambda}\left(v_{n}\right) \rightarrow c, \quad\left\|I_{\lambda}^{\prime}\left(v_{n}\right)\right\|_{s_{0}^{*}}^{*}\left(1+\left\|v_{n}\right\|_{s_{0}}\right) \rightarrow 0
$$

has a strongly convergent subsequence in S_{0}. In order to prove Theorem 1.2, we need the symmetric mountain pass theorem as follows.

Theorem 3.3 ($[29,30])$. For the infinite dimensional Banach space S, we define

$$
S=\bigoplus_{j=1}^{2} S_{j}
$$

where S_{2} is finite dimensional. Suppose $I \in C^{1}(S, \mathbb{R})$, if I satisfies the following
(1) $I(0)=0, I(-v)=I(v)$ for all $v \in S$;
(2) for all $c>0$, I satisfies $(C e)_{c}$-condition;
(3) suppose constants ρ, a are positive, and we have $\left.I\right|_{\partial B_{\rho} \cap Z} \geq a$;
(4) for each finite dimensional subspace $\tilde{S} \subset S$, we obtain $I(v) \leq 0$ on $\tilde{S} \backslash B_{r}$, if $r=r(\tilde{S})$ is a positive constant.

Then I possesses an unbounded sequence of critical values.
The following result shows that the functional I_{λ} satisfies the geometrical condition of the mountain pass.

Lemma 3.4. Let $c_{1}>0$ and $v \in S_{0}$ with $\|v\|_{S_{0}}=\rho>0$. Then for each $\lambda \in\left(0, c_{1}\right)$, we can choose $a>0$ such that $\left.I_{\lambda}\right|_{\partial B_{\rho} \cap Z} \geq a$.
Proof. Suppose $v \in S_{0}$ and $\rho \in(0,1)$ such that $\|u\|_{S_{0}}=\rho$. It follows from Theorem 2.5, (M_{1}), (1.6) and (1.7) that

$$
\begin{aligned}
I_{\lambda}(v) & =\widehat{M}\left(\sigma_{p(x, y)}(v)\right)-\lambda \int_{\Omega} \frac{1}{r(x)}|v(x)|^{r(x)} d x \\
& \geq \widehat{M}(1)\left(\sigma_{p(x, y)}(v)\right)^{\alpha}-\frac{\lambda}{r_{-}} \int_{\Omega}|v(x)|^{r(x)} d x \\
& \geq \frac{\widehat{M}(1)}{\left(p_{+}\right)^{\alpha}}\left(\rho_{p(x, y)}(v)\right)^{\alpha}-\frac{\lambda}{r_{-}} \rho_{r(x)}(v) \\
& \geq \frac{\widehat{M}(1)}{\left(p_{+}\right)^{\alpha}}\|\nu\|_{S_{0}}^{\alpha p_{+}}-\frac{\lambda}{r_{-}}\|v\|_{L^{(x)}}^{r_{+}} \\
& \geq \frac{\widehat{M}(1)}{\left(p_{+}\right)^{\alpha}}\|\nu\|_{S_{0}}^{\alpha p_{+}}-\frac{\lambda c^{r_{+}}}{r_{-}}\|v\|_{S_{0}}^{r_{+}} \\
& \geq \rho^{\alpha p_{+}}\left(\frac{\widehat{M}(1)}{\left(p_{+}\right)^{\alpha}}-\frac{\lambda c^{r_{+}}}{r_{-}} \rho^{r_{+}-\alpha p_{+}}\right) .
\end{aligned}
$$

Thus, choosing ρ even smaller, we have

$$
I_{\lambda}(v)>0,
$$

since $\alpha p_{+}<r_{-}<r_{+}$.

Lemma 3.5. For each finite dimensional subspace $\widetilde{S} \subset S_{0}, v \in \widetilde{S}$ and $\lambda \in \mathbb{R}$, there exists $r=r(\widetilde{S})>0$ such that

$$
I_{\lambda}(v) \leq 0,
$$

where $\|v\|_{S_{0}} \geq r$.
Proof. Suppose $\phi \in C_{0}^{\infty}(\Omega)$ with $\phi>0$. According to $\left(M_{1}\right)$, one must have

$$
\begin{equation*}
\widehat{M}(k) \leq \widehat{M}(1) k^{\alpha} \text { for all } k \geq 1 \tag{3.1}
\end{equation*}
$$

Therefore, by (3.1), we have

$$
\begin{aligned}
I_{\lambda}(t \phi) & =\widehat{M}\left(\sigma_{p(x, y)}(t \phi)\right)-\lambda \int_{\Omega} \frac{1}{r(x)}|t \phi|^{r(x)} d x \\
& \leq \widehat{M}(1) t^{\alpha p_{+}}\left(\sigma_{p(x, y)}(\phi)\right)^{\alpha}-\frac{\lambda}{r_{+}} \int_{\Omega}|t \phi|^{r(x)} d x \\
& \leq \frac{\widehat{M}(1)}{\left(p_{-}\right)^{\alpha}} t^{\alpha p_{+}}\left(\rho_{p(x, y)}(\phi)\right)^{\alpha}-t^{r_{-}} \frac{\lambda}{r_{+}} \int_{\Omega}|\phi|^{r(x)} d x .
\end{aligned}
$$

It follows from (1.6) that

$$
\lim _{t \rightarrow \infty} I_{\lambda}(t \phi)=-\infty .
$$

Thus, there exists a large $t>1$ such that

$$
I_{\lambda}(v) \leq 0 .
$$

The statement holds.
Lemma 3.6. The functional I_{λ} satisfies condition $(C e)_{c}$ in S_{0}.
Proof. For all $c \in \mathbb{R}$, suppose a sequence $\left\{v_{n}\right\} \subset S_{0}$ such that

$$
\begin{align*}
& I_{\lambda}\left(v_{n}\right) \xrightarrow[n \rightarrow+\infty]{\longrightarrow} c_{2}, \\
& I_{\lambda}^{\prime}\left(v_{n}\right) \xrightarrow[n \rightarrow+\infty]{\longrightarrow} 0 . \tag{3.2}
\end{align*}
$$

First, we claim that $\left\{v_{n}\right\} \subset S_{0}$ is bounded. Arguing by contrary, passing eventually to a subsequence, still denote by v_{n}, we assume that $\lim _{n \rightarrow+\infty}\left\|v_{n}\right\|_{S_{0}}=+\infty$. Hence, for all n, we can consider that $\left\|v_{n}\right\|_{S_{0}}>1$. According to (3.2), Lemma 2.4, $\left(\underset{(M)}{\left(M_{1}\right)}\right.$) and $\left(M_{2}\right)$, we get that

$$
\begin{aligned}
1 & +c_{2}+\left\|v_{n}\right\|_{S_{0}} \\
& \geq I_{\lambda}\left(v_{n}\right)-\frac{1}{\alpha p_{+}}\left\langle I_{\lambda}^{\prime}\left(v_{n}\right), v_{n}\right\rangle \\
& =\widehat{M}\left(\sigma_{p(x, y)}\left(v_{n}\right)\right)-\lambda \int_{\Omega} \frac{\lambda}{r(x)}\left|v_{n}(x)\right|^{r(x)} d x \\
& -\frac{1}{\alpha p_{+}} M\left(\sigma_{p(x, y)}\left(v_{n}\right)\right) \int_{Q} \frac{\left|v_{n}(x)-v_{n}(y)\right|^{p(x, y)}}{|x-y|^{d+s p(x, y)}} d x d y+\frac{\lambda}{\alpha p_{+}} \int_{\Omega}\left|v_{n}(x)\right|^{r(x)} d x \\
& \geq \widehat{M}\left(\sigma_{p(x, y)}\left(v_{n}\right)\right)-\frac{1}{\alpha p_{+}} M\left(\sigma_{p(x, y)}\left(v_{n}\right)\right) \int_{Q} \frac{\left|v_{n}(x)-v_{n}(y)\right|^{p(x, y)}}{|x-y|^{d+s p(x, y)}} d x d y \\
& -\frac{\lambda}{r_{-}} \int_{\Omega}\left|v_{n}(x)\right|^{r(x)} d x+\frac{\lambda}{\alpha p_{+}} \int_{\Omega}\left|v_{n}(x)\right|^{r(x)} d x \\
& \geq l \sigma_{p(x, y)}\left(v_{n}\right)-\frac{1}{p_{+}} \widehat{M}(1)\left(\sigma_{p(x, y)}\left(v_{n}\right)\right)^{\alpha-1} \rho_{p(x, y)}\left(v_{n}\right)-\left(\frac{\lambda}{r_{-}}-\frac{\lambda}{\alpha p_{+}}\right) \rho_{r^{\prime}(x)}\left(v_{n}\right) \\
& \geq \frac{l}{p_{+}} \rho_{p(x, y)}\left(v_{n}\right)-\frac{\widehat{M}(1)}{p_{+}\left(p_{-}\right)^{\alpha-1}}\left(\rho_{p(x, y)}\left(v_{n}\right)\right)^{\alpha}-\left(\frac{\lambda}{r_{-}}-\frac{\lambda}{\alpha p_{+}}\right) \min \left\{\left\|v_{n}\right\|_{L^{r^{\prime}(x)}}^{r_{+}},\left\|v_{n}\right\|_{L^{r^{\prime}(x)}}^{r_{-}}\right\} \\
& \geq \frac{l}{p_{+}}\left\|v_{n}\right\|_{S_{0}-}^{p_{-}}-\frac{\widehat{M}(1)}{\left(p_{-}\right)^{\alpha}}\left\|v_{n}\right\|_{S_{0}}^{\alpha p_{+}}-\left(\frac{\lambda c^{-}}{r_{-}}-\frac{\lambda c^{r_{-}}}{\alpha p_{+}}\right) \min \left\{\left\|v_{n}\right\|_{S_{0}}^{r_{+}},\left\|v_{n}\right\|_{S_{0}}^{r_{-}}\right\},
\end{aligned}
$$

when n is large enough. Dividing the above inequality by $\left\|v_{n}\right\|_{S_{0}}$. According to $\alpha p_{+}<r_{-}<r_{+}$, we have $-\left(\frac{\lambda}{r_{-}}-\frac{\lambda}{\alpha p_{+}}\right)>0$. By passing to the limit as $n \rightarrow+\infty$, we can get a contradiction.

Since S_{0} is reflexive, then we can assume that $v_{n} \rightharpoonup \bar{v}$ in S_{0}. It follows from (3.2) that

$$
\lim _{n \rightarrow+\infty}\left\langle I_{\lambda}^{\prime}\left(v_{n}\right), v_{n}-\bar{v}\right\rangle=0
$$

that is

$$
\begin{gather*}
M\left(\sigma_{p(x, y)}\right)\left(v_{n}\right) \int_{Q} \frac{\left|v_{n}(x)-v_{n}(y)\right|^{p(x, y)-2}\left(v_{n}(x)-v_{n}(y)\right)\left(\left(v_{n}(x)-v_{n}(y)\right)-(\bar{v}(x)-\bar{v}(y))\right)}{|x-y|^{d+s p(x, y)}} \tag{3.3}\\
d x d y-\lambda \int_{\Omega}\left|v_{n}(x)\right|^{r(x)-2} v_{n}(x)\left(v_{n}(x)-\bar{v}(x)\right) d x=0 .
\end{gather*}
$$

Moreover, due to $r(x)<p_{s}^{*}(x)$ for all $x \in \bar{\Omega}$ and Remark 2.6 (i), we can conclude that $v_{n} \rightarrow \bar{v}$ in $L^{r(x)}$. Hence according to Lemma 2.1 and the proof of Theorem 3.1 in [14], we have that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|v_{n}\right|^{r(x)-2} v_{n}\left(v_{n}-\bar{v}\right) d x=0 \tag{3.4}
\end{equation*}
$$

Since $\left\{v_{n}\right\}$ is bounded in S_{0}, if necessary, we can suppose that

$$
\sigma_{p(x, y)}\left(v_{n}\right) \xrightarrow[n \rightarrow+\infty]{ } t_{2} \geq 0
$$

If $t_{2}=0$, then $\left\{v_{n}\right\} \rightarrow \bar{v}=0$ in S_{0} and the proof is complete. If $t_{2}>0$, according to the continuous function M, we have

$$
M\left(\sigma_{p(x, y)}\left(v_{n}\right)\right) \underset{n \rightarrow+\infty}{ } M\left(t_{2}\right) \geq 0 .
$$

Thus, for n large enough and $M \in Q_{2}$, we get that

$$
\begin{equation*}
0<l<M\left(\sigma_{p(x, y)}\left(v_{n}\right)\right)<c_{3} . \tag{3.5}
\end{equation*}
$$

Combining (3.3)-(3.5), we deduce that

$$
\begin{align*}
& \lim _{n \rightarrow+\infty} \int_{\Omega} \frac{\left|v_{n}(x)-v_{n}(y)\right|^{p(x, y)-2}\left(v_{n}(x)-v_{n}(y)\right)\left(\left(v_{n}(x)-v_{n}(y)\right)-(\bar{v}(x)-\bar{v}(y))\right)}{|x-y|^{d+s p(x, y)}} \tag{3.6}\\
& \quad d x d y=0 .
\end{align*}
$$

Using (3.6), Lemma 2.7 (iii) and $v_{n} \rightharpoonup \bar{v}$ in S_{0}, we obtain that

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow+\infty}\left\langle\mathcal{L}\left(v_{n}\right), v_{n}-\bar{v}\right\rangle \leq 0 \\
v_{n} \rightharpoonup \bar{v} \text { in } S_{0} \\
\mathcal{L} \text { is a mapping of type }\left(S_{+}\right)
\end{array} \Rightarrow v_{n} \rightarrow \bar{v} \text { in } S_{0} .\right.
$$

Moreover, according to (3.2), we have

$$
\lim _{n \rightarrow+\infty} I_{\lambda}\left(v_{n}\right)=I_{\lambda}(\bar{v})=c_{2} \text { and } I_{\lambda}^{\prime}(\bar{v})=0
$$

This completes the proof of Lemma 3.6.
Proof of Theorem 1.2: Clearly, $I_{\lambda}(0)=0$ and $I_{\lambda}(-v)=I_{\lambda}(v)$. According to Theorem 3.3 and Lemmas 3.4-3.6, we deduce that Theorem 1.2 holds.

Acknowledgments

This project was supported by the Hunan Provincial Natural Science Foundation (Nos. 2022JJ40145 and 2022JJ40146).

Conflict of interest

The authors declare that there is no conflict of interest.

References

1. G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
2. J. L. Lions, On some questions in boundary value problems of mathematical physics, NorthHolland Math. Stud., 30 (1978), 284-346. https://doi.org/10.1016/S0304-0208(08)70870-3
3. F. Fang, S. Liu, Nontrivial solutions of superlinear p-Laplacian equations, J. Math. Anal. Appl., 351 (2009), 138-146. https://doi.org/10.1016/j.jmaa.2008.09.064
4. Y. Guo, J. Nie, Existence and multiplicity of nontrivial solutions for p-Laplacian Schrödinger-Kirchhoff-type equations, J. Math. Anal. Appl., 428 (2015), 1054-1069. https://doi.org/10.1016/j.jmaa.2015.03.064
5. D. Liu, On a p-Kirchhoff equation via fountain theorem and dual fountain theorem, Nonlinear Anal., 72 (2010), 302-308. https://doi.org/10.1016/j.na.2009.06.052
6. L. Wang, K. Xie, B. Zhang, Existence and multiplicity of solutions for critical Kirchhoff-type p-Laplacian problems, J. Math. Anal. Appl., 458 (2018), 361-378. https://doi.org/10.1016/j.jmaa.2017.09.008
7. F. Cammaroto, L. Vilasi, Multiple solutions for a Kirchhoff-type problem involving the $p(x)$-Laplacian operator, Nonlinear Anal., 74 (2011), 1841-1852. https://doi.org/10.1016/j.na.2010.10.057
8. G. Dai, D. Liu, Infinitely many positive solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 704-710. https://doi.org/10.1016/j.jmaa.2009.06.012
9. G. Dai, R. Ma, Solutions for a $p(x)$-Kirchhoff type equation with Neumann boundary data, Nonlinear Anal. Real World Appl., 12 (2011), 2666-2680. https://doi.org/10.1016/j.nonrwa.2011.03.013
10. A. Zang, $p(x)$-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 337 (2008), 547-555. https://doi.org/10.1016/j.jmaa.2007.04.007
11. Q. Zhang, C. Zhao, Existence of strong solutions of a $p(x)$-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 69 (2015), 1-12. https://doi.org/10.1016/j.camwa.2014.10.022
12. E. Azroul, A. Benkirane, M. Shimi, An introduction to generalized fractional Sobolev space with variable exponent, arXiv preprint, 2019, arXiv:1901.05687. https://doi.org/10.48550/arXiv.1901.05687
13. E. Azroul, A. Benkirane, M. Shimi, Eigenvalue problems involving the fractional $p(x)$-Laplacian operator, Adv. Oper. Theory, 4 (2019), 539-555. https://doi.org/10.15352/aot.1809-1420
14. E. Azroul, A. Benkirane, M. Shimi, M. Srati, On a class of fractional $p(x)$-Kirchhoff type problems, Appl. Anal., 100 (2021), 383-402. https://doi.org/10.1080/00036811.2019.1603372
15. A. Bahrouni, Comparison and sub-supersolution principles for the fractional $p(x)$-Laplacian, J. Math. Anal. Appl., 458 (2018), 1363-1372. https://doi.org/10.1016/j.jmaa.2017.10.025
16. F. J. S. A. Corrêa, G. M. Figueiredo, On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Aust. Math. Soc., 74 (2006), 263-277. https://doi.org/10.1017/S000497270003570X
17. F. J. S. A. Corrêa, G. M. Figueiredo, On a p-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett., 22 (2009), 819-822. https://doi.org/10.1016/j.aml.2008.06.042
18. G. Dai, R. Hao, Existence of solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275-284. https://doi.org/10.1016/j.jmaa.2009.05.031
19. L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
20. U. Kaufmann, J. D. Rossi, R. Vidal, Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, Electron. J. Qual. Theory Differ. Equations, 76 (2017), 1-10. https://doi.org/10.14232/ejqtde.2017.1.76
21. E. Azroul, A. Benkirane, M. Shimi, General fractional Sobolev space with variable exponent and applications to nonlocal problems, Adv. Oper. Theory, 5 (2020), 1512-1540. https://doi.org/10.1007/s43036-020-00062-w
22. J. Zhang, D. Yang, Y. Wu, Existence results for a Kirchhoff-type equation involving fractional $p(x)$-Laplacian, AIMS Math., 6 (2021), 8390-8404. https://doi.org/10.3934/math. 2021486
23. A. Bahrouni, V. Rǎdulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 379389. https://doi.org/10.3934/dcdss. 2018021
24. E. Azroul, A. Benkirane, M. Shimi, Existence and multiplicity of solutions for fractional $p(x, \cdot)$-Kirchhoff-type problems in \mathbb{R}^{N}, Appl. Anal., 100 (2021), 2029-2048. https://doi.org/10.1080/00036811.2019.1673373
25. E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
26. X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
27. G. Dai, J. Wei, Infinitely many non-negative solutions for a $p(x)$-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal., 73 (2010), 3420-3430. https://doi.org/10.1016/j.na.2010.07.029
28. M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 1996. https://doi.org/10.1007/978-3-540-74013-1
29. R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370. https://doi.org/10.1016/j.jfa.2005.04.005
30. X. H. Tang, Infinitely many solutions for semilinear Schrödinger equations with signchanging potential and nonlinearity, J. Math. Anal. Appl., 401 (2013), 407-415. https://doi.org/10.1016/j.jmaa.2012.12.035
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
