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Abstract: This article focuses on achieving fixed-time synchronization (FxTS) of nonlinear coupled
memristive neural networks (NCMMN) with time delays. We propose a novel integrable sliding-mode
manifold (SMM) and develop two control strategies (chattering or non-chattering) to achieve FxTS. By
selecting appropriate parameters, some criteria are established to force the dynamics of NCMMN to
reach the designed SMM within a fixed time and remain on it thereafter. Additionally, they provide
estimations for the settling time (TST). the validity of our results is demonstrated through several
numerical examples.
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1. Introduction

In 1971, as the fourth basic circuit element, memristor was proposed by Chua [1]. After a while,
it did not attract widespread attention. In 2008, the research team from the Hewlett-Packard (HP)
laboratory successfully verified the memristor,which was proposed in 1971, by using the TiO2 material
as the main body and extracting both ends from platinum electrodes made of metal respectively [2].
Memristors have better properties than resistors because it has the memory function, which makes itself
have widespread applications in many fields, such as information processing, industrial automation,
combinatorial optimization and knowledge acquisition [3–7]. Over the past few years, there have
been comprehensive researches on neural networks, including image and signal processing, secure
communication, pattern recognition, and associative memories [8–14]. As a result, there has been
an increasing focus on memristive neural networks (MNN) and their potential applications. Many
studies have been conducted to investigate the dynamic behavior of MNNs. For instance, [15] examined
memristive Cohen-Grossberg NNs with stochastic parameter perturbations. In [16], a general class of
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MNNs with time delays was investigated. Additionally, [17] considered stochastic MNNs subjected to
deception attacks.

Synchronization becomes a hot topic in the studies on MNN. Based on different control mechanisms,
asymptotic synchronization of MNN has been studied in [18–20]. However, synchronisation time is an
important indicator of control performance. As a result, finite-time synchronisation is proposed, which
has better disturbance rejection properties [21–23] and TST is a finite number. Afterward, the paper [24]
investigated finite-time synchronization of complex chaotic systems with network transmission mode.
Another paper, [25] discussed the finite-time stabilizability and instabilizability of delayed MNN. In [26],
Tang et al. studied the finite-time cluster synchronization of discontinuous Lur’e networks. In fact, it
is important to note that TST of finite-time synchronization is heavily dependent on the initial values,
which can limit practical applications. To address this issue, the concept of FxTS was introduced
in [27] for those systems in an unknown environment (initial values are unavailable). Then, Mishra et al.
researched consensus for second-order multi-agent systems by designing SMM within a fixed-time time
in [28]. [29] addressed cluster synchronization through fixed-time pinning control. However, controllers
in the works mentioned above have the signal function, which may lead to chatter and thus shorten the
service life of the controller to a certain extent. To overcome the shortcoming, Yang et al. put forward
a non-chattering controller without sign(·) to research FxTS in [30]. The articles referenced as [31]
and [32] respectively discuss FxTS of coupled MNN using event-triggered control.

There has been extensive research on sliding mode control (SMC). The main advantage of SMC is
that it has strong robustness to system with uncertainties and external interference. It only needs to
estimate the boundary of the disturbance without measuring its specific value, and it is easy to be realized.
The dynamic performance of SMC is determined by SMM. The most commonly used SMM is linear. A
typical feature of such a linear SMC system is that the convergence of the system state at the equilibrium
point is asymptotic rather than within a fixed time. Usually, the gain of the controller is enhanced to
enable faster synchronization of the system. However, noting the actual system control limitation, a
high-gain sliding mode controller is difficult to obtain, and the gain may cause system instability. To
solve this problem, the nonlinear sliding mode is developed. As is known to all, the design of SMC is a
two-step process: (1) Design a SMM having the properties we expect. (2) Design the corresponding
controller to provide he dynamics of the system trajectory to SMM in a finite time. Once the system
reaches the designed SMM, it exhibits the desired robust performance. Numerous studies have focused
on the development of SMC techniques, as evidenced by a large body of research [33, 34]. In [35],
Corradini et al. proposed a novel nonsingular terminal SMC approach for stabilizing second-order
systems in fixed time. Additionally, to achieve FxTS of complex networks, a second-order SMC strategy
was presented in [36]. In view of disturbances influence, finite-time synchronization and FxTS of MNN
were discussed via SMC in [37]. Considering the extensive application of MNN and the advantages of
FxTS control, it is imperative to study FxTS of MNN with non-chattering control. Furthermore, FxTS
of NCMNNs with non-chattering SMC is more challenging. Therefore, in this paper, we will also study
the FxTS of NCMNNs by constructing a non-chattering controller.

Inspired by the above, this paper will study FxTS of NCMNNs with time delays. Main contributions
of this article are listed below: (1) To achieve FxTS, SMM designed do not contain signal functions,
which is different from [37]. (2) Two kinds of sliding-mode control strategies (chattering or non-
chattering) are designed to achieve fixed-time synchronization. In contrast to [28, 29, 37], the non-
chattering controller designed in this paper does not contain signal functions, thus avoiding the drawback

Electronic Research Archive Volume 31, Issue 6, 3291–3308.



3293

of shortening the controller lifetime due to controller chattering. (3) Using the irrational number π and
trigonometric function, the estimation of TST is more accurate than most existing results.

The remaining of this paper is formed as below. Section 2 presents the preliminaries, while Section 3
introduces the main findings. In Section 4, several numerical examples and simulations are provided.
Finally, Section 5 offers the conclusion.

Notations: N = {1, 2, . . . ,N} and N = {1, 2, . . . , n}, where N and n are positive integers. The
n × 1 column vector of all ones is denoted by 1. Rn and Rn×n are the set consisting of all n-
dimensional real vectors and n × n real matrices, respectively. R stands for real number set. Given
a vector x̃ = [x̃1, x̃2, . . . , x̃n]T , define x̃h = [x̃h

1, x̃
h
2, . . . , x̃

h
n]T , |x̃| = [|x̃1|, |x̃2|, . . . , |x̃n|]T and Sign (x̃(t)) =

diag{sign(x̃1(t)), sign(x̃2(t)), . . . , sign(x̃n(t))}. Let || · || be 2-norm of a matrix or a vector.

2. Preliminaries

2.1. Problem formulations

Consider CMNNs containing N nodes as below

v̇i(t) = −Cvi(t) + A (vi(t)) f (vi(t)) + B (vi(t)) f (vi(t − τ(t)))

+

N∑
j=1

gi j

(
g
(
v j(t)

)
− g (vi(t))

)
,

(2.1)

where vi(t) =
(
vi1(t), vi2(t), . . . , vin(t)

)T
∈ Rn is the state vector of the i-th node, i ∈ N, C =

diag{c1, c2, . . . , cn} > 0; the coupled matrix G = (gi j)N×N satisfies gii = 0 and gi j = gji ≥ 0, for i , j; τ(t)
is time-varying delay satisfying 0 ≤ τ(t) ≤ τ. The activation function f: Rn × [0,+∞)→ Rn. In addition,
A(vi(t)) = (ars(fs(vis(t)) − vir(t)))n×n ≜ (ars(vir(t)))n×n and B(vi(t)) = (brs(fs(vis(t − τ(t))) − vir(t)))n×n ≜
(brs(vir(t)))n×n denote the connection weight matrix without and with delayed time, respectively, in which

ars(vir(t)) =


a′rs, D−firs(t) < 0,
a′′rs, D−firs(t) > 0,
ars(t−), D−firs(t) = 0,

brs(vir(t)) =


b′rs, D−firs(t − τ(t)) < 0,
b
′′

rs, D−firs(t − τ(t)) > 0, s, r ∈ N,
brs(t−), D−firs(t − τ(t)) = 0,

and D−firs(t) means the left derivation of firs(t) in t. Defined the Laplacian matrix L = D − G =
[li j]N×N ∈ R

N×N with

li j =


−gi j, i , j,

N∑
j=1, j,i

gi j, i = j.

vi(ϖ̃) = ϕvi (ϖ̃) =
(
ϕvi1(ϖ̃), ϕvi2(ϖ̃), . . . , ϕvin(ϖ̃)

)T
∈ C([−τ(t), 0],Rn) is the initial value of system (2.1),

for i ∈ N. The dynamics of the corresponding response system (2.2) of the drive system (2.1) is

ḋi(t) = −Cdi(t) + A (di(t)) f (di(t)) + B (di(t)) f (di(t − τ(t)))

+

N∑
j=1

gi j

(
g
(
d j(t)

)
− g (di(t))

)
+ ui(t),

(2.2)
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where ui(t) =
(
ui1(t),ui2(t), . . . ,uin(t)

)T is the controller to be designed. Similarly, A(di(t)) =
(a∗rs(fs(dis(t)) − dir(t)))n×n ≜ (a∗rs(dir(t)))n×n and B(di(t)) = (a∗rs(fs(dis(t)) − dir(t)))n×n ≜ (a∗rs(dir(t)))n×n

a∗rs(vir(t)) =


a∗′rs, D−f∗irs(t) < 0,
a∗′′rs , D−f∗irs(t) > 0,
a∗rs(t

−), D−f∗irs(t) = 0,

b∗rs(vir(t)) =


b∗
′

rs, D−f∗irs(t − τ(t)) < 0,
b∗
′′

rs , D−f∗irs(t − τ(t)) > 0,
b∗rs(t

−), D−f∗irs(t − τ(t)) = 0.

The initial value of system (2.2) is given by di(ϖ̃) = ϕdi (ϖ̃) =
(
ϕdi1(ϖ̃), ϕdi2(ϖ̃), . . . , ϕdin(ϖ̃)

)T
∈

C([−τ(t), 0],Rn).
Let hi(t) ≜ di(t) − vi(t), i ∈ N. Subtracting (2.2) from (2.1), it is obvious that

ḣi(t) = −Chi(t) + A(di(t))f̃(hi(t)) + B(di(t))f̃(hi(t − τ(t))) −
N∑

j=1

li jg̃(h j(t))

+ (A(di(t)) − A(vi(t)))f(vi(t)) + (B(di(t)) − B(vi(t)))f(vi(t − τ(t))) + ui(t), (2.3)

where f̃(hi(t)) ≜ f(di(t))−f(vi(t)), g̃(h j(t)) ≜ g(d j(t))−g(v j(t)), h(t) = [hT
1 (t), hT

2 (t), . . . , hT
N(t)]T ∈ RNn.

Definition 1. [37] The NCMNNs (2.1) and (2.2) can achieve FxTS via controllers designed if there exists
a finite positive constant T such that lim

t→T
||di(t) − vi(t)|| = 0 and ||di(t) − vi(t)|| ≡ 0 when t ≥ T, for ∀i ∈ N,

where the estimation of TST T depends on some parameters of controllers designed and network.

Lemma 1. [38] For error system (2.3), if the C-regular function V(h(t)) : RNn → R meets

d
dt

V(h(t)) ≤ −ϵVδ(h(t)) − κVθ(h(t)),

where θ ∈ [0, 1), δ > 1, ϵ, κ > 0, then the origin is fixed-time stable, that is, NCMNNs (2.1) and (2.2)
can realize FxTS, and TST T1 is estimated to be

T (h0) ≤ T1 =
π

(δ − θ)κ
(
κ

ϵ
)ς csc(ςπ),

where ς = 1−θ
δ−θ

.

Lemma 2. [39] Given a vector z ∈ Rn. If 0 < ι < ω holds, then

||z||ω ≤ ||z||ι ≤ n
1
ι −

1
ω ||z||ω,

where ||z||ω = (
∑n

i=1 |zi|
ω)

1
ω and ||z||ι = (

∑n
i=1 |zi|

ι)
1
ι .

Assumption 1. [40] As for the nonlinear functions fk(·) and gk(·), assume there exist constants
ϖk,mk, ρk > 0 such that

|fk(v̂)| ≤ ϖk, |fk(v̂) − fk(ŷ)| ≤ mk|v̂ − ŷ|,
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and

|gk(v̂) − gk(ŷ)| ≤ ρk|v̂ − ŷ|,

where v̂, ŷ ∈ R, k ∈ N.

3. Main results

In this section, we present two novel SMM. Moreover, two corresponding different kinds of SMC
are designed to achieve FxTS of SMM.

3.1. Sliding-mode control with chattering phenomenon

First, SMM is described as follows:

Ω = {s(t)|s(t) = (sT
1 (t), sT

2 (t), . . . , sT
N(t))T = 0},

where si(t) = (si1(t), si2(t), . . . , sin(t))T ∈ Rn. Its sliding variable as

si(t) =kihi(t) +
∫ t

0
Sign (hi(τ)) (ϵ |hi(τ)|δ + κ |hi(τ)|θ)dτ,

where ki > 0, ϵ, κ > 0, δ > 1 and 0 ≤ θ < 1 are constants.

Construct the following controller

ui(t) = −
1
ki

Sign (hi(t)) (ϵ |hi(t)|δ + κ |hi(t)|θ) − Sign (si(t)) ηi(t), (3.1)

where ηi(t) = γi||hi(t)||1 +
∑

j∈Ni

ξ j||h j(t)||1 + φi1 + ϵ1|si(t)|δ1 + κ1|si(t)|θ1 , the parameters γi > 0, ξ j > 0,

j ∈ Ni, φi > 0. And ϵ1 > 0, κ1 > 0, 0 ≤ θ1 < 1, δ1 > 1.
Suppose the trajectories of error system (2.3) can reach SMM Ω within fixed-time T1 under controller

(3.1). In other words, one has

si(t) = ṡi(t) = 0,

for all t ≥ T1, i.e.
ṡi(t) = kiḣi(t) + Sign (hi(t)) (ϵ |hi(t)|δ + κ |hi(t)|θ) = 0. (3.2)

Then, dynamics of the error system on SMM is

ḣi(t) = −
1
ki

Sign(hi(t))(ϵ|hi(t)|δ + κ|hi(t)|θ). (3.3)

Theorem 1. Suppose Assumption 1 holds. If the following inequality is satisfied
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||C|| + ||Â∗||||M|| − γi ≤ 0, (H1)∑
j∈Ni

(|li j|||Φ|| − ξ j) ≤ 0, (H2)

||B̂∗||||W || + ||Ā||||W || + ||B̄||||W || − φi ≤ 0, (H3)

where Â∗ = (â∗kl)n×n, â∗kl = max{|a∗′kl |, |a
∗′′

kl |}, B̂∗ = (b̂
∗

kl)n×n, b̂
∗

kl = max{|b∗
′

kl |, |b
∗′′

kl |}, Ā = (ākl)n×n, ākl =

max{|a∗′kl − a′kl|, |a
∗′

kl − a′′kl|, |a
∗′′

kl − a′kl|, |a
∗′′

kl − a′′kl|}, B̄ = (ākl)n×n, b̄kl = max{b∗
′

kl − b
′

kl|, |b
∗′

kl − b
′′

kl|, |b
∗′′

kl −

b
′

kl|, |b
∗′′

kl − b
′′

kl|}, M = diag{m1,m2, · · · ,mn}, W = diag{ϖ1, ϖ2, · · · , ϖn}, Φ = diag{ρ1, ρ2, · · · , ρn}, then
the following two conclusions are true.
(a) Under the control of controller (3.1), the error system (2.3) is capable of achieving SMM within T1

and maintaining its stability thereafter. TST can be estimated using the following equation

T1 = T {1}1 =
π

(δ1 − θ1)κ∗1
(
κ∗1
ϵ∗1

)ς1 csc(ς1π),

where ǩ = min
i∈N
{ki}, ϵ∗1 = 2(nN

2 )
1−δ1

2 ǩϵ1, κ∗1 = 2
θ1+1

2 ǩκ1, ς1 =
1−θ1
δ1−θ1

.
(b) For system (3.3), it is fixed-time stable. And TST can be estimated as T2

T2 = T {1}2 =
k̂π

(δ − θ)κ
(
κ

ϵ
)ς csc(ςπ),

where k̂ = max
i∈N
{ki}, ς = 1−θ

δ−θ
.

Proof: Our conclusion (a) will be proved at first. Construct the Lyapunov function as

V1(t) =
1
2
sT (t)s(t).

Calculate the derivative of V1(t) with respect to time t

V̇1(t) =
N∑

i=1

sT
i (t)

(
kiḣi(t) − Sign(hi(t))(−ϵ |hi(t)|δ − κ|hi(t)|θ)

)
=

N∑
i=1

kis
T
i (t)

(
−Chi(t) + A(di(t))f̃(hi(t)) + B(di(t))f̃(hi(t − τ(t))) −

N∑
j=1

li jg̃(h j(t))

+ (A(di(t)) − A(vi(t)))f(vi(t)) + (B(di(t)) − B(vi(t)))f(vi(t − τ(t))) − Sign(si(t))ηi(t)
)
,

(3.4)

where

−sT
i (t)Chi(t) ≤ ||C||||si(t)||||hi(t)||. (3.5)

Using the boundary of the active function, it is obvious
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sT
i (t)B(di(t))f̃(hi(t − τ(t)))

=

n∑
k=1

n∑
l=1

b∗kl(dik(t))sik(t)f̃l(hil(t − τ(t)))

≤

n∑
k=1

n∑
l=1

b̂
∗

klϖl|sik(t)|

≤|si(t)|T B̂∗W1

≤n
1
2 ||si(t)||||B̂∗||||W ||. (3.6)

From Assumption 1, the following inequalities hold

sT
i (t)A(di(t))f̃(hi(t))

=

n∑
k=1

n∑
l=1

a∗kl(dik(t))sik(t)f̃l(hil(t))

≤

n∑
k=1

n∑
l=1

â∗klml|sik(t)||hil(t)|

=|si(t)|T Â∗M|hi(t)|
≤||si(t)||||Â∗||||M||||hi(t)||, (3.7)

and

sT
i (t)(A(di(t)) − A(vi(t)))f(vi(t))

=

n∑
k=1

n∑
l=1

(akl(dik(t)) − akl(vik(t)))sik(t)fl(vil(t))

≤|si(t)|T ĀW1

≤n
1
2 ||si(t)||||Ā||||W ||, (3.8)

and

sT
i (t)(B(di(t)) − B(vi(t)))f(vi(t − τ(t)))

=

n∑
k=1

n∑
l=1

(bkl(dik(t)) − bkl(vik(t)))sik(t)fl(vil(t − τ(t)))

≤|si(t)|T B̄W1

≤n
1
2 ||si(t)||||B̄||||W ||, (3.9)

and
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−

N∑
i=1

N∑
j=1

li js
T
i (t)g̃(h j(t)) ≤

N∑
i=1

∑
j∈Ni

|li j|

n∑
k=1

ρk|sik(t)||h jk(t)|

=

N∑
i=1

∑
j∈Ni

|li j||si(t)|TΦ|h j(t)|

≤

N∑
i=1

∑
j∈Ni

|li j|||si(t)||||Φ||||h j(t)||. (3.10)

Because of Lemma 2, one has

−

N∑
i=1

sT
i (t)S ign(si(t))ηi(t)

= −

N∑
i=1

|si(t)|T (γi||hi(t)||1 +
∑
j∈Ni

ξ j||h j(t)||1 + φi1 + ϵ1|si(t)|δ1 + κ1|si(t)|θ1)

≤ −

N∑
i=1

(γi||hi(t)||||si(t)|| +
∑
j∈Ni

ξ j||h j(t)||||si(t)|| + φi||si(t)||) −
N∑

i=1

|si(t)|T (ϵ1|si(t)|δ1 + κ1|si(t)|θ1). (3.11)

In the light of (3.4)–(3.11), there is

V̇1(t) ≤
N∑

i=1

ki((||C|| + ||Â∗||||M|| − γi)||hi(t)||||si(t)|| +
∑
j∈Ni

(|li j|||Φ|| − ξ j)||si(t)||||h j(t)||

+ n
1
2 (||B̂∗||||W || + ||Ā||||W || + ||B̄||||W || − φi)||si(t)||)

−

N∑
i=1

ki|si(t)|T (ϵ1|sik(t)|δ1 + κ1|sik(t)|θ1)

≤ −

N∑
i=1

ki|sik(t)|(ϵ1|sik(t)|δ1 + κ1|sik(t)|θ1)

≤ − ϵ∗1V
1+δ1

2
1 (t) − κ∗1V

1+θ1
2

1 (t).

According to Lemma 1, SMM is reached in fixed time T1.
Next, the conclusion (b) will be verified. The Lyapunov function is chosen as

V2(t) =
N∑

i=1

n∑
k=1

|hik(t)|.

Computing the derivative of V2(t) with respect to time t, we have
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V̇2(t) =
N∑

i=1

n∑
k=1

sign(hik(t))ḣik(t)

≤ −
1

k̂
(ϵVδ2(t) + κVθ2(t)).

From Lemma 1, system (3.3) is stable in fixed time T2.

Remark 1. If Assumptions 1 and (H1) − (H3) hold, NCMNNs (2.2) can be synchronized to NCMNNs
(2.1) in fixed time T

′

under sliding-mode controller (3.1). In addition, the corresponding TST can be
estimated as T

′

= T1 + T2.

Remark 2. The first term in the controller (3.1) is used to counteract the integral term in the sliding
mode dynamics, and the second term is to force the error system (2.3) to reach SMM in T2.

Consider linear CMNNs with time delays and dynamics of the corresponding error system is

ḣi(t) = −Chi(t) + A(di(t))f̃(hi(t)) + B(di(t))f̃(hi(t − τ(t))) −
N∑

j=1

li jh j(t)

+ (A(di(t)) − A(vi(t)))f(vi(t)) + (B(di(t)) − B(vi(t)))f(vi(t − τ(t))) + ui(t). (3.12)

Corollary 1. Suppose Assumption 1 holds. System (3.12) can be stable in fixed time T
′

under controller
(3.1) if conditions (H1), (H3) in Theorem 1 and∑

j∈Ni

(|li j| − ξ j) ≤ 0 (H4)

can be satisfied.

If the system parameters of the nonlinear coupled network are state-independent, the corresponding
error system dynamics can be expressed as

ḣi(t) = −Chi(t) + Af̃(hi(t)) + Bf̃(hi(t − τ(t))) −
N∑

j=1

li jg̃(h j(t)) + ui(t). (3.13)

Corollary 2. Suppose Assumption 1 holds. Then, system (3.13) is stable in T
′

under controller (3.1) if
(H2) and the following (H5) and (H4) hold

||C|| + ||Â||||M|| − γi ≤ 0, (H5)
||B̂||||W || − φi ≤ 0, (H6)

where Â = (|ai j|)n×n, B̂ = (|bi j|)n×n.

Remark 3. Since what we can observe is mainly the corresponding nonlinear function of state variables,
nonlinearly coupled networks are more practical. And networks studied are parameter mismatched, which
is also more realistic. Besides, we always hope to achieve our desired goal within finite or even fixed time.
Therefore, FxTS of the NCMNN discussed in this article possess great meanings in application.

Remark 4. Controller (3.1) contains the signal function, which plays important roles for fixed-time
strategy. However, sign(·) in the designed controllers will shorten the service life of the machine and cause
undesirable oscillations. Therefore, a novel controller will be designed to overcome this shortcoming.
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3.2. Sliding-mode control with non-chattering phenomenon

A novel SMC protocol will be presented to force NCMNNs (2.1) and (2.2) to achieve synchronization
in this subsection. The sliding-mode function can be designed as

si(t) =kihi(t) +
∫ t

0

(
ϵ3h

q
p

i (τ) + κ3h
m
h

i (τ)
)

dτ,

where ki > 0, ϵ3, κ3 > 0, m, h, p, q > 0 are all odd numbers, and m < h, q > p. Then SMM can be obtained

Ω
′

= {s(t)|s(t) = (sT
1 (t), sT

2 (t), . . . , sT
N(t))T = 0},

where si(t) = (si1(t), si2(t), . . . , sin(t))T ∈ Rn.
The controller is constructed as

ui(t) =

 −
1
ki

(
ϵ3h

q
p

i (t) + κ3h
m
h

i (t)
)
−

(
ϵ2s

q1
p1
i (t) + κ2s

m1
h1
i (t)

)
−

si(t)
||si(t)||

η∗i (t), si(t) , 0,

0, si(t) = 0,
(3.14)

where η∗i (t) = γi||hi(t)|| +
∑

j∈Ni

ξ j||h j(t)|| + φi, the parameters ϵ2 > 0, κ2 > 0, m < h,m1 < h1, q > p,

q1 > p1 and m,m1, h, h1, p, p1, q, q1 > 0 are all odd numbers.

Remark 5. Note that controller (3.14) is continuous and does not contain the function sign(·). As we all
know, the signal function in the controllers is indispensable in the study of finite-time synchronization or
FxTS [24–29]. In this paper, the function sign(·) is replaced by two odd ratios so that FxTS can be realized.
Besides, from controller (3.14), we can see that our designed controller does not use global information,
but only uses the neighbor information of node i, which makes the controller we designed more practical.
In this paper, FxTS will be investigated under controller (3.14) without the signal function.

When the error system reaches SMM, it means

ṡi(t) = kiḣi(t) + ϵ3h
q
p

i (t) + κ3h
m
h

i (t) = 0. (3.15)

Then, the error system on SMM is

ḣi(t) = −
1
ki

(ϵ3h
q
p

i (t) + κ3h
m
h

i (t)). (3.16)

Theorem 2. Let Assumption 1 hold, then the following conclusions are true.
(a) System (2.3) can arrive at SMM in fixed time T3 under controller (3.14) if inequalities (H1) − (H3)
can be satisfied. TST can be estimated as T3:

T3 = T {1}3 =
h1 p1π

(h1q1 − m1 p1)κ∗2
(
κ∗2
ϵ∗2

)ς2 csc(ς2π),

where ϵ∗2 = 2(nN
2 )

p1−q1
2p1 ǩϵ2, κ∗2 = 2

m1+h1
2h1 ǩκ2, ς2 =

p1(h1−m1)
h1q1−m1 p1

.
(b) For system (3.16), it is fixed-time stable. TST can be estimated as T4:

T4 = T {1}4 =
hpπ

κ∗3(hq − mp)
(
κ∗3
ϵ∗3

)ς3 csc(ς3π),

where ϵ∗3 = ( nN
2 )

p−q
2p 2ϵ3

k̂
, κ∗3 = 2

m+h
2h
κ3
k̂

, ς3 =
p(h−m)
hq−mp .
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Proof: First of all, the conclusion (a) can be proved. The Lyapunov function can be selected as

V3(t) =
1
2
sT (t)s(t).

When si(t) , 0 , we have

−

N∑
i=1

sT
i (t)

si(t)
||si(t)||

η∗i (t)

= −

N∑
i=1

||si(t)||(γi||hi(t)|| +
∑
j∈Ni

ξ j||h j(t)|| + φi).

Similarly to Theorem 1, one has

V̇3(t) =
N∑

i=1

sT
i (t)

(
kiḣi(t) + ϵ3h

q
p

i (t) + κ3h
m
h

i (t)
)

≤ − ǩ
N∑

i=1

n∑
k=1

sik(t)
(
ϵ2s

q1
p1
ik (t) + κ2s

m1
h1
ik (t)

)
≤ − ϵ∗2V

q1+p1
2p1

3 (t) − κ∗2V
m1+h1

2h1
3 (t).

Based on Lemma 1, system (2.3) will reach SMM in fixed time T3 under controller (3.14).
Then, the proofs of the conclusion (b) are given as below. The Lyapunov function is

V4(t) =
1
2
hT (t)h(t),

which follows

V̇4(t) =
N∑

i=1

hT
i (t)ḣi(t)

= −

N∑
i=1

1
ki
hT

i (t)(ϵ3h
q
p

i (t) + κ3h
m
h

i (t))

≤ −ϵ∗3V
q+p
2p

4 (t) − κ∗3V
m+h
2h

4 (t).

From Lemma 1, system (3.16) is stable in T4.

Remark 6. If Assumption 1 and (H1) − (H3) can be satisfied, NCMNNs (2.2) can be synchronized to
NCMNNs (2.1) in fixed time T

′′

under controller (3.14). TST can be estimated as T
′′

= T3 + T4. Note
that in controller (3.14), if si(t) = 0 for some point t, then system (2.3) can arrive at SMM and there is
no more need for control input.

Corollary 3. Suppose Assumption 1 holds. System (3.12) can stable in fixed time T
′′

with controller
(3.14) if (H1), (H3), (H4) can be satisfied.
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Corollary 4. Suppose Assumption 1 holds, and then, system (3.13) can be stable in fixed time T
′′

with
controller (3.14) if (H2), (H5), (H6) can be satisfied.

Remark 7. The idea of replacing the role of the signal function with two odd ratios q
p was proposed

in [30]. However, this paper focuses on networks with matched parameter. Moreover, the ability of
the designed controller in this paper is stronger than one in [30] for resisting external interference.
Therefore, this controller in [30] cannot be used in the NCMNNs considered in this paper.

Remark 8. Unlike [31, 32], based on SMM, this paper studies FxTS of NCMNNs, where TST dose not
depend on the initial values of controlled network. And a non-chattering sliding-time control strategy
is adopted in this paper to realize FxTS of NCMNNs. Actually, due to the limited communication
resources, event-triggered mechanism [33, 34] research on FxTS is becoming more and more popular,
which is also our concern in the future.

4. Numerical this section verifies the effectiveness of the theoretical results through numerical
examples

Consider three-neuron NCMNNs with time delay examples

ḋi(t) = −Cdi(t) + A (di(t)) f (di(t)) + B (di(t)) f (di(t − τ(t)))

+

N∑
j=1

gi j

(
g
(
d j(t)

)
− g (di(t))

)
+ ui(t),

where d(t) = (dT
1 (t), rT

2 (t), rT
3 (t))T , di(t) = (di1, di2)T , C = diag{1, 1}. The time delay can be chosen as

τ(t) = et

1+et . The weight matrices of CMNNs are as follows

A(di(t)) =
(

a∗11(di1(t)) a∗12(di1(t))
a∗21(di2(t)) a∗22(di2(t))

)
, B(di(t)) =

(
b∗11(di1(t)) b∗12(di1(t))
b∗21(di2(t)) b∗22(di2(t))

)
,

where a∗11(di1) = 1, a∗21(di2) = 1, b∗12(di1) = −1, b∗21(di2) = 1, and

a∗12(di1(t)) =


2, D−fi12(t) < 0,
6, D−fi12(t) > 0,

a∗12(t−), D−fi12(t) = 0,
a∗22(di2(t)) =


3.5, D−fi22(t) < 0,
4.2, D−fi22(t) > 0,

a∗22(t−), D−fi22(t) = 0,

b∗11(di1(t)) =


2, D−fi11(t − 1) < 0,
−1, D−fi11(t − 1) > 0,

b∗11(t−), D−fi11(t − 1) = 0,
b∗22(di2(t)) =


−2, D−fi22(t − 1) < 0,

3, D−fi22(t − 1) > 0,
b∗22(t−), D−fi22(t − 1) = 0.

The coupled matrix of the three-node network is

G =


0 1 0
1 0 1
0 1 0

 .
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Then corresponding Laplacian matrix is

L =


1 −1 0
−1 2 −1
0 −1 1

 .
The activation functions are defined as fi(v) = (fi1(v1), fi2(v2))T , i = 1, 2, 3, fil(·) =

|(·)+1|−|(·)−1|
2 , l = 1, 2,

where v = (v1, v2)T , such that ml = ϖl = 1. And the nonlinear coupled function is selected as
gi(v) = (gi1(v1), gi2(v2))T , gi1(v1) = 2v1 + 0.2 sin v1, gi2(v2) = 5v2 + 0.5 cos v2, such as ρi1 = 2.2, ρi2 = 5.5.

The weight matrices of corresponding drive system are as follows

A(vi(t)) =
(

a11(vi1(t)) a12(vi1(t))
a21(vi2(t)) a22(vi2(t))

)
, B(vi(t) =

(
b11(vi1(t)) b12(vi1(t))
b21(vi2(t)) b22(vi2(t))

)
,

where a11(vi1) = 5, a21(vi2) = 1, b12(vi1) = 2.1, b22(vi2) = −0.3, and

a12(vi1(t)) =


−0.3, D−fi12(t) < 0,
−0.5, D−fi12(t) > 0,

a12(t−), D−fi12(t) = 0,
a22(vi2(t)) =


1.4, D−fi22(t) < 0,
1.6, D−fi22(t) > 0,

a22(t−), D−fi22(t) = 0,

b11(vi1(t)) =


2.8, D−fi11(t − 1) < 0,
2.7, D−fi11(t − 1) > 0,

b11(t−), D−fi11(t − 1) = 0,
b21(vi2(t)) =


0.5, D−fi21(t − 1) < 0,
0.2, D−fi21(t − 1) > 0,

b22(t−), D−fi21(t − 1) = 0.

Example 1. To achieve FxTS of corresponding error system, the sliding-mode function is designed as

si(t) = kihi(t) +
∫ t

0
Sign (hi(τ)) (ϵ |hi(τ)|δ + κ |hi(τ)|θ)dτ.

Then, for controller (3.1), choose ki = 1, ϵ = 1.4, δ = 2, κ = 2, θ = 0.4, ϵ1 = 1.5, δ1 = 1.6, κ1 = 2,
θ1 = 0.4, γi = 5, ξ j = 10, φi = 15.
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Figure 1. (a)Trajectories of error system with controller (3.1). (b)Trajectories of sliding-mode
functions with controller (3.1).
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Figure 1(a) and (b) describe the trajectory of the error system and the sliding mode variable,
respectively. From Figure 1, we can observe that both the error and sliding mode variables tend to zero
within T

′

= 7, which means that the error system dynamics can reach SMM within T
′

= 7 and the error
tends to zero along SMM. Besides, TST can be estimated as T

′

= 9.1 from Theorem 1, which is larger
than the actual time required.

Moreover, we can calculate that synchronization can be achieved within 29.3 when k = 1 in
Lemma 6 [39]. Compared with the estimation of TST used in [39], it is obvious that the estimated time
in this article is more accurate than one in [39].

Example 2. The signal function in the designed controllers as coefficients will shorten the service life
of the machine and cause undesirable oscillations. Therefore, another controller (3.14) is presented to
overcome these difficulties.

And the corresponding sliding mode variable is designed as

si(t) = kihi(t) +
∫ t

0
(ϵ3h

q
p

i (τ) + κ3h
m
h

i (τ))dτ.

Choose ϵ3 = 1.5, q
p =

9
7 , κ3 = 2, m

h =
1
3 , ϵ2 = 5, q1

p1
= 9

7 , κ2 = 3, m1
h1
= 1

3 .
It can be seen from (a) in Figure 2 that drive and response NCMNNs can be synchronized under

controller (3.14) within T
′′

= 9. (b) shows the trajectory of sliding mode variable tends to zero within
T
′′

= 9. However, according to Theorem 2, TST can be estimated as T
′′

= 10.4, which is larger than
the actual time required. Furthermore, TST can be estimated as T

′′

= 143.2 in [39]. Therefore, the
estimated time in this article is more accurate than one in [39].

Remark 9. In the process of simulations, we can find that there is a unified upper bound on TST of
FxTS with arbitrary initial values, which further shows that FxTS does not depend on the initial value.
Therefore, FxTS has a wide range of applications in various fields.
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Figure 2. (a)Trajectories of error system with controller (3.14). (b)Trajectories of sliding-
mode functions with controller (3.14).
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5. Conclusions

This paper discusses the use of SMC to achieve FxTS of NCMNNs with time delays. The controllers
are established using a novel integral SMC technology, which has several advantages. Two different
control strategies, chattering and non-chattering, are employed to achieve FxTS, meaning that the error
system’s orbit can reach designed SMM in a fixed time and remain there thereafter. And the dynamics
of the error system on SMM can converge to zero within a fixed time. In addition, TST can be estimated
more accurately than most existing literature. However, in some sense, the controllers designed in
this paper are complicated, and improvements about controllers should be made in our future work.
Meanwhile, it is more interesting and challenging to increase the accuracy of estimation of TST.
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