
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(6): 3264–3290.
DOI: 10.3934/era.2023165
Received: 01 February 2023
Revised: 30 March 2023
Accepted: 30 March 2023
Published: 04 April 2023

Research article

Human-like car-following modeling based on online driving style recognition

Lijing Ma*, Shiru Qu, Lijun Song, Junxi Zhang and Jie Ren

School of Automation, Northwestern Polytechnical University, Xi’an 710072, China

* Correspondence: Email: malijing028@gmail.com; Tel: +8615208277380.

Abstract: Incorporating human driving style into car-following modeling is critical for achieving
higher levels of driving automation. By capturing the characteristics of human driving, it can lead to a
more natural and seamless transition from human-driven to automated driving. A clustering approach
is introduced that utilized principal component analysis (PCA) and k-means clustering algorithm to
identify driving style types such as aggressive, moderate and conservative at the timestep level. Ad-
ditionally, an online driving style recognition technique is developed based on the memory effect in
driving behavior, allowing for real-time identification of a driver’s driving style and enabling adaptive
control in automated driving. Finally, the Intelligent Driver Model (IDM) has been improved through
the incorporation of an online driving style recognition strategy into car-following modeling, resulting
in a human-like IDM that emulates real-world driving behaviors. This enhancement has important
implications for the field of automated driving, as it allows for greater accuracy and adaptability in
modeling human driving behavior and may ultimately lead to more effective and seamless transitions
between human-driven and automated driving modes. The results show that the time-step level driving
style recognition method provides a more precise understanding of driving styles that accounts for both
inter-driver heterogeneity and intra-driver variation. The proposed human-like IDM performs well in
capturing driving style characteristics and reproducing driving behavior. The stability of this improved
human-like IDM is also confirmed, indicating its reliability and effectiveness. Overall, the research
suggests that the proposed model has promising performance and potential applications in the field of
automated driving.

Keywords: driving style; machine learning; car-following model; memory effect; genetic algorithm;
string stability

1. Introduction

Driving automation has become a highly focused topic in recent years. Its development can be
classified into six levels, according to SAE International [1]. The currently on-road advanced driver
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assistance system and traffic jam chauffeur are at Levels 2 and 3. These automation technologies are
installed in newly sold commercial vehicles to increase traffic safety and efficiency. For the state-of-
the-art intelligent system, providing a smooth driving experience to human drivers is a vital target. It
requires a deeper understanding of human driver behavior to achieve better human-computer interac-
tion. This statement is supported by studies, which designed personalized intelligent systems based on
different driving styles [2–6]. This kind of human-like driving strategy not only promotes the perfor-
mance of driving automation but also improves driver acceptability of intelligent systems by adapting
to human driver preferences.

Car-following is the most common driving scenario in heavy traffic, which puts much workload
on drivers. The intelligent systems enable the driver to maintain a safe and comfortable following
state and improve traffic capacity. Their performance optimization requires intensive research on car-
following behavior modeling. Over the past several decades, numerous car-following models have
been developed [7–9], and most of them are constructed and calibrated based on the overall driving
characteristics. Recently, personalized car-following models have been raised considering different
driving styles. Some of them emphasize the difference between individual drivers in driving style
characteristics [10–20]. Others suggest that the driving style is influenced by driving conditions such
as environment, driving needs and traffic situations, as well as drivers’ personalities [3, 8, 21–26].
Although the personalized car-following models based on driving style improve the performance of
driving automation, the investigation of driving style remains insufficient. The investigation of driving
style in personalized car-following models is limited by a focus on inter-driver heterogeneity rather
than intra-driver variations, the use of broad statistical values for classification and the lack of real-
time driving style recognition to enable human-like driving automation. Moreover, considering the
high interpretability of the Intelligent Driver Model (IDM), several studies have incorporated driving
heterogeneity into this classic model [21, 25–28]. However, stability analysis for the modified models
is often overlooked. It is essential to conduct stability analysis when adapting and enhancing car-
following models to ensure reliability, performance and safety in real-world traffic scenarios.

To address the above limitations, we propose a driving style recognition process and apply it to
human-like car-following modeling. The main contributions are twofold: (i) A time-step level driving
style recognition method is developed, taking into account not only the inter-driver heterogeneity but
also the intra-driver variation and the memory effect of drivers. This method allows for a more accurate
and nuanced understanding of driving styles. (ii) By incorporating the online driving style recognition
strategy into car-following modeling, the original Intelligent Driver Model (IDM) is enhanced to a
human-like IDM resembling real-world driving behaviors. The stability of this improved human-like
IDM is verified, ensuring its reliability and effectiveness in longitudinal control.

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3 proposes
the methodology, including driving style clustering, online driving style recognition, the human-like
car-following modeling and the stability analysis. The experimental results of driving style recognition
and human-like car-following modeling are presented in Section 4. Our findings are concluded in
Section 5.
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2. Literature review

For decades, studies have been carried out to recognize the variations in driving styles between
drivers. As early as 2007, Ishibashi et al. [29] emphasized the importance of understanding driver
behavior in developing driver support systems. They introduced a Driving Style Questionnaire (DSQ)
to characterize drivers and examined its validity through an analysis of car-following behavior at low
speed. In 2017, Martinez et al. [3] provided a survey on driving style characterization and recognition,
focusing on machine learning approaches based on current and future trends. The survey also pre-
sented a brief discussion on the applications of driving style recognition to intelligent vehicle controls,
along with predictions of future development from experts in the field. Zhu et al. [12], by analyzing
cluster displays of driving behavior diversity, found that aggressive drivers had shorter mean gaps than
conservative drivers, while maintaining similar following speeds. Xue et al. [13] implemented support
vector machine (SVM) and discrete wavelet transform (DWT) feature extraction techniques to distin-
guish between various driving styles. Time headway and acceleration/deceleration parameters were
then adjusted according to the driving styles to better represent real-world car-following behavior for
different driving styles.

Based on the aforementioned studies, research on personalized driver assistance systems and driv-
ing behavior analysis has made significant progress. Miyajima et al. [10] focused on individual dif-
ferences in car-following behavior and pedal operation patterns. Utilizing the optimal velocity model
and Gaussian mixture model, distinct driving styles were captured, facilitating the personalization of
intelligent driver assistance systems. Wang et al. [11] introduced a self-learning algorithm for online
model identification aimed at enhancing driver acceptance of longitudinal advanced driver assistance
systems. Zhu et al. [14] employed a Gaussian mixture model (GMM) to fit each driver’s driving data
and utilized Kullback-Leibler (KL) divergence to assess the similarity among drivers based on their
GMMs. An unsupervised clustering algorithm was then proposed to group human drivers into three
categories according to the similarities measured by KL divergence. Driving style was integrated into
car-following modeling by developing a personalized fully-adaptive cruise control system reflecting
diverse driving styles. Gao et al. [15] employed unsupervised machine learning methods, namely K-
means clustering and self-organizing map (SOM) neural network, to group drivers according to their
driving styles. Utilizing the clustering results, a supervised machine learning technique, specifically,
support vector machine (SVM), was implemented to design an online driving style classifier. This
classifier was embedded into the front-end of the upper controller of a personalized adaptive cruise
control system. Chu et al. [16] introduced a reinforcement learning-based car-following style learning
algorithm to identify individual car-following styles and adapt the proposed optimal cruise controller
accordingly. This method enables personalized control behavior, aligning more closely with individual
driver preferences and habits, and yielding control behavior more akin to a human driver compared
to factory-installed adaptive cruise control. Hu and Luo [17] established a model utilizing a neural
network-based learning control paradigm and car-following data, designed to track relative speed and
distance at a personal, sustainable level. Through quantitative analysis and k-means clustering, it was
demonstrated that the car-following model possesses the ability to retain and reproduce naturalistic
driving styles.

Over the past two years, there has been continued interest in developing personalized car-following
models. By analyzing urban electric vehicle driving data, Hu et al. [18] examined different driving
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styles and their respective characteristics and proposed an optimization method for assigning weight
coefficients to these driving styles. Sheng et al. [19] utilized model-free inverse reinforcement learn-
ing to examine 42 drivers’ styles and classified them into four groups. The study integrated driving
styles into car-following modeling by creating a personalized adaptive cruise control (P-ACC) system
using a partially observable Markov decision process (POMDP) model. Liao et al. [20] developed a
personalized car-following model using a memory-based deep reinforcement learning approach. The
study integrated twin delayed deep deterministic policy gradients (TD3) with a long short-term mem-
ory (LSTM) to create the LSTM-TD3 model, which adapts to human driving habits and improves upon
traditional methods of modeling car-following behavior.

However, research has also shown that intra-driver variations exist, besides the differences in driving
style between drivers. Driving style is influenced not only by individual drivers’ personalities but also
by factors such as environmental conditions, driving needs and traffic conditions. Treiber et al. [21]
explored the extensive variation of driving styles depending on the local speed variation coefficient,
representing an early study that considered intra-driver changes in driving style. Dörr et al. [22] pre-
sented an online driving style recognition system that uses fuzzy logic to identify the current driving
style of the driver. Berthaume et al. [24] incorporated driving style into car-following modeling by
analyzing car-following behavior heterogeneity as a function of road type and traffic condition. Chen
et al. [25] integrated driving style into two classical car-following models (IDM and Gipps’ model) by
introducing a Long-term and Short-term Driving (LSTD) model. The K-means clustering algorithm
was employed to classify long-term driving characteristics, while concepts from personality trait the-
ory were utilized to categorize short-term driving characteristics based on their stability or instability
over time. Sun et al. [26] used a fuzzy inference system to categorize freeway car-following events into
two styles: non-aggressive and aggressive. The car-following models (Gipps, Wiedemann and IDM)
were calibrated and validated for each driving style group. By analyzing the percentage of driving style
events for each driver, it was found that most drivers did not always maintain one driving style when
following vehicles.

In brief, as the field of driving style research has evolved, researchers have developed various ap-
proaches and techniques to capture and analyze these differences. Machine learning algorithms, in-
cluding clustering methods and neural networks, have been employed to classify driving styles and
develop personalized driving assistance systems. Integration of driving styles into car-following mod-
eling has also been a significant area of focus, leading to the development of personalized adaptive
cruise control systems and other driver assistance technologies.

3. Methodology

3.1. Architecture

Human-like driving automation can be achieved by applying the driving style clustering and recog-
nition process to car-following modeling. Figure 1 presents the framework overview. It can be seen
that the scheme is conducted on the basis of a driving database. First, the driving style clustering
algorithm is exploited based on the training set. Then, on the one hand, the clustering evolves into on-
line recognition considering the memory effect of driving behavior. On the other hand, the clustering
results are adopted as the training set to design a human-like car-following model. The Human-like
Intelligent Driver Model (HIDM) is developed to adapt to different driving styles. Finally, the pro-
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posed car-following model is validated with the testing set in the simulation environment. Based on
this framework, the operation mode can switch automatically to match the appropriate driving style.

Figure 1. Framework overview.

3.2. Driving style

3.2.1. Definition of driving style

Driving style is a complex concept involving many factors, such as driver type, driver condition,
driving situation and travel purpose [22]. In 1993, Elander et al. [30] recognized drivers’ individual
differences, defining driving style as personal choices and driving habits. Ishibashi et al. [29] inves-
tigated driving style with questionnaires, focusing on ways of thinking of drivers. Dörr et al. [22]
defined driving style as the manner in which the driving task is executed by the driver, manifested by
the driver’s manner of vehicle operation. Sagberg et al. [23] reviewed the definition of driving style in
previous research and included both consciously preferred actions and subconscious habits of drivers
in the description. Martinez et al. [3] distinguished related terms and suggested that driving style is
the way the driver operates a vehicle in the context of the driving scene and external conditions. It is
emphasized that the same driver could exhibit disparate styles under different driving conditions. This
concept is accepted by follow-up studies [26, 31–36], which conducted related research on driving
style. Chen et al. [25] suggested that the driving style has time-varying nature in the short-term and
explored the temporarily changing characteristics after external stimuli and psychological fluctuation.
Consistent with this concept, we also focus on the variation of driving style during the driving process.
However, we emphasize the disparate driving styles adopted by human drivers under different traffic
conditions, aiming at human-like driving automation.
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3.2.2. Driving style labels

Classification labeling is a crucial issue in driving style analysis. Most studies classified driving
styles into discrete classes [3]. Table 1 summarizes the survey of classification options in recent re-
search. These options are inspired by the consideration from different perspectives, such as traffic
safety, efficiency and fuel economy. In general, the number of categories varies from 2 to 4.

Table 1. Classification labeling of driving styles.
Researchers Labels
Aljaafreh et al. [37] below normal, normal, aggressive, very aggressive
Dörr et al. [22] comfortable, normal, sporty
Zhu et al. [12] aggressive, conservative
Xue et al. [13] normal, aggressive
Zhu et al. [14] aggressive, normal, cautious
Chen et al. [25] long-term (timid, neutral, aggressive), short-term (unstable, stable)
Gao et al. [15] conservative, moderate, aggressive
Hu and Luo [17] mild, moderate, aggressive
Sun et al. [26] aggressive, non-aggressive
Hu et al. [18] aggressive, cautious, standard
Liao et al. [20] aggressive, common, conservative

Although a larger number of categories can classify driving styles more elaborately, it complicates
algorithm development and interpretation of the classes. From the labels exhibited in Table 1, it can
be seen that studies tend to label driving styles as aggressive, moderate and conservative, even if the
expressions differ. Therefore, driving styles are grouped into these three types in this study.

3.3. Driving style clustering algorithm

3.3.1. Characteristic variables

Determining the characteristic variables of driving style is the initial step for driving style recog-
nition. Choosing appropriate characteristic variables is crucial for robust classification. There is no
general consensus on the selection of variables [3]. A summary of the characteristic variables is listed
in Table 2.

Table 2. Characteristic variables list.
Researchers Characteristic variables
Miyajima et al. [10] the relationship between following distance and velocity, gas and brake pedal operation
Aljaafreh et al. [37] acceleration, speed
Wang et al. [11] time headway, time to collision
Zhu et al. [12] speed, gap, relative speed
Yang et al. [38] longitudinal acceleration, lateral acceleration, degree of acceleration pedal, force of brake pedal, head deviation,

space headway, time headway, lane deviation, distance to the yellow line, steering wheel angle, speed, relative
speed, acceleration, deceleration

Xue et al. [13] acceleration, relative distance, relative velocity
Chen et al. [25] acceleration, deceleration, time headway
Gao et al. [15] relative speed, time headway, jerk
Sun et al. [26] gap, speed, acceleration, deceleration
Hu et al. [18] velocity, acceleration and deceleration, position of accelerator pedal, time ratio of brake pedal
Liao et al. [20] time headway, time to collision

The table shows that trajectory-based variables are the commonly used characteristics, such as gap,
speed, etc., which carry enough information to describe the differences in driving style. Therefore,
we extract variables from trajectory data as much as possible to characterize the driving style in car-
following, including gap distance, relative speed, speed, acceleration (deceleration), time headway and
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jerk. Note that time to collision (TTC) is not included in the variables, as it is a warning indicator that
may have little significance if it exceeds a certain threshold.

Except for time headway and jerk, other variables can be obtained from sample data directly. Time
headway (THW) is the time difference between the leading and following vehicles passing through the
same location. It can be calculated by dividing the vehicles’ space headway by the following vehicle’s
speed, as in Eq (3.1). Here, space headway refers to the distance between the front bumpers of adjacent
vehicles, which is the sum of the gap distance and the length of the leading vehicle. Jerk is the change
rate of acceleration, which can reflect the intensity of acceleration or deceleration, as formulated in Eq
(3.2).

thwn(t) =
∆xn(t) + ln−1

vn(t)
(3.1)

jerkn(t) =
an(t) − an(t − 1)

dt
(3.2)

3.3.2. Algorithm

As all the possible influencing variables are collected for a comprehensive analysis, it will result in
richer research but may lead to redundant data and complex calculations. Furthermore, unsupervised
learning methods are required to cluster the driving styles since there are no labeled driving styles in
the training data. That is, the algorithm needs to discover the similarities inside the input variables
and distinguish driving styles into groups without the guidance of existing labeling samples. There-
fore, we propose a clustering process that combines principal component analysis (PCA) and k-means
clustering.

PCA is a dimensionality reduction method that can extract and simplify data description while pre-
serving as much variation in the original data as possible [39]. It utilizes orthogonal transformation to
convert a series of possibly linearly related variables into a set of linearly unrelated new variables, also
known as principal components (PCs). Namely, PCs are linear combinations of the original variables,
and the number of PCs is not more than the original variables. Their meanings are different from the
original ones but contain all the information of the data. The latent variables for further analysis can
be picked out by the contribution rate of PCs, which include most of the characteristics and have lower
dimensions. We use PCA to summarize and understand the underlying structure of driving trajectory
data and find low-dimensional representations of characteristic variables. Then, we apply the k-means
algorithm [40] to cluster driving styles. The k-means algorithm is a typical partitioning method that
finds a partition to keep the samples within the same cluster close to each other. It inputs the latent
variables and outputs driving style clusters. The procedure is designed in detail, as presented in Algo-
rithm 1 below. The number of desired clusters k is 3, corresponding to the three types of driving styles,
aggressive, moderate and conservative.

3.4. Online driving style recognition

With the above driving style clustering algorithm, we can identify the driving style types at every
timestep, and one timestep here represents 0.1 s according to our trajectory data. However, operating
the vehicle based on the instantaneous driving style is inappropriate. As drivers’ decision-making is
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Algorithm 1: K-means clustering for driving styles
Input: The latent variables D = {x1, x2, ..., xm};

the number of desired clusters k.
Steps:

1 Initialize k cluster centroids randomly {µ1, µ2, ..., µk};
2 repeat
3 Initialize clusters Ci = ∅(1 ≤ i ≤ k);
4 for j = 1, 2, ...,m do
5 Calculate the Euclidean distance to each centroid µi(1 ≤ i ≤ k): d ji =

∥∥∥x j − µi

∥∥∥
2
;

6 Label x j with the nearest cluster: λ j = arg mini∈{1,2,...,k};
7 Assign x j to that cluster: Cλ j = Cλ j ∪ {x j};
8 end
9 for i = 1, 2, ..., k do

10 Recalculate the cluster centroid: µ′i =
1
|Ci |

∑
x∈Ci

x;

11 if µ′i , µi then
12 Update the cluster centroid from µi to µ′i;
13 else
14 Keep the cluster centroid unchanged;
15 end
16 end
17 until convergence criteria is met;

Output: Set of k driving style clusters C = {C1,C2, ...,Ck}

influenced by historical driving behaviors and past traffic states [41], the memory effect is considered
to be an indispensable factor for car-following modeling [20, 42–47]. Therefore, we propose online
driving style recognition based on the sliding window technique to incorporate the memory effect into
car-following modeling and avoid unrealistic driving style switching.

The sliding window technique is a computational method frequently used in time series data anal-
ysis. The window includes contiguous blocks of fixed size and can slide forward to complete a par-
ticular task. Figure 2 illustrates its utilization in online driving style recognition. The lattices stand
for timesteps, and the colors filled in represent the driving styles identified by the clustering algorithm.
The window will slide forward by one timestep to complete the online driving style recognition. For
the timestep t, we consider its previous timesteps ranging from t − tm + 1 to t − 1 as memory, where tm

is the length of memory.

Figure 2. Sliding window technique for online driving style recognition.

The online recognition result of driving style at the t th timestep, i.e., type∗(t), will be the guidance
for vehicle operation, which is determined by the statistical analysis of driving styles in the window, as
formulated in Eq (3.3).

type∗(t) = arg max f
({

type(t) : t ∈ (t − tm, t]
})

(3.3)
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where type(t) represents the driving style clustering result at timestep t. f (·) is the frequency counter
for types in the window.

3.5. Human-like Intelligent Driver Model (HIDM)

The original Intelligent Driver Model (IDM) was proposed by Treiber et al. [48] to simulate traffic
congestion. It is also utilized to develop adaptive cruise control (ACC), adapting to different traffic
situations [49], which proves to be traffic efficient. Since IDM is generally acknowledged as one of
the best-performing car-following models [8], we propose the Human-like Intelligent Driver Model
(HIDM) by extending IDM with online driving style recognition strategy.

The IDM acceleration, denoted as v̇, is given as follows:

v̇(∆x, v,∆v) = ã
1 − (v

ṽ

)4
−

(
S (v,∆v)
∆x

)2 (3.4)

S (v,∆v) = s0 + t0v −
v∆v

2
√

ãb̃
(3.5)

where S (v,∆v) denotes the desired gap function, which is calculated from speed and relative speed.
Five parameters need to be calibrated, maximum acceleration (ã), comfortable deceleration (b̃), desired
speed (ṽ), desired time gap (t0) and minimum gap (s0).

We define a parameter vector, represented as θ = [ã, b̃, ṽ, t0, s0]. This parameter vector is responsible
for setting the instantaneous parameter vector, denoted as θ(t), at timestep t based on the driving style
type at that specific timestep, as represented by Eq (3.6).

θ(t) =


θagg, type∗(t) = aggressive

θmod, type∗(t) = moderate

θcon, type∗(t) = conservative

(3.6)

where θagg, θmod and θcon are the parameter vectors of the three driving style types, respectively, which
will be calibrated separately with the clustered training data.

The proposed Human-like Intelligent Driver Model (HIDM) is designed to incorporate real-time
driving style recognition. The HIDM acceleration function is denoted as v̇(∆x, v,∆v; θ(t)). The param-
eter vector θ(t) depends on the value of the ternary discrete variable driving style, which is adjusted
according to the current driving style type at each timestep.

3.6. String stability analysis

Traffic flow stability refers to its ability to maintain a balanced state, which is related to the efficiency
and safety of the traffic system. As an important microscopic feature of traffic flow, the stability of
vehicle-following models has attracted extensive attention from scholars since the inception of the
models [50]. Generally speaking, there are two types of stability analysis: linear stability analysis
and nonlinear stability analysis [51]. Linear stability analysis focuses on the stability characteristics
of the system under the influence of small disturbances, while nonlinear stability analysis focuses on
the stability characteristics of the system under the influence of large disturbances. For actual road
traffic flow, road users experience minimal disturbance, and nonlinear following models are usually
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linearized near the equilibrium point, so linear stability analysis has been the focus of traffic flow
theory research. Linear stability is divided into two types: local stability and string stability [51].
Local stability focuses on the stability of individual vehicles under small disturbances; string stability
studies how a small disturbance in one vehicle propagates along the convoy and affects the stability of
the entire convoy. As the extended following models are usually based on a refined framework, local
stability remains unchanged [50]. Therefore, the traffic flow theory research community tends to focus
closely on string stability. From the perspective of traffic operation, it is desirable to minimize or avoid
string instability. However, from a modeling perspective, realistic traffic flow models should be able to
describe string instability in order to reproduce features related to traffic oscillations.

Ward [52] assumed that there are small disturbances in the headway and speed of vehicles in an
infinitely long convoy and derived the instability conditions for traffic flow. Some studies [50, 53–57]
have conducted stability analysis of following models guided by the general framework developed by
Ward and Wilson [52, 58], verifying the effectiveness of the framework. In this paper, we examine the
string stability of the proposed HIDM, adhering to the general framework.

Both IDM and HIDM can be represented by a control equation, as in Eq (3.7). When the traffic flow
is running under an equilibrium situation, the vehicle acceleration (the derivative of speed) and relative
speed are zeros (i.e., v̇ = 0,∆v = 0), and the gap distance and speed have equilibrium solutions (i.e.,
∆x = ∆xe, v = ve), as the transformation presented in Eq (3.8).

v̇ = f (∆x, v,∆v) (3.7)

f (∆xe, ve, 0) = 0 (3.8)

The instability equation was deduced by Ward [52] assuming a small perturbation occurred in the
equilibrium state, as formulated in Eq (3.9).

1
2

( fv)2 − f∆v fv − f∆x < 0 (3.9)

where fv, f∆v and f∆x are the partial derivatives of the control equation for speed, relative speed and gap
distance, as expanded in Eq (3.10).



f∆x =
∂ f (∆x, v,∆v)

∂h

∣∣∣∣
(∆xe,ve,0)

fv =
∂ f (∆x, v,∆v)

∂v

∣∣∣∣
(∆xe,ve,0)

f∆v =
∂ f (∆x, v,∆v)

∂∆v

∣∣∣∣
(∆xe,ve,0)

(3.10)

The partial differential equations of both IDM and HIDM are derived from Eqs (3.4) and (3.5), as
presented in Eq (3.11). The values of parameters (i.e., ã, b̃, ṽ, t0, s0) are different for IDM and HIDM,
as explained in the above section.
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f∆x = 2ã
(s0 + t0ve)2

∆xe3

fv = −2ã

2

ṽ

ve

ṽ

3

+
t0(s0 + t0ve)

∆xe2


f∆v =

√
ã

b̃

ve(s0 + t0ve)

∆xe2

(3.11)

Therefore, combining Eqs (3.9) and (3.11), the string stability of IDM and HIDM can be analyzed.
The experiment of analytical solution will be conducted with calibrated parameters and exhibited in
the next section.

4. Experiments

4.1. Data preparation

The NGSIM datasets [59] are detailed and high-fidelity traffic datasets collected from real-world
vehicle trajectory data by the Next Generation SIMulation (NGSIM) computer program. They are
popularly used for traffic analysis and microsimulation research to enhance the applicability of traffic
models. The Interstate 80 (I-80) freeway dataset was one of several datasets collected under the NGSIM
program. It was organized on eastbound I-80 in the San Francisco Bay area in Emeryville, California,
on April 13, 2005. The dataset includes three 15-minute periods, representing congestion buildup (the
transition between uncongested and congested conditions) and complete congestion during the peak
period. The study area is approximately 400 meters in length. Lane 1 is the high-occupancy vehicle
(HOV) lane, so its traffic may not be typical. We will only study the vehicles on the other five regular
routes (from Lane 2 to Lane 6).

As investigated by Punzo et al. [60], the original dataset has measurement errors, and the errors have
adverse effects on microscopic traffic research, such as model calibration and simulation. Montanino
and Punzo [61] proposed a “traffic-informed” method and applied it to NGSIM reconstruction to en-
sure that the reconstructed trajectory data is consistent with vehicle kinematics and microscopic traffic
dynamics. In this paper, we adopt the reconstructed NGSIM I-80 dataset (from 4:00 to 4:15 p.m.).
Since only longitudinal control is examined in this research, we extract car-following events that last
continuously for no less than 30 s (300 timesteps, 10 Hz data resolution) to eliminate the influence of
lateral behavior. We obtain 1386 car-following events involving 662,378 trajectory data points. Each
data point contains trajectory information at that timestep. Figure 3 shows the speed and accelera-
tion profiles of the subject vehicle from a randomly selected car-following event and also displays the
comparison of the raw data and cleaned data.

The car-following events need to be separated into two parts for training and testing. To meet the
demand for complete independence of the testing process, we select the car-following events collected
from Lane 2 as the testing set, i.e., 167,975 trajectory data points (332 vehicle pairs). The events left
(from Lane 3 to Lane 6) will be used as the training set, including 494,403 trajectory data points from
1054 vehicle pairs.
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Figure 3. Speed and acceleration profiles comparing raw data with cleaned data (Vehi-
cle ID=11).

4.2. Driving style clustering and visualizing

The clustering process, which combines PCA and k-means, is conducted using the scikit-learn
library in Python. Standardization is applied to the six characteristic variables of the 494,403 training
samples, and PCA is performed on the standardized matrix. The table presented in Table 3 displays
the principal components (PCs) and their corresponding contribution rates. The table highlights that
the first five PCs have a cumulative contribution rate greater than 95%, indicating that they effectively
represent the original driving style characteristics. The k-means clustering algorithm takes the first five
PCs as input and subsequently outputs three clustering sets.

Table 3. Results of principle components (PCs).
Principal components Contribution rate Cumulated contribution rate
P1 0.319 0.319
P2 0.226 0.545
P3 0.185 0.730
P4 0.143 0.873
P5 0.114 0.987
P6 0.013 1.000

The driving style clustering input has six characteristics (gap distance, relative speed, speed, ac-
celeration, time headway and jerk). It is good to understand the driving style comprehensively, but
it is hard to visualize the clustering results in six dimensions. The t-distributed stochastic neighbor
embedding (t-SNE) algorithm [62] is a nonlinear dimensionality reduction technique ideal for embed-
ding high-dimensional data into a low-dimensional space in two or three dimensions for visualization.
To avoid having too many samples, making it difficult to see the points, we randomly select some car-
following events for visualization. By applying the t-SNE algorithm, the six-dimensional characteristic
variables are reduced to three dimensions, and these three dimensions are merged with the clustering
output. The visualization result is shown in Figure 5, where the axes of x, y and z are the three reduced
dimensions with no practical meanings. It shows that the three types of driving styles (aggressive,
moderate and conservative) have distinction, which implies the driving style clustering algorithm is
effective.

In 494,403 training samples, the proportions of aggressive, moderate and conservative driving styles
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Figure 4. Visualization of the driving style clusters.

Figure 5. Statistical plot of characteristic variables in terms of different driving styles.
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are 39.6, 23.5 and 36.9%, respectively. The statistical analysis is implemented on characteristic vari-
ables to illustrate the difference in driving styles. The statistical plot is shown in Figure 5. It can
be seen that a distinguished diversity exists in the time headway preferences among different driving
styles. The aggressive driving style keeps a much shorter time headway than others, has a broader
variation in range of speed and is more likely to brake sharply. Compared to the moderate driving
style, it tends to maintain a smaller gap distance. In contrast, the moderate driving style maintains
suitable speed and time headway, generally avoiding inappropriate acceleration and deceleration. The
conservative driving style occurs mainly when the following gap distance and speed are small, like in
jam situations, and it keeps the longest time headway compared to aggressive and moderate driving
styles. Moreover, it tends to accelerate or decelerate slightly and smoothly.

4.3. Online driving style recognition

As driving style types can be identified at the timestep level, unrealistic switching of driving styles
may occur, as shown in Figure 6(a). This issue is solved with the sliding window technique illustrated
above. As the historical information for 50 timesteps (5 s) is proven to be qualified to reflect the mem-
ory effect [45–47], tm is set as 50. Thus, the driving style recognition result is obtained, as presented in
Figure 6(b).

(a) Driving style clustering result (b) Driving style recognition result

Figure 6. Driving style recognition with sliding window technique.

The test set is processed using the well-trained PCA and k-means combined algorithm, along with
the sliding window technique, to observe and analyze driving style recognition results. Figure 7(a)–
(c) depicts examples of car-following events dominated by different driving styles. These illustrations
highlight the inter-driver differences, where drivers exhibit preferences for various driving styles even
under similar traffic conditions. Factors contributing to these differences include the drivers’ personal-
ities, skills, travel purposes and other individual characteristics.

Figure 7(d)–(f) displays randomly selected examples of mixed driving styles in which all three driv-
ing style types (aggressive, moderate and conservative) can be observed within a single car-following
event. These examples demonstrate the presence of intra-driver differences, where a driver may alter
their driving style based on the current traffic conditions. Furthermore, distinct drivers tend to exhibit
similar choices when facing comparable situations. For instance, in the three car-following events
shown, the following vehicles all adopt a conservative driving style when the leading vehicles deceler-
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(a) Aggressive driving style dominant (b) Moderate driving style dominant

(c) Conservative driving style dominant (d) Mixed driving styles Example 1

(e) Mixed driving styles Example 2 (f) Mixed driving styles Example 3

Figure 7. Examples of driving style recognition results of car-following events.

ate, prioritizing safety. This observed behavior aligns with the characteristics of conservative driving
style discussed earlier. Consequently, the adaptive nature of driving behaviors is apparent, justifying
the use of online driving style recognition for human-like car-following modeling.
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4.4. Model testing

The model parameter vector θ is calibrated based on the clustered training data, where 70% of
samples for each style group are randomly selected as the calibration set, and the remaining samples
are used as the validation set. It is acknowledged that the genetic algorithm (GA) [63] is a widely
employed calibration method because it can avoid local minima and reach the global optimum with
stochastic global search [64]. We conduct the calibration process with Python, and the main settings
are presented as follows:

• The optimization objective is to minimize the error between the calculated acceleration (ˆ̇v) and
the observed acceleration (v̇). The mean squared error is used as the objective function, and the
calculation formula is as follows:

mse =
1
m

m∑
i=1

[v̇(i) − ˆ̇vn(i)]2 (4.1)

• The bounds of parameters are set referring to Saifuzzaman et al. [64], as displayed in Table 4.
• The GA parameters are total iterations 1000, population size 1000, crossover rate 0.9 and mutation

rate 0.0125.

The optimum sets of calibrated parameters of IDM and HIDM are presented in Table 4. The suffixes
“un” and “st” represent unstable and stable, respectively.

Table 4. Calibrated parameters.
type parameter vector ã (m/s2) b̃ (m/s2) ṽ (m/s) t0 (s) s0 (m)

bound / / [0.1,4.0] [0.1,4.5] [0.3,41.7] [0.1,4.0] [1.0,10.0]
IDM / θ 2.02 1.43 22.89 1.40 2.75

aggressive θagg 1.17 3.85 28.04 1.02 2.25
HIDM un moderate θmod 1.08 2.85 25.38 1.86 2.42

conservative θcon 1.42 3.34 17.81 1.34 2.18
aggressive θagg 2.27 2.41 29.14 1.00 2.08

HIDM st moderate θmod 1.68 1.38 29.06 1.74 3.20
conservative θcon 2.41 3.24 26.42 1.35 2.17

In the simulation environment, the predicted trajectory is computed step by step with the iteration
of discrete-time car-following process based on the calculated acceleration rate at each timestep, as
formulated in Eq (4.2). The mean squared error (MSE) between the simulated trajectory and the
observed trajectory is employed as the performance evaluation indicator, as presented in Eq (4.3). A
lower MSE reflects a better fit between simulated and observed trajectories and signifies improved
performance of the car-following model.

a(t + 1) = v̇(∆x, v,∆v; θ(t))
v(t + 1) = vn(t) + an(t + 1)∆t

x(t + 1) = xn(t) + vn(t)∆t + 1
2an(t + 1)∆t2

(4.2)

MSE =
1
M

M∑
i=1

[ẋ(i) − ˆ̇xn(i)]2 (4.3)

where M is the number of trajectory points. ẋ(i) and ˆ̇x(i) are the observed and simulated locations at
the i th timestep, respectively.
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To facilitate understanding, the corresponding statistical results are compared in Table 5. IDM is
a widely recognized car-following model, providing reliable trajectory reproduction results. However,
when compared to IDM, the proposed HIDM demonstrates smaller mean and standard deviation (SD)
values, indicating improved performance. Additionally, HIDM’s overall performance surpasses that of
IDM, as evidenced by the lower values in the percentiles.

Table 5. Statistical results of the performance.
Model Mean (SD) Min Max Percentile [25%, 50%, 75%]
IDM 26.74 (38.70) 1.21 374.28 [8.28, 14.87, 29.91]
HIDM un 23.93 (34.19) 0.80 290.49 [6.66, 12.49, 26.79]
HIDM st 25.85 (36.84) 0.75 377.21 [5.43, 11.86, 28.46]

In accordance with the string stability analysis framework, the stability value relative to equilibrium
speed is computed, and the string stability plots are displayed in Figure 8. It is evident that HIDM st
remains stable for any equilibrium speed, as the stability values consistently stay above zero. Notably,
it can be observed that adopting a conservative driving style is more stable when the vehicle speed is
slow, while employing an aggressive driving style approaches an unstable state, which aligns with real-
world scenarios. For HIDM un, although it has a higher prediction accuracy for the actual trajectory,
with an average MSE of 23.93, it does not satisfy string stability and cannot be applied to longitudinal
control of autonomous vehicles.

(a) HIDM un (b) HIDM st

Figure 8. String stability analysis.

To offer a visual examination of the simulation outcomes, we construct time-space diagrams that
compare the observed and simulated trajectories. We choose the car-following events depicted in
Figure 7 as our examples. Figure 9 presents the reproduced trajectory profiles of four representative
patterns of driving style distribution, including aggressive, moderate, conservative and mixed driving
styles. The results show that HIDM outperforms IDM in terms of trajectory prediction accuracy. Com-
paring the results in Figure 9 with the observed driving behaviors in Figure 7, we find that HIDM
closely aligned with the observed driving behaviors, demonstrating the model’s effectiveness in accu-
rately capturing and representing various driving styles. Moreover, Figure 9(d) showed that the model
could reflect intra-driver differences effectively by reproducing individual trajectories of mixed driving
styles.
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4.5. Platoon simulation

(a) Aggressive driving style dominant (Vehicle ID=378 and Leader ID=368)

(b) Moderate driving style dominant (Vehicle ID=3215 and Leader ID=3206)

(c) Conservative driving style dominant (Vehicle ID=93 and Leader ID=87)

(d) Mixed driving styles (Vehicle ID=2108 and Leader ID=2097)

Figure 9. Comparison of models’ performances.

From the above simulation analysis, it is clear that HIDM performs well in trajectory prediction.
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HIDM st is suitable for the control system due to its string stability property. However, it appears that
HIDM un has higher simulation accuracy for trajectory reproduction based on the statistical results.
To further explore this observation, we conduct platoon simulations with both HIDM un and HIDM st.

The platoon simulation is implemented differently than a vehicle pair trajectory simulation. In the
pair simulation, the following vehicle is simulated based on the observed trajectory of the leading
vehicle. In the platoon simulation, except for the first following vehicle, the other following vehicles
run the simulation based on the simulated trajectory of the preceding vehicle. As the simulation error
will accumulate and become more exaggerated in the platoon simulation, the string stability of models
can be more easily observed.

The time-space diagram of test data is plotted in Figure 10(a), and two vehicle platoons are labeled.
It shows that the platoons traverse through stop-and-go waves. The simulated trajectories are generated
based on the observed data of the leading vehicles (Vehicle 898 for Platoon A and Vehicle 1941 for
Platoon B) and the initial states of the following vehicles. The observed and simulated trajectories of
the two platoons are presented in Figure 10(b),(c).

Figure 10(a) shows that there are noticeable differences in the behaviors of Platoons A and B. The
perturbation wave for Platoon A seems to dissipate slightly, while the oscillation wave for Platoon B
propagates upstream to a significant extent. This difference in wave behavior leads to a conclusion
that Platoons A and B exhibit comparatively stable and unstable properties, respectively. To further
analyze the behavior of the two platoons, the simulation results show that the HIDM st model performs
better for the simulation of Platoon A, while the HIDM un model is more suitable for Platoon B. These
findings indicate that the original trajectory data from human drivers tends to be unstable, which further
implies the importance of personalized driver models to account for variations in driving style and
behavior.

5. Discussion

Our study implements the decision-making process in two steps: we primarily use the k-means
algorithm to identify the driving style; then, based on the results from the first step, we employ the
genetic algorithm to calibrate the kinematics-based car-following model. In recent years, advanced
optimization algorithms, such as customized heuristics and metaheuristics algorithms [65–67] and
multi-objective optimization algorithms [68–70], have gained widespread attention for their effective-
ness in solving complex decision-making problems. They have been employed as solution approaches
across various fields, demonstrating their ability to manage multiple objectives and constraints while
adapting to dynamic and uncertain environments.

Advanced optimization algorithms play a crucial role in enhancing the performance of car-following
models, which are fundamental to autonomous driving. These algorithms tackle complex optimization
problems in calibration, control and motion planning. For example, studies have employed global
optimization algorithms for calibrating car-following model parameters [71], particle swarm optimiza-
tion (PSO) for tuning model predictive control (MPC) weights [72] and accelerated particle swarm
optimization (APSO) for motion planning in MPC formulations [73]. In future research, it would be
valuable to compare the performance of the approach proposed in our study with advanced optimiza-
tion algorithms, in order to assess the potential benefits and improvements that these algorithms may
offer. Through a comparative analysis that considers accuracy, adaptability and computational effi-
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(a) The observed trajectories of Platoon A and Platoon B

(b) Platoon A following Vehicle 898

(c) Platoon B following Vehicle 1941

Figure 10. Platoon simulation.
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ciency, researchers could gain a deeper understanding of the strengths and weaknesses inherent to each
approach. Such a comparison could ultimately facilitate the identification of potential enhancements
in car-following models and autonomous driving technologies, paving the way for more effective and
safer driving solutions.

6. Conclusions

Human-like car-following modeling helps improve the performance of driving automation. This
study aims to explore the variation characteristic of driving style with a high-fidelity human-driven
dataset and to establish the car-following model for driving style adaption in real-time. The proposed
HIDM is calibrated with clustered training data and compared with calibrated IDM on trajectory simu-
lation. The string stability of HIDM is analyzed and further validated in platoon simulation. The main
findings are concluded as follows:

• Trajectory samples are clustered into three types (aggressive, moderate and conservative) in terms
of driving style. The driving style types are visualized with a dimensionality reduction technique,
showing an explicit distinction.
• The driving style recognition results of car-following events reveal not only heterogeneity, in that

drivers prefer different driving styles because of individual-related factors, but also homogeneity,
in that they may have common choices in similar situations.
• The driving style recognition results show that most drivers do not always maintain one driving

style. There are intra-driver differences. In other words, a driver can change one’s driving style
with the influence of related factors such as traffic conditions.
• Compared with the observed trajectory, the simulated trajectory with HIDM preserves the ac-

tual driving styles, which means that HIDM can capture the driving style characteristics in car-
following events.
• The stability analysis and platoon simulation reveal the presence of instability in the traffic flow

of human-driven vehicles. HIDM st meets the string stability criteria for any equilibrium speed
and can be effectively applied to the longitudinal control of autonomous vehicles.

Taking a comprehensive view of this research, it is worth mentioning that certain aspects may
require further examination and exploration in future investigations, as they are not fully addressed
within the scope of this study. Although the combination of PCA and k-means clustering offers a bal-
ance between simplicity, effectiveness and interoperability, there is potential for exploring alternative
approaches in future research to further enhance the performance of the driving style recognition and
modeling framework. Furthermore, the accuracy of these recognition results remains unassessed due to
the lack of a well-defined baseline for comparison. Future research endeavors may consider conducting
localized car-following experiments to further validate the driving style recognition outcomes.
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