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Abstract: In this paper, a delayed diffusive predator-prey model with the Allee effect and nonlocal
competition in prey and hunting cooperation in predators is proposed. The local stability of coexisting
equilibrium and the existence of Hopf bifurcation are studied by analyzing the eigenvalue spectrum.
The property of Hopf bifurcation is also studied by the center manifold theorem and normal form
method. Through numerical simulation, the analysis results are verified, and the influence of these
parameters on the model is also obtained. Firstly, increasing the Allee effect parameter β and hunting
cooperation parameter α is not conducive to the stability of the coexistence equilibrium point under
some parameters. Secondly, the time delay can also affect the stability of coexisting equilibrium and
induce periodic solutions. Thirdly, the nonlocal competition in prey can affect the dynamic properties
of the predator-prey model and induce new dynamic phenomena (stably spatially inhomogeneous
bifurcating periodic solutions).
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1. Introduction

The predator-prey model has always been an important research content of biomathematics, because
a predator-prey relationship is widespread in nature [1–4]. Among the population growth laws, the
Allee effect is an important biological phenomenon. W. Allee proposed the famous Allee effect to
describe the phenomenon that low-density populations are prone to extinction [5]. Since then, the
predator-prey model with the Allee effect has received extensive attention from scholars. Cooperative
hunting is also widespread in nature, such as gray wolves, chimpanzees, banded mongooses, lions,
etc. [6, 7]. They all hunt collectively.

In [8], R. Yadav et al. studied a predator-prey model with the Allee effect and hunting cooperation,
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that is

 du
dt = ru

(
1 − u

K

)
(u − u0) − (λ+av)u2v

1+A(λ+av)u2 ,
dv
dt = e (λ+av)u2v

1+A(λ+av)u2 − mv.
(1.1)

u(t) and v(t) are densities of prey and predator, respectively. r, K and u0 represent intrinsic growth rate,
carrying capacity and Allee effect parameter of prey, respectively. The term (λ+av)u2

1+A(λ+av)u2 is the functional
response function including the hunting cooperation in predator, with capturing rate λ, handling time
A and hunting cooperation parameter a. e and m are conversion efficiency and death rate of a predator.
Make the changes u = Kũ, v = r

λ
ṽ, t = 1

rK t̃, α = ar
λ2 , β = N0

K , σ = m
K2eλ , h = AK2λ, η = Keλ

r , and drop
”˜”, the model (1.1) is changed into

 du
dt = u(1 − u)(u − β) − (1+αv)u2v

1+h(1+αv)u2 ,
dv
dt = η

(
(1+αv)u2v

1+h(1+αv)u2 − σv
)
.

(1.2)

The authors mainly studied the Turing pattern of the model (1.2) by applying the amplitude equation
through weakly nonlinear analysis [8]. The model (1.2) shows the spiral and target patterns.

In the inter-population interaction, time delay often occurs, such as gestation delay, maturation
time, capturing time, and so on. Some scholars have discussed the dynamic properties of predator-
prey models with time delay, mainly focusing on Hopf bifurcation [9–11]. They obtained that time
delay may affect the stability of equilibria, and induce Hopf bifurcation [12–14]. In particular, in
the reaction-diffusion predator-prey model with time delay, there may be spatially homogeneous and
inhomogeneous periodic solutions, but the stable periodic solutions are often spatially homogeneous
in the numerical simulation. This is not consistent with the actual situation, because in the real world,
the spatial distribution of the population is difficult to reach a completely uniform state, that is, a stable
spatial homogeneous periodic solution. This is one of our motivations, that is, will there be stably
spatially inhomogeneous periodic solutions for the delayed reaction-diffusion predator-prey model.

In addition, due to the limited resources and the competition within the population, many scholars
have chosen the Logistic growth law to describe the growth law of the prey population. Logistic growth
law is mainly applicable to the predator-prey model in the form of an ordinary differential equation,
and it is assumed that the spatial distribution of resources is uniform. However, in fact, the spatial
distribution of resources is often nonuniform, and the population competition among prey is often
spatially nonlocal competition [15, 16]. To describe this phenomenon, the authors [17, 18] modified
the u

K as 1
K

∫
Ω

G(x, y)u(y, t)dy with some kernel function G(x, y). In [19], D. Geng and H. Wang studied
the normal form of double-Hopf bifurcation for a predator-prey model with nonlocal competition with
nonlocal effect. In [21], Liu et al. studied a delayed diffusive predator-prey model with group defense
effect and nonlocal competition and observed stably spatially inhomogeneous oscillations. In [20] the
authors analyzed a diffusive predator-prey model with nonlocal competition from the perspective of
bifurcation. In this paper, we want to study what new dynamic phenomena will appear when adding
spatial nonlocal competition in the model (1.2), and what impact it will have on the distribution of prey
and predator densities. This is another motivation for our work.
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Motivated by above, we studied the following model

∂u(x, t)
∂t

= d1∆u + u
(
1 −

∫
Ω

G(x, y)u(y, t)dy
)

(u − β) −
(1 + αv)u2v

1 + h(1 + αv)u2 ,

∂v(x, t)
∂t

= d2∆v + η
(
(1 + αv(t − τ))u2(t − τ)v(t − τ)
1 + h(1 + αv(t − τ))u2(t − τ)

− σv
)
, x ∈ Ω, t > 0

∂u(x, t)
∂ν̄

=
∂v(x, t)
∂ν̄

= 0, x ∈ ∂Ω, t > 0

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0].

(1.3)

where d1 and d2 are diffusive coefficients. τ is the gestation delay in predator.
∫
Ω

G(x, y)u(y, t)dy
represents the nonlocal competition effect. The kernel function is

G(x, y) =
1
|Ω|
=

1
lπ
, x, y ∈ Ω,

which is widely used [20, 21]. This is based on the assumption that the competition strength among
prey individuals in the habitat is the same. The region Ω = (0, lπ) with l > 0 just for the convenience
of calculation.

The article is structured as follows. In Section 2, the stability and existence of Hopf bifurcation
for the models with and without nonlocal competition are studied. In Section 3, the parameters that
determine the properties of Hopf bifurcation are given. In Section 4, some numerical simulations are
shown. In Section 5, a short conclusion is given.

2. Stability analysis

The authors obtain that the system (1.3) has at least one coexisting equilibrium (u∗, v∗) when β2

β2h+1 <

σ < 1
h+1 and β < 1 in [8], where u∗ is the root of the following equation falling in the interval (β, 1),

u2
(
α(1 − u)u(u − β)

σ
+ 1

)
−

σ

1 − hσ
= 0,

and v∗ =
u∗(1−u∗)(u∗−β)

σ
. In the following, we just denote the coexisting equilibrium as (u∗, v∗).

2.1. The model with nonlocal competition

Linearize system (1.3) at E∗(u∗, v∗)

∂u
∂t

(
u(x, t)
u(x, t)

)
= D

(
∆u(t)
∆v(t)

)
+ L1

(
u(x, t)
v(x, t)

)
+ L2

(
u(x, t − τ)
v(x, t − τ)

)
+ L3

(
û(x, t)
v̂(x, t)

)
, (2.1)

where

D =
(

d1 0
0 d2

)
, L1 =

(
a1 a2

0 −ησ

)
, L2 =

(
0 0
b1 b2

)
, L3 =

(
â 0
0 0

)
,
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a1 = u∗

v∗(αv∗ + 1)
(
hu2
∗(αv∗ + 1) − 1

)
(
hu2
∗(αv∗ + 1) + 1

)2 + 1 − u∗

 ,
a2 = −

u2
∗

(
h(αu∗v∗ + u∗)2 + 2αv∗ + 1

)
(
hu2
∗(αv∗ + 1) + 1

)2 < 0, b1 =
2ηu∗v∗(αv∗ + 1)(

hu2
∗(αv∗ + 1) + 1

)2 > 0,

b2 =
ηu2
∗

(
h(αu∗v∗ + u∗)2 + 2αv∗ + 1

)
(
hu2
∗(αv∗ + 1) + 1

)2 > 0, â = −u∗(u∗ − β) < 0,

(2.2)

and û = 1
lπ

∫ lπ

0
u(y, t)dy. The characteristic equations are

λ2 + Enλ + Mn + (Gn − b2λ)e−λτ = 0, n ∈ N0, (2.3)

where

E0 = ησ − (â + a1), M0 = −ησ(â + a1), G0 = b2(â + a1) − a2b1,

En = +(d1 + d2)
n2

l2 + ησ − a1, Mn = d1d2
n4

l4 + (d1ησ − a1d2)
n2

l2 − a1ησ,

Gn = −b2d1
n2

l2 + a1b2 − a2b1, n ∈ N.

(2.4)

N and N0 represent the positive integer set and the non-negative integer set.
When τ = 0, the characteristic equations are as follow

λ2 + (En − b2)λ + Mn +Gn = 0, n ∈ N0. (2.5)

Make the following hypothesis

(H1) En − b2 > 0, Mn +Gn > 0, for n ∈ N0.

Under the hypothesis (H1), E∗(u∗, v∗) is locally asymptotically stable when τ = 0.
Next, we will discuss the case of τ > 0.

Lemma 2.1. Assume (H1) holds, the following results hold.
• Equation (2.3) has a pair of purely imaginary roots ±iω+n at τ j,+

n for j ∈ N0 and n ∈W1.
• Equation (2.3) has two pairs of purely imaginary roots ±iω±n at τ j,±

n for j ∈ N0 and n ∈W2.
• Equation (2.3) has no purely imaginary root for n ∈W3.

Where ±iω±n , τ j,±
n ,W1,W2 andW3 are defined in (2.8) and (2.9).

Proof. Let iω (ω > 0) be a solution of Eq (2.3), then

−ω2 + iωEn + Mn + (Gn − b2iω)(cosωτ − isinωτ) = 0.

Obviously. cosωτ = ω2(b2En+Gn)−MnGn

G2
n+b2

2ω
2 , sinωτ = ω(EnGn+Mnb2−b2ω

2)
G2

n+b2
2ω

2 . It leads to

ω4 + ω2
(
E2

n − 2Mn − b2
2

)
+ M2

n −G2
n = 0. (2.6)
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Let z = ω2,then (2.6) becomes

z2 + z
(
E2

n − 2Mn − b2
2

)
+ M2

n −G2
n = 0, (2.7)

and the roots of (2.7) are z± = 1
2 [−Hn ±

√
H2

n − 4JnKn] , where Hn = E2
n − 2Mn − b2

2, Jn = Mn +Gn, and
Kn = Mn −Gn. If (H1) holds, Jn > 0 (n ∈ N0). By direct calculation, we have

H0 = (â + a1)2 + η2σ2 − b2
2,

Hk =

(
a1 − d1

k2

l2

)2

+

(
d2

k2

l2 + ησ

)2

− b2
2, for k ∈ N

K0 = a2b1 − (â + a1)(b2 + ησ),

Kk = d1d2
k4

l4 + [d1(b2 + ησ) − a1d2]
k2

l2 + a2b1 − a1b2 + ησ, for k ∈ N.

Define

S1 = {n|Kn < 0, n ∈ N0},

S2 = {n|Kn > 0, Hn < 0, H2
n − 4JnKn > 0, n ∈ N0},

S3 = {n|Kn > 0, H2
n − 4JnKn < 0, n ∈ N0},

(2.8)

and

ω±n =
√

z±n , τ j,±
n =

 1
ω±n

arccos(V (n,±)
cos ) + 2 jπ, V (n,±)

sin ≥ 0,
1
ω±n

[
2π − arccos(V (n,±)

cos )
]
+ 2 jπ, V (n,±)

sin < 0.

V (n,±)
cos =

(ω±n )2(b2En +Gn) − MnGn

G2
n + b2

2(ω±n )2
, V (n,±)

sin =
ω±n

(
EnGn + Mnb2 − b2(ω±n )2

)
G2

n + b2
2(ω±n )2

.

(2.9)

It is easy to verify the conclusion in the Lemma 2.1.

Next, we verify the transversal condition for the existence of Hopf bifurcation.

Lemma 2.2. Assume (H1) holds. Then Re( dλ
dτ )|τ=τ j,+

n
> 0, Re(dλ

dτ )|τ=τ j,−
n
< 0 for n ∈ S1∪S2 and j ∈ N0.

Proof. By (2.3), we have

(
dλ
dτ

)−1 =
2λ + En − b2e−λτ

(Gn − b2λ)λe−λτ
−
τ

λ
.

Then

[Re(
dλ
dτ

)−1]τ=τ j,±
n
= Re[

2λ + En − b2e−λτ

(Gn − b2λ)λe−λτ
−
τ

λ
]τ=τ j,±

n

= [
1

G2
n + b2

2ω
2
(2ω2 + E2

n − 2Mn − b2
2)]τ=τ j,±

n

= ±[
1

G2
n + b2

2ω
2

√
(E2

n − 2Mn − b2
2)2 − 4(M2

n −G2
n)]τ=τ j,±

n
.

Therefore, Re( dλ
dτ )|τ=τ j,+

n
> 0, Re(dλ

dτ )|τ=τ j,−
n
< 0.
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Denote τ∗ = min{τ0
n| n ∈ S1 ∪ S2}. We have the following theorem.

Theorem 2.1. For system (1.3), assume (H1) holds.
• E∗(u∗, v∗) is locally asymptotically stable for τ > 0 when S1 ∪ S2 = ∅.
• E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗) when S1 ∪ S2 , ∅.
• E∗(u∗, v∗) is unstable for τ ∈ (τ∗, τ∗ + ε) for some ε > 0 when S1 ∪ S2 , ∅.
• Hopf bifurcation occurs at (u∗, v∗) when τ = τ j,+

n (τ = τ j,−
n ), j ∈ N0, n ∈ S1 ∪ S2. In addition, the

spatially homogeneous (inhomogeneous) periodic solutions occur when τ = τ j,±
0 (τ = τ j,±

n , n > 0).

2.2. The model without nonlocal competition

The model (1.3) without nonlocal competition is as follow
∂u(x, t)
∂t

= d1∆u + u (1 − u) (u − β) −
(1 + αv)u2v

1 + h(1 + αv)u2 ,

∂v(x, t)
∂t

= d2∆v + η
(
(1 + αv(t − τ))u2(t − τ)v(t − τ)
1 + h(1 + αv(t − τ))u2(t − τ)

− σv
)
.

(2.10)

Linearize system (2.10) at E∗(u∗, v∗)

∂u
∂t

(
u(x, t)
u(x, t)

)
= D

(
∆u(t)
∆v(t)

)
+ (L1 + L3)

(
u(x, t)
v(x, t)

)
+ L2

(
u(x, t − τ)
v(x, t − τ)

)
. (2.11)

The characteristic equations are

λ2 + Ãnλ + M̃n + (G̃n − b2λ)e−λτ = 0, n ∈ N0, (2.12)

where

Ẽn = +(d1 + d2)
n2

l2 + ησ − (a1 + â),

M̃n = d1d2
n4

l4 + (d1ησ − (a1 + â)d2)
n2

l2 − (a1 + â)ησ,

G̃n = −b2d1
n2

l2 + (a1 + â)b2 − a2b1, n ∈ N0.

(2.13)

When τ = 0, the characteristic equations are as follow

λ2 + (Ẽn − b2)λ + M̃n + G̃n = 0, n ∈ N0. (2.14)

Make the following hypothesis

(H2) Ẽn − b2 > 0, M̃n + G̃n > 0, for n ∈ N0.

Under the hypothesis (H2), E∗(u∗, v∗) is locally asymptotically stable when τ = 0.

Remark 2.1. It is easy to obtain that Ã0−b2 = E0−b2, B̃0+C̃0 = M0+G0, Ẽn−b2−(En−b2) = −â > 0
and M̃n + G̃n − (Mn +Gn) = −â

(
d2

n2

l2 + ησ − b2

)
for n ∈ N. Hence, under condition d2

l2 + ησ − b2 ≥ 0,
hypothesis (H1) can deduce (H2).
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Through a similar process, we have the following results. Define

H̃k =

(
a1 + â − d1

k2

l2

)2

+

(
d2

k2

l2 + ησ

)2

− b2
2,

J̃k = d1d2
k4

l4 + [d1(b2 − ησ) + (a1 + â)d2]
k2

l2 − a2b1 + (â + a1)(b2 − ησ),

K̃k = d1d2
k4

l4 + [d1(b2 + ησ) − (a1 + â)d2]
k2

l2 + a2b1 − (â + a1)(b2 + ησ), for k ∈ N0.

(2.15)

S̃1 = {n|K̃n < 0, n ∈ N0},

S̃2 = {n|K̃n > 0, H̃n < 0, H̃2
n − 4J̃nK̃n > 0, n ∈ N0},

S̃3 = {n|K̃n > 0, H̃2
n − 4J̃nK̃n < 0, n ∈ N0},

(2.16)

ω±n =

√
1
2

[−H̃n ±

√
H̃2

n − 4J̃nK̃n], τ j,±
n =

 1
ω±n

arccos(V (n,±)
cos ) + 2 jπ, V (n,±)

sin ≥ 0,
1
ω±n

[
2π − arccos(V (n,±)

cos )
]
+ 2 jπ, V (n,±)

sin < 0.

V (n,±)
cos =

(ω±n )2(b2Ẽn + G̃n) − M̃nG̃n

G̃2
n + b2

2(ω±n )2
, V (n,±)

sin =
ω±n

(
ẼnG̃n + M̃nb2 − b2(ω±n )2

)
G̃2

n + b2
2(ω±n )2

.

(2.17)

Corollary 2.1. Assume (H2) holds, the following results hold.
• Equation (2.12) has a pair of purely imaginary roots ±iω+n at τ j,+

n for j ∈ N0 and n ∈ S1.
• Equation (2.12) has two pairs of purely imaginary roots ±iω±n at τ j,±

n for j ∈ N0 and n ∈ S2.
• Equation (2.12) has no purely imaginary root for n ∈ S3.

The transversal condition is also valid.

Corollary 2.2. Assume (H2) holds. Then Re( dλ
dτ )|τ=τ j,+

n
> 0, Re( dλ

dτ )|τ=τ j,−
n
< 0 for n ∈ S̃1 ∪ S̃2 and

j ∈ N0.

Denote τ̃∗ = min{τ0
n| n ∈ S̃1 ∪ S̃2}. We have the following theorem.

Corollary 2.3. For the model (2.10), assume (H2) holds.
• E∗(u∗, v∗) is locally asymptotically stable for τ > 0 when S̃1 ∪ S̃2 = ∅.
• E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ̃∗) when S̃1 ∪ S̃2 , ∅.
• E∗(u∗, v∗) is unstable for τ ∈ (τ̃∗, τ̃∗ + ε) for some ε > 0 when S̃1 ∪ S̃2 , ∅.
• Hopf bifurcation occurs at (u∗, v∗) when τ = τ j,+

n (τ = τ j,−
n ), j ∈ N0, n ∈ S̃1 ∪ S̃2. In addition, the

spatially homogeneous (inhomogeneous) periodic solutions occur when τ = τ j,±
0 (τ = τ j,±

n , n > 0).

3. Property of Hopf bifurcation

By the work [22, 23], we study the property of Hopf bifurcation. For fixed j ∈ N0 and n ∈ S1 ∪ S2,
we denote τ̃ = τ

j,±
n . Let ū(x, t) = u(x, τt) − u∗ and v̄(x, t) = v(x, τt) − v∗. Drop the bar, (1.3) can be

written as
∂u
∂t
= τ[d1∆u + (u + u∗)

(
1 −

1
lπ

∫ lπ

0
(u(y, t) + u∗)dy

)
(u + u∗ − β) −

(1 + α(v + v∗))(u + u∗)2(v + v∗)
1 + h(1 + α(v + v∗))(u + u∗)2 ],

∂v
∂t
= τ[d2∆vη

(
(1 + α(v(t − 1) + v∗))(u(t − 1) + u∗)2v(t − τ)
1 + h(1 + α(v(t − 1) + v∗))(u(t − 1) + u∗)2 − σv

)
].

(3.1)

Electronic Research Archive Volume 31, Issue 4, 2120–2138.
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We rewrite system (3.1) as following system

∂u
∂t
=τ[d1∆u + a1u + a2v − âû + α1u2 − (2u∗ − β)uû + α2uv + α3v2 + α4u3 + α5u2v + α6uv2

+ α7v3] + h.o.t.,
∂v
∂t
=τ[d2∆v − ησv + b1u(t − 1) + b2v(t − 1) + β1u2(t − 1) + β2u(t − 1)v(t − 1) + β3u2(t − 1)

+ β4u3(t − 1) + β5u2(t − 1)v(t − 1)] + β6u(t − 1)v2(t − 1) + β7v3(t − 1)] + h.o.t.,

(3.2)

where α1 =
2v∗(αv∗+1)(3hu2

∗(αv∗+1)−1)
(hu2
∗(αv∗+1)+1)3 − 2u∗ + 2, α2 = −

2(u3
∗(αhv∗+h)+2αu∗v∗+u∗)
(hu2
∗(αv∗+1)+1)3 , α3 = −

2u2
∗(α+αhu2

∗)
(hu2
∗(αv∗+1)+1)3 ,

α4 = −
24hu∗v∗(αv∗+1)2(hu2

∗(αv∗+1)−1)
(hu2
∗(αv∗+1)+1)4 , α5 =

6u4
∗(αhv∗+h)2+4hu2

∗(5α2v2
∗+6αv∗+1)−4αv∗−2

(hu2
∗(αv∗+1)+1)4 , α6 =

4αu∗(h2u4
∗(αv∗+1)+2αhu2

∗v∗−1)
(hu2
∗(αv∗+1)+1)4 ,

α7 =
6α2hu4

∗(hu2
∗+1)

(hu2
∗(αv∗+1)+1)4 , β1 = −

2ηv∗(αv∗+1)(3hu2
∗(αv∗+1)−1)

(hu2
∗(αv∗+1)+1)3 , β2 =

2η(u3
∗(αhv∗+h)+2αu∗v∗+u∗)
(hu2
∗(αv∗+1)+1)3 ; β3 =

2αηu2
∗(hu2

∗+1)
(hu2
∗(αv∗+1)+1)3 ,

β4 =
24ηhu∗v∗(αv∗+1)2(hu2

∗(αv∗+1)−1)
(hu2
∗(αv∗+1)+1)4 , β5 = −

2η(3u4
∗(αhv∗+h)2+2hu2

∗(5α2v2
∗+6αv∗+1)−2αv∗−1)

(hu2
∗(αv∗+1)+1)4 ,

β6 = −
4αηu∗(h2u4

∗(αv∗+1)+2αhu2
∗v∗−1)

(hu2
∗(αv∗+1)+1)4 , β7 = −

6α2ηhu4
∗(hu2

∗+1)
(hu2
∗(αv∗+1)+1)4 .

Define the real-valued Sobolev space X :=
{
(u, v)T : u, v ∈ H2(0, lπ), (ux, vx)|x=0,lπ = 0

}
, the

complexification of X is XC := X ⊕ iX = {x1 + ix2| x1, x2 ∈ X} . The inner product
< ũ, ṽ >:=

∫ lπ

0
u1v1dx +

∫ lπ

0
u2v2dx is for ũ = (u1, u2)T , ṽ = (v1, v2)T , ũ, ṽ ∈ XC. The phase space

C := C([−1, 0], X) is with the sup norm, then we can write ϕt ∈ C, ϕt(θ) = ϕ(t + θ) or −1 ≤ θ ≤ 0.
Denote β(1)

n (x) = (γn(x), 0)T , β(2)
n (x) = (0, γn(x))T , and βn = {β

(1)
n (x), β(2)

n (x)}, where {β(i)
n (x)} is an

orthonormal basis of X. We define the subspace of C as Bn := span{< ϕ(·), β( j)
n > β

( j)
n |ϕ ∈ C, j = 1, 2},

n ∈ N0. There exists a 2 × 2 matrix function ηn(σ, τ̃) −1 ≤ σ ≤ 0, such that
−τ̃Dn2

l2 ϕ(0) + τ̃L(ϕ) =
∫ 0

−1
dηn(σ, τ)ϕ(σ) for ϕ ∈ C. The bilinear form on C∗ × C is defined by

(ψ, ϕ) = ψ(0)ϕ(0) −
∫ 0

−1

∫ σ

ξ=0
ψ(ξ − σ)dηn(σ, τ̃)ϕ(ξ)dξ, (3.3)

for ϕ ∈ C, ψ ∈ C∗. Define τ = τ̃+µ, then the system undergoes a Hopf bifurcation at (0, 0) when µ = 0,
with a pair of purely imaginary roots ±iωn0 . Let A denote the infinitesimal generators of semigroup,
and A∗ be the formal adjoint of A under the bilinear form (3.3). Define the following function

δ(n0) =
{

1 n0 = 0,
0 n0 ∈ N.

(3.4)

Choose ηn0(0, τ̃) = τ̃[(−n2
0/l

2)D + L1 + L3δ(nn0)], ηn0(−1, τ̃) = −τ̃L2, ηn0(σ, τ̃) = 0 for −1 < σ < 0.
Let p(θ) = p(0)eiωn0 τ̃θ (θ ∈ [−1, 0]), q(ϑ) = q(0)e−iωn0 τ̃ϑ (ϑ ∈ [0, 1]) be the eigenfunctions of A(τ̃)
and A∗ corresponds to iωn0 τ̃ respectively. We can choose p(0) = (1, p1)T , q(0) = M(1, q2), where

p1 =
1
a2

(iωn0 + d1n2
0/l

2 − a1 − âδ(n0)), q2 =
e−iτωn0

b1

(
−âδ(n0) − a1 +

d1n2

l2 + iωn0

)
, and M = (1 + p1q2 +

τ̃q2(b1 + b2 p1)e−iωn0 τ̃)−1. Then (3.1) can be rewritten in an abstract form

dU(t)
dt
= (τ̃ + µ)D∆U(t) + (τ̃ + µ)[L1(Ut) + L2U(t − 1) + L3Û(t)] + F(Ut, Ût, µ), (3.5)
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where

F(ϕ, µ) = (τ̃ + µ)


α1ϕ1(0)2 − (2u∗ − β)ϕ1(0)ϕ̂1(0) + α2ϕ1(0)ϕ2(0) + α3ϕ2(0)2 + α4ϕ

3
1(0)

+α5ϕ
2
1(0)ϕ2(0) + α6ϕ1(0)ϕ2

2(0) + α7ϕ
3
2(0)

β1ϕ
2
1(−1) + β2ϕ1(−1)ϕ2(−1) + β3ϕ

2
2(−1) + β4ϕ

3
1(−1) + β4ϕ

2
1(−1)ϕ2(−1)

+β6ϕ1(−1)ϕ2
2(−1) + β7ϕ

3
2(−1)

 (3.6)

respectively, for ϕ = (ϕ1, ϕ2)T ∈ C and ϕ̂1 =
1
lπ

∫ lπ

0
ϕdx. Then the space C can be decomposed as

C = P ⊕ Q, where P = {zpγn0(x) + z̄ p̄γn0(x)|z ∈ C}, Q = {ϕ ∈ C|(qγn0(x), ϕ) = 0 and (q̄γn0(x), ϕ) = 0}.
Then, system (3.6) can be rewritten as Ut = z(t)p(·)γn0(x)+ z̄(t)p̄(·)γn0(x)+ω(t, ·) and Ût =

1
lπ

∫ lπ

0
Utdx,

where
z(t) = (qγn0(x),Ut), ω(t, θ) = Ut(θ) − 2Re{z(t)p(θ)γn0(x)}. (3.7)

then, we have ż(t) = iω)n0τ̃z(t) + q̄(0) < F(0,Ut), βn0 >. There exists a center manifold C0 and ω can
be written as follow near (0, 0).

ω(t, θ) = ω(z(t), z̄(t), θ) = ω20(θ)
z2

2
+ ω11(θ)zz̄ + ω02(θ)

z̄2

2
+ · · · . (3.8)

Restrict the system to the center manifold is ż(t) = iωn0 τ̃z(t) + g(z, z̄). Denote g(z, z̄) = g20
z2

2 + g11zz̄ +
g02

z̄2

2 + g21
z2 z̄
2 + · · · . By direct computation, we have

g20 = 2τ̃M(ς1 + q2ς2)I3, g11 = τ̃M(ϱ1 + q2ϱ2)I3, g02 = ḡ20,

g21 = 2τ̃M[(κ11 + q2κ21)I2 + (κ12 + q2κ22)I4],

where I2 =
∫ lπ

0
γ2

n0
(x)dx, I3 =

∫ lπ

0
γ3

n0
(x)dx, I4 =

∫ lπ

0
γ4

n0
(x)dx, ς1 = (α1 + ξ(α2 + α3ξ)) + δn0(β − 2u∗),

ς2 = e−2iτωn(β1 + ξ(β2 + β3ξ)), ϱ1 =
1
4 ((2α1 + α2(ξ + ξ) + 2α3ξξ) + 2δn0(β − 2u∗)), ϱ2 =

1
4 (2β1 + β2(ξ +

ξ)+2β3ξξ), κ11 = 2W (1)
11 (0)(2α1+α2ξ+βδn0+β−2(δn0+1)u∗)+W (1)

20 (0)(2α1+α2ξ+βδn0+β−2(δn0+

1)u∗) + 2W (2)
11 (0)(α2 + 2α3ξ) +W (2)

20 (0)(α2 + 2α3ξ), κ12 =
1
2 (3α4 + α5(ξ + 2ξ) + ξ(2α6ξ + α6ξ + 3α7ξξ)),

κ21 = 2W (1)
11 (−1)(2β1+β2ξ)e−iτωn +2W (2)

11 (−1)(β2+2β3ξ)e−iτωn +W (1)
20 (−1)(2β1+β2ξ)eiτωn +W (2)

20 (−1)(β2+

2β3ξ)eiτωn , κ22 =
1
2e−iτωn(3β4 + β5(ξ + 2ξ) + ξ(2β6ξ + β6ξ + 3β7ξξ)).

Now, we compute W20(θ) and W11(θ) for θ ∈ [−1, 0] to give g21. By (3.7), we have

ω̇ = U̇t − żpγn0(x) − ˙̄zp̄γn0(x) = Aω + H(z, z̄, θ), (3.9)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ · · · . (3.10)

Compare the coeffcients of (3.8) with (3.9), we have

(A − 2iωn0 τ̃I)ω20 = −H20(θ), Aω11(θ) = −H11(θ). (3.11)

Then, we have

ω20(θ) =
−g20

iωn0 τ̃
p(0)eiωn0 τ̃θ −

ḡ02

3iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E1e2iωn0 τ̃θ,

ω11(θ) =
g11

iωn0 τ̃
p(0)eiωn0 τ̃θ −

ḡ11

iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E2,

(3.12)
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where E1 =
∑∞

n=0 E(n)
1 , E2 =

∑∞
n=0 E(n)

2 ,

E(n)
1 = (2iωn0 τ̃I −

∫ 0

−1
e2iωn0 τ̃θdηn0(θ, τ̄))−1 < F̃20, βn >,

E(n)
2 = −(

∫ 0

−1
dηn0(θ, τ̄))−1 < F̃11, βn >, n ∈ N0,

< F̃20, βn >=


1
lπ F̂20, n0 , 0, n = 0,
1

2lπ F̂20, n0 , 0, n = 2n0,
1
lπ F̂20, n0 = 0, n = 0,
0, other,

< F̃11, βn >=


1
lπ F̂11, n0 , 0, n = 0,
1

2lπ F̂11, n0 , 0, n = 2n0,
1
lπ F̂11, n0 = 0, n = 0,
0, other,

and F̂20 = 2(ς1, ς2)T , F̂11 = 2(ϱ1, ϱ2)T .
Thus, we can obtain

c1(0) =
i

2ωnτ̃
(g20g11 − 2|g11|

2 −
|g02|

2

3
) +

1
2

g21, µ2 = −
Re(c1(0))
Re(λ′(τ̃))

,

T 2 = −
1

ωn0 τ̃
[Im(c1(0)) + µ2Im(λ′(τ j

n))], β2 = 2Re(c1(0)).
(3.13)

By the work [22], we can obtain the following theorem.

Theorem 3.1. For any critical value τ j
n (n ∈ S, j ∈ N0), we have the following results.

• When µ2 > 0 (resp. < 0), the Hopf bifurcation is forward (resp. backward).
• When β2 < 0 (resp. > 0), the bifurcating periodic solutions on the center manifold are orbitally

asymptotically stable (resp. unstable).
• When T2 > 0 (resp. T2 < 0), the period increases (resp. decreases).

4. Numerical simulations

To analyze the effect of the Allee effect, hunting cooperation, nonlocal competition and time delay
on the model (1.3), we carry out numerical simulations in this section which is done with Matlab.
The numerical simulation of the systems is implemented by finite-difference methods. In the later
numerical simulation, we select the initial value as (u0(x) = u∗ + 0.001cosx, v0(x) = v∗ − 0.001cosx.),
and have similar conclusions when we randomly select other initial values in the convergence domain.
Fix the following parameters.

h = 0.5, σ = 0.3, η = 0.2, d1 = 0.1, d2 = 0.1, l = 1.

The bifurcation diagrams of models (1.3) and (2.10) are given in Figures 1 and 2. It can be seen
that the coexistence equilibrium will change from stable to unstable with the appearance of periodic
solutions. In the model (1.3), the inhomogeneous Hopf bifurcation curve τ0,+

1 exists, which implies
that the stably spatially inhomogeneous periodic solutions may exist. But in the model (2.10), only the
homogeneous Hopf bifurcation curve τ0,+

0 exists, which implies that only the spatially homogeneous
periodic solutions may exist. This implies that the model (1.3) with nonlocal competition is more
realistic than the model (2.10), since the existence of periodic solutions in the model (1.3) is spatially
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inhomogeneous. Because the prey and predator will continue to spread in space and move from the
place with high survival pressure to the place with low survival pressure, thus forming a non-uniform
periodic oscillation. Therefore, we should consider the nonlocal competition within the population
when establishing the delayed reaction-diffusion predator-prey model. We can obtain that increasing
the Allee effect parameter β and hunting cooperation parameter α is not conducive to the stability of
coexistence equilibrium points.

Stable region

Τ1
0,+

Τ0
0,+

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Α

0.1

0.5

1.0

5.0

10.0

Τ

(a)

Stable region

Τ0
0,+

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Α

0.1

1

10

100

1000

Τ

(b)
Figure 1. Bifurcation diagram for α and τ with β = 0.1. (a): Model (1.3). (b): Model (2.10).
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15.0

7.0

Τ

(b)
Figure 2. Bifurcation diagram for β and τ with α = 1. (a): Model (1.3). (b): Model (2.10).

If we choose β = 0.1 and α = 1, then (u∗, v∗) = (0.5125, 0.3436) is the unique coexisting
equilibrium and the hypothesis (H1) holds. By direct computation, we have
τ∗ = τ

0
1 ≈ 3.4439 < τ0

0 ≈ 7.0688. By Theorem 2.1, we know that E∗(u∗, v∗) is locally asymptotically
stable when τ ∈ [0, τ∗) (Figure 3). It can be seen that the coexisting equilibrium (u∗, v∗) is stable for
models (1.3) and (2.10). For model (1.3), the Hopf bifurcation occurs when τ = τ∗. By Theorem 2.3,
we have

µ2 ≈ 637.4179 > 0, β2 ≈ −9.1705 < 0, T2 ≈ −4.0035 < 0.

Hence, the stably spatially inhomogeneous bifurcating periodic solutions exist for τ > τ∗ (Figure
4). This means that increasing the time delay τ can affect the stability of the coexisting equilibrium
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(u∗, v∗). In addition, the coexisting equilibrium (u∗, v∗) changes from stable to unstable and the stably
spatially inhomogeneous bifurcating periodic solutions appear for the model (1.3). But with the same
parameters, the coexisting equilibrium (u∗, v∗) is still stable for the model (2.10). Comparing Figure 4
and Figure 5, we can see that the nonlocal competition in prey can affect the dynamic properties of the
predator-prey model and induce new dynamic phenomena (stably spatially inhomogeneous bifurcating
periodic solutions).

(a)

(c)

(b)

(d)
Figure 3. The numerical simulations for the models (1.3) (a–b) and (2.10) (c–d) with α = 1
and τ = 3. The coexistence equilibrium E∗(u∗, v∗) is locally asymptotically stable.

Continue to increase the time delay τ until it is larger than the critical value τ0,+
0 , we can observe

stable periodic solutions for both models (1.3) and (2.10). However, the stably spatially
inhomogeneous bifurcating periodic solutions appear in model (1.3), and stably spatially
homogeneous bifurcating periodic solutions appear in model (2.10). This also shows that nonlocal
competition can affect the dynamic properties of the predator-prey model.

5. Conclusions

In this paper, considering the self-diffusion of prey and predator, nonlocal competition in prey, and
gestation delay in predators, we propose a delayed diffusive predator-prey model with the Allee effect
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(a)

(c)

(e)

(b)

(d)

( f )
Figure 4. The numerical simulations for the model (1.3) with α = 1 and τ = 5. Prey: (a),
(c), (e). Predator: (b), (d), (f). The coexistence equilibrium E∗(u∗, v∗) is unstable and there
exists a stably spatially inhomogeneous bifurcating periodic solution with mode-1.
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(a)

(c)

(b)

(d)
Figure 5. The numerical simulations for the model (2.10) with α = 1 and τ = 5. Prey:
(a), (c). Predator: (b), (d). The coexistence equilibrium E∗(u∗, v∗) is locally asymptotically
stable.
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(a)

(c)

(e)

(b)

(d)

( f )
Figure 6. The numerical simulations for the model (1.3) with α = 1 and τ = 8. Prey: (a),
(c), (e). Predator: (b), (d), (f). The coexistence equilibrium E∗(u∗, v∗) is unstable and there
exists a stably spatially inhomogeneous bifurcating periodic solution with mode-1.
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(a)

(c)

(e)

(b)

(d)

( f )
Figure 7. The numerical simulations for the model (2.10) with α = 1 and τ = 8. The
coexistence equilibrium E∗(u∗, v∗) is unstable and there exists a stably spatially homogeneous
bifurcating periodic solution.
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and nonlocal competition in prey and hunting cooperation in predators. We study the local stability of
coexisting equilibrium and existence of Hopf bifurcation by analyzing the distribution of eigenvalues.
We also study the property of Hopf bifurcation: bifurcation direction, stability of the periodic solution,
period of the periodic solution by center manifold theorem and normal form method.

Our analysis results are verified by numerical simulation, and the influence of the Allee effect,
hunting cooperation, nonlocal competition and time delay on the model is analyzed. By numerical
simulation, we obtain that increasing the Allee effect parameter β and hunting cooperation parameter
α will affect the stability of the coexistence equilibrium point, and there will be periodic solutions.
The time delay can also affect the stability of coexisting equilibrium. When the time delay is less than
the critical value, the coexistence equilibrium point is stable, and the densities of prey and predator
will tend to the coexistence equilibrium. However, when the time delay is larger than the critical
value, the coexistence equilibrium is unstable and the stable periodic solution appears. At this time,
the density of prey and predator will produce periodic oscillation. The nonlocal competition in prey
can affect the dynamic properties of the predator-prey model and induce new dynamic phenomena
(stably spatially inhomogeneous bifurcating periodic solutions). Sometimes, the stability interval of a
predator-prey model with nonlocal competition is smaller than that of a predator-prey model without
nonlocal competition. This is also the reason why the predator-prey model with the nonlocal
competition will have stably spatial inhomogeneous periodic solutions.

The main findings show that the Allee effect parameter β, hunting cooperation parameter α, and
time delay τ can significantly affect the stability of the coexistence equilibrium point, and can be used
control the development of the population.

Acknowledgments

This research is supported by the Fundamental Research Funds for the Central Universities (Grant
No.2572022DJ05), Postdoctoral program of Heilongjiang Province (No.LBHQ21060) and College
Students Innovations Special Project funded by Northeast Forestry University. Data sharing is not
applicable to this article as no datasets were generated or analyzed during the current study.

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. Y. Song, Q. Shi, Stability and bifurcation analysis in a diffusive predator-prey model with delay
and spatial average, Math. Methods Appl. Sci., 2022. https://doi.org/10.1002/mma.8853

2. C. Xiang, J. Huang, H. Wang, Bifurcations in Holling-Tanner model with generalist predator and
prey refuge, J. Differ. Equation, 343 (2023), 495–529. https://doi.org/10.1016/j.jde.2022.10.018

3. K. D. Prasad, B. S. R. V. Prasad, Qualitative analysis of additional food provided
predatorprey system with anti-predator behaviour in prey, Nonlinear Dyn., 96 (2019), 1765–1793.
https://doi.org/10.1007/s11071-019-04883-0

Electronic Research Archive Volume 31, Issue 4, 2120–2138.

http://dx.doi.org/https://doi.org/10.1002/mma.8853
http://dx.doi.org/https://doi.org/10.1016/j.jde.2022.10.018
http://dx.doi.org/https://doi.org/10.1007/s11071-019-04883-0


2137

4. J. Zhao, Y. Shao, Bifurcations of a prey-predator system with fear, refuge and additional food,
Math. Biosci. Eng., 20 (2023), 3700–3720. http://dx.doi.org/10.3934/mbe.2023173

5. W. C. Allee, Animal Aggregations, A Study in General Sociology, University of Chicago Press,
Chicago, 1931. http://dx.doi.org/10.5962/bhl.title.7313

6. S. Creel, D. Macdonald, Sociality, group size, and reproductive, suppression among carnivores,
Advan. Study Behav., 24 (1995), 203–257. http://dx.doi.org/10.1016/S0065-3454(08)60395-2

7. E. Goodale, G. Beauchamp, G. D. Ruxton, Mixed-Species Groups of Animals: Behavior,
Community Structure, and Conservation, Academic Press, 2017. http://dx.doi.org/10.1016/B978-
0-12-805355-3.00001-4

8. R. Yadav, N. Mukherjee, M. Sen, Spatiotemporal dynamics of a prey-predator model with Allee
effect in prey and hunting cooperation in a Holling type III functional response, Nonlinear Dyn.,
107 (2022), 1397–1410. https://doi.org/10.1007/s11071-021-07066-y

9. Y. Song, Y. Peng, T. Zhang, The spatially inhomogeneous Hopf bifurcation induced by
memory delay in a memory-based diffusion system, J. Differ. Equation, 300 (2021), 597–624.
https://doi.org/10.1016/j.jde.2021.08.010

10. R. Yang, C. Zhang, Dynamics in a diffusive predator-prey system with a constant
prey refuge and delay, Nonlinear Anal.-Real World Appl., 31 (2016), 1–22.
https://doi.org/10.1016/j.nonrwa.2016.01.005

11. Y. Liu, J. Wei, Double Hopf bifurcation of a diffusive predator-prey system with
strong Allee effect and two delays, Nonlinear Anal.-Model Control, 26 (2021), 72–92.
https://doi.org/10.15388/namc.2021.26.20561

12. R. Yang, D. Jin, W. Wang, A diffusive predator-prey model with generalist predator and time
delay. AIMS Math., 7 (2022), 4574–4591. https://doi.org/10.3934/math.2022255

13. R. Yang, X. Zhao, Y. An, Dynamical analysis of a delayed diffusive predator-prey model
with additional food provided and anti-predator behavior, Mathematics, 10 (2022), 469.
https://doi.org/10.3390/math10030469

14. R. Yang, Q. Song, Y. An, Spatiotemporal dynamics in a predator-prey model with
functional response increasing in both predator and prey densities, Mathematics, 10 (2022), 17.
https://doi.org/10.3390/math10010017

15. R. Yang, C. Nie, D. Jin, Spatiotemporal dynamics induced by nonlocal competition in a
diffusive predator-prey system with habitat complexity, Nonlinear Dyn., 110 (2022), 879–900.
https://doi.org/10.1007/s11071-022-07625-x

16. R. Yang, F. Wang, D. Jin, Spatially inhomogeneous bifurcating periodic solutions induced by
nonlocal competition in a predator-prey system with additional food, Math. Methods Appl. Sci.,
45 (2022), 9967–9978. https://doi.org/10.1002/mma.8349

17. N. F. Britton, Aggregation and the competitive exclusion principle, J. Theor. Biol., 136 (1989),
57–66. https://doi.org/10.1016/S0022-5193(89)80189-4

18. J. Furter, M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math. Biol., 27
(1989), 65–80. https://doi.org/10.1007/BF00276081

Electronic Research Archive Volume 31, Issue 4, 2120–2138.

http://dx.doi.org/http://dx.doi.org/10.3934/mbe.2023173
http://dx.doi.org/http://dx.doi.org/10.5962/bhl.title.7313
http://dx.doi.org/http://dx.doi.org/10.1016/S0065-3454(08)60395-2
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-805355-3.00001-4
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-805355-3.00001-4
http://dx.doi.org/https://doi.org/10.1007/s11071-021-07066-y
http://dx.doi.org/https://doi.org/10.1016/j.jde.2021.08.010
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2016.01.005
http://dx.doi.org/https://doi.org/10.15388/namc.2021.26.20561
http://dx.doi.org/https://doi.org/10.3934/math.2022255
http://dx.doi.org/https://doi.org/10.3390/math10030469
http://dx.doi.org/https://doi.org/10.3390/math10010017
http://dx.doi.org/https://doi.org/10.1007/s11071-022-07625-x
http://dx.doi.org/https://doi.org/10.1002/mma.8349
http://dx.doi.org/https://doi.org/10.1016/S0022-5193(89)80189-4
http://dx.doi.org/https://doi.org/10.1007/BF00276081


2138

19. D. Geng, H. Wang, Normal form formulations of double-Hopf bifurcation for partial
functional differential equations with nonlocal effect, J. Differ. Equation, 2022 (2022), 741–785.
https://doi.org/10.1016/j.jde.2021.11.046

20. D. Geng, W. Jiang, Y. Lou, H. Wang, Spatiotemporal patterns in a diffusive predator-
prey system with nonlocal intraspecific prey competition, Stud. Appl. Math., (2021), 1–37.
https://doi.org/10.1111/sapm.12444

21. Y. Liu, D. Duan, B. Niu, Spatiotemporal dynamics in a diffusive predator-prey model
with group defense and nonlocal competition, Appl. Math. Lett., 103 (2020), 106175.
https://doi.org/10.1016/j.aml.2019.106175

22. J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer Science
Business Media, 1996. https://doi.org/10.1007/978-1-4612-4050-1

23. B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation,
Cambridge University Press, Cambridge, 1981. http://dx.doi.org/10.1090/conm/445

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 31, Issue 4, 2120–2138.

http://dx.doi.org/https://doi.org/10.1016/j.jde.2021.11.046
http://dx.doi.org/https://doi.org/10.1111/sapm.12444
http://dx.doi.org/https://doi.org/10.1016/j.aml.2019.106175
http://dx.doi.org/10.1007%2F978-1-4612-4050-1
http://dx.doi.org/https://doi.org/10.1007/978-1-4612-4050-1
http://dx.doi.org/10.1090/conm/445
http://dx.doi.org/http://dx.doi.org/10.1090/conm/445
http://creativecommons.org/licenses/by/4.0

	Introduction
	Stability analysis
	The model with nonlocal competition
	The model without nonlocal competition

	Property of Hopf bifurcation
	Numerical simulations
	Conclusions

