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1. Introduction

In the present work, we shall investigate the spectra of the Sturm-Liouville equation

Ly := −p(x)y′′ + q(x)y = λy, x ∈ J ≡ [−a, 0) ∪ (0, b], (1.1)

with the boundary condition

L1y := λ(α′1y(−a) − α′2y′(−a)) − (α1y(−a) − α2y′(−a)) = 0, (1.2)
L2y : = λ(β′1y(b) − β′2y′(b)) + (β1y(b) − β2y′(b)) = 0. (1.3)

The spectral parameters not only appear in boundary condition, but also depend on the Herglotzs
function

∆′y := y′(0+) − y′(0−) = −y(0+)
(
λη − ξ −

N∑
i=1

b2
i

λ − ci

)
, (1.4)

∆y := y(0+) − y(0−) = y′(0−)
(
λκ + ζ −

M∑
j=1

a2
j

λ − d j

)
. (1.5)

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023108


2109

Here, p(x) = 1
p2

1
, x ∈ [−a, 0) and p(x) = 1

p2
2
, x ∈ (0, b]; q(x) is real valued continuous function in J; pi,

αi, βi, α′i and β′i (i = 1, 2) are nonzero real numbers. In the Herglotzs function, all parameters satisfy
the following conditions: a j, bi > 0, ci < ci+1, d j < d j+1, i = 1,N − 1, j = 1,M − 1; η, κ > 0, ξ, ζ ∈ R
and N, M ∈ N0. Let

µ(λ) = λη + ξ +

N∑
i=1

b2
i

λ − ci
, ν(λ) = λκ + ζ −

M∑
j=1

a2
j

λ − d j
. (1.6)

Then according to the properties of Herglotzs function (see [1]), we know that

1
µ(λ)

= σ −

N′∑
i=1

ε2
i

λ − γi
,

1
ν(λ)

= τ +

M′∑
j=1

ε2
j

λ − δ j
,

where σ, τ ∈ R and εi, ε j > 0, for i = 1,N′ − 1, j = 1,M′ − 1; γi < γi+1, δ j < δ j+1. Therefore

y(0+) =
1
µ(λ)

∆′y, y′(0−) =
1
ν(λ)

∆y. (1.7)

In many mathematical and physical models, it is necessary to study the eigenvalue of Sturm-
Liouville problem and its corresponding eigenfunction. When the spectral parameters appear not
only in differential equations, but also in boundary conditions, excellent results have been obtained
(see [2–4]). Binding firstly studied the eigenvalue problem of Sturm-Liouville operator with boundary
conditions dependent on spectral parameters

(akλ + bk)y(0) = (ckλ + dk)(py)′(0), (−1)k(akdk − bkck) ≤ 0, k = 0, 1.

In addition, similar problems for differential equations with continuous coefficient (p(x) ≡ 1) and
boundary conditions with spectral parameter were investigated in [5–7] and other works.

It is noteworthy that the boundary condition or the coefficient in the equation in the above results are
all continuous. Now, the question is when the coefficient in the equation and the boundary condition
are both discontinuous, could we still obtain the spectral properties of the linear eigenvalue problems?
We know that discontinuous boundary value problems can also be found in many physical problems,
such as, diffraction problem (see [8]), heat and mass transfer problem (see [9]) and vibrating problem
(see [10]). To deal with the discontinuities, some conditions are necessary, such as, point interactions,
impulsive conditions, transmission conditions, jump conditions or interface conditions (see [11–13]).
For example, in [14], the author considered transmission conditions at one point and found asymptotic
formulas of eigenvalues and corresponding eigenfunctions. Moreover, for similar problems, the work
of literature [15] focused on Sturm-Liouville operators with a finite number of transmission conditions
and established the self-adjointness of linear operator in a suitable Hilbert space.

Aspired by the above results, we consider the eigenvalue problems (1.1)–(1.5), where the coefficient
p(x) is discontinuous. In details, we consider the Sturm-Liouville equation in which the first coefficient
may have the discontinuity at one point. Moreover, we allow boundary conditions and transmission
conditions (Nevanlinna-Herglotz functions) to depend on spectral parameters. In Section 2, linear
operator formulation is established, and the problems (1.1)–(1.5) can be interpreted as the eigenvalue
problem of linear operator. The fundamental solutions and characteristic determinant are given in
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Section 3. Based on the operator formulation in the Hilbert space, the resolvent operator and self-
adjointness of linear operator are constructed in the last Section.

Finally, for the sake of reader’s convenience, let us introduce the properties of the Nevanlinna-
Herglotz function as follows.

(i) if λ = ci (ci is the pole of µ(λ)), then transmission condition (1.4) and (1.5) degenerates into
y(0+) = 0 and y′(0−)ν(λ) = −y(0−);

(ii) if µ(λ) = 0 (λ , ci is the zero of µ(λ)), then ∆′y = 0;
(iii) if λ = d j (d j is the pole of ν(λ)), then transmission condition (1.4) and (1.5) degenerates into

y′(0−) = 0 and y(0+)µ(λ) = y′(0+);
(iv) if ν(λ) = 0 (λ , d j is the zero of ν(λ)), then ∆y = 0.

2. The operator eigenvalue problem

In this section, we define a special inner product in the Hilbert space

H = L2(−a, b) ⊕ C ⊕ C ⊕ CN′ ⊕ CM′

and a linear operator A defined on H . Moreover, the Sturm-Liouville problems (1.1)–(1.5) can be
considered as the operator eigenvalue problem.

Define

ρ1 :=

∣∣∣∣∣∣α′1 α1

α′2 α2

∣∣∣∣∣∣ > 0, ρ2 :=

∣∣∣∣∣∣β′1 β1

β′2 β2

∣∣∣∣∣∣ > 0.

For convenience’s sake, we use the following notations:

f1 := ( f 1
1 , f 1

2 , · · ·, f 1
N′ )

T , f2 := ( f 2
1 , f 2

2 , · · ·, f 1
M′ )

T ;

f1 := α′1 f (−a) − α′2 f ′(−a), f2 := β′1 f (b) − β′2 f ′(b),
f 1 := α1 f (−a) − α2 f ′(−a), f 2 := β1 f (b) − β2 f ′(b).

For η, κ > 0, we define a new inner product inH by

〈F,G〉 :=p2
1

∫ 0

−a
f (x)ḡ(x)dx + p2

2

∫ b

0
f (x)ḡ(x)dx

+
1
ρ1

f1ḡ1 +
1
ρ2

f2ḡ2 + 〈f1, g1〉1 + 〈f2, g2〉1

(2.1)

for
F := ( f , f1, f2, f1, f2)T , G := (g, g1, g2, g1, g2)T ∈ H ,

where 〈·, ·〉1 denotes Euclidean inner product.
In the Hilbert spaceH , we consider the operator A which is defined by

A


f
f1

f2

f1

f2


=


L f
f 1

− f 2

ε∆′ f + [γi]f1

ε∆ f + [δ j]f2


=


L f

α1 f (−a) − α2 f ′(−a)
−(β1 f (b) − β2 f ′(b))

ε∆′ f + [γi]f1

ε∆ f + [δ j]f2


Electronic Research Archive Volume 31, Issue 4, 2108–2119.
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with the domain

D(A) =
{
F =( f , f1, f2, f1, f2)T : f ∈ AC[−a, b], f ′ ∈ AC[−a, 0) ∪ (0, b], L f ∈ L2(−a, b),
− f (0+) + σ∆′ f − 〈f1, ε〉1 = 0, f ′(0−) − τ∆ f − 〈f2, ε〉1 = 0

}
,

where [γi] := diag(γ1, · · ·, γN′), [δ j] := diag(δ1, · · ·, δM′), ε := (εi) and ε := (ε j).

Lemma 2.1. The domain D(A) is dense inH .

Proof. Let W = (w, f1, f2, f1, f2)T ∈ H , where w ∈ C∞[−a, 0) ∪ (0, b] satisfying

w(−a) = w′(−a) = 0,w(b) = w′(b) = 0

and the condition

w(0−) = σ〈f1, ε〉1 + (1 − σ)〈f2, ε〉1, w(0+) = (σ − 1)〈f1, ε〉1 − σ〈f2, ε〉1,

w′(0−) = −τ〈f1, ε〉1 + (τ + 1)〈f2, ε〉1, w′(0+) = (1 − τ)〈f1, ε〉1 + τ〈f2, ε〉1.

Meanwhile,
∆w = 〈f2, ε〉1 − 〈f1, ε〉1, ∆′w = 〈f1, ε〉1−〈f2, ε〉1.

Then, it is easy to verify that W ∈ D(A). Next, as long as it is proved that the elements inH can be
approximated by the elements in D(A), the desired result can be obtained.

Since
(C∞0 (−a, 0) ⊕C∞0 (0, b)) ⊕ {0} ⊕ {0} ⊕ {0} ⊕ {0} ⊆ D(A)

and
(C∞0 (−a, 0) ⊕C∞0 (0, b)) ⊃ L2(−a, b),

there exists a sequence {mn} ∈ C∞0 (−a, 0) ⊕ C∞0 (0, b) with mn → f − w as n → ∞, where Mn :=
(mn, 0, 0, 0, 0)T ∈ D(A). Therefore, W + Mn → F as n→ ∞ giving that D(A) ⊃ H .

Theorem 2.1. The operator eigenvalue problem AF = λF and the considered Sturm-Liouville prob-
lems (1.1)–(1.5) are equivalent and the eigenfunction is the first components of the corresponding
eigenelements of the operator A. Moreover, for η, κ > 0, we have following results:

(i) if λ , γi ∀i = 1,N′, then f1 = (λI − [γi])−1ε∆′ f ; if λ = γI ∃I ∈ {1,N′}, then f1 =
− f (0+)
εI

eI;
(ii) if λ , δ j ∀ j = 1,M′, then f2 = (λI − [δi])−1ε∆ f ; if λ = γJ ∃J ∈ {1,M′}, then f2 =

f (0−)
εJ

eJ, where
en is the vector in Rn with and except the n-th element is 1, all other elements are 0.

Proof. We just need to show that the eigenelement f of the operator A obeys the boundary conditions
(1.2) and (1.3) and transfer conditions (1.4) and (1.5). It is clear that f satisfies (1.2) and (1.3). The
definition of A implies γi f 1

i +εi∆
′ f = λ f 1

i for all i. Meanwhile, the domain of A gives − f (0+)+σ∆′ f −
〈f1, ε〉1 = 0. Thus, if λ , γi for all i, then

f (0+) =

(
σ −

N′∑
i=1

ε2
i

λ − γi

)
∆′ f .

If λ = γI for some I ∈ {1, · · ·,N′}, then − f (0+)−〈 f 1
I , εI〉1 = 0. That is, f 1

I =
− f (0+)
εI

. Hence, f satisfies
(1.4).
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Similarly, if λ , δ j for all j, then f 2
j =

ε j

λ−δ j
∆ f and

f ′(0−) =

(
τ +

M′∑
j=1

ε2
j

λ − δ j

)
∆ f .

While λ = δJ for some j ∈ {1, · · ·,M′}, the domain condition forces f 2
J =

f ′(0−)
εJ

from which (1.5)
follows.

Theorem 2.2. The linear operator A is symmetric.

Proof. Let F, G ∈ D(A). Then it follows from the problem (1.1) and the relation (2.1) that

〈AF,G〉 − 〈F, AG〉 =( f ḡ′)(0−) − ( f ′ḡ)(0−) + ( f ′ḡ)(0+) − ( f ḡ′)(0+)
+ ( f ′ḡ)(−a) − ( f ḡ′)(−a) + ( f ḡ′)(b) − ( f ′ḡ)(b)

+
1
ρ1

f 1ḡ1 −
1
ρ2

f 2ḡ2 + 〈ε∆′ f + [γi]f1, g1〉1 + 〈ε∆ f + [δ j]f2, g2〉1

−
1
ρ1

f1ḡ1 +
1
ρ2

f2ḡ2 − 〈f1, ε∆′g + [γi]g1〉1 − 〈f2, ε∆g + [δ j]g2〉1.

Moreover, we have
ρ−1

1 ( f 1ḡ1 − f1ḡ1) = ( f ḡ′)(−a) − (ḡ f ′)(−a),

ρ−1
2 ( f 2ḡ2 − f2ḡ2) = −(( f ḡ′)(b) − (ḡ f ′)(b)).

Meanwhile, the vector components satisfy

〈ε∆′ f + [γi]f1, g1〉1 − 〈f1, ε∆′g + [γi]g1〉1 = 〈ε∆′ f , g1〉1 − 〈f1, ε∆′g〉1,

〈ε∆ f + [δ j]f2, g2〉1 − 〈f2, ε∆g + [δ j]g2〉1 = 〈ε∆ f , g2〉1 − 〈f2, ε∆g〉1,

and the domain condition D(A) implies

〈ε∆′ f , g1〉1 − 〈f1, ε∆′g〉1 = ∆′ f [−ḡ(0+) + σ∆′ḡ] − ∆′ḡ[− f (0+) + σ∆′ f ],
〈ε∆ f , g2〉1 − 〈f2, ε∆g〉1 = ∆ f [ḡ′(0−) − τ∆ḡ] − ∆ḡ[ f ′(0−) − τ∆ f ].

Therefore,

〈ε∆′ f + [γi]f1, g1〉1 − 〈f1, ε∆′g + [γi]g1〉1 = ∆′ḡ f (0+) − ∆′ f ḡ(0+),
〈ε∆ f + [δ j]f2, g2〉1 − 〈f2, ε∆g + [δ j]g2〉1 = ∆ f ḡ′(0−) − ∆ḡ f ′(0−).

It can be obtained by simple calculation

( f ′ḡ − f ḡ′)(0+) − ( f ′ḡ − f ḡ′)(0−)
=ḡ(0+)∆′ f − f (0+)∆′ḡ − ḡ′(0−)∆ f + f ′(0−)∆ḡ.

Thus, 〈AF,G〉 − 〈F, AG〉 = 0 and so A is symmetric.

Corollary 2.1. All eigenvalues of the Sturm-Liouville problems (1.1)–(1.5) are real.

Corollary 2.2. Let λ1 and λ2 be two different eigenvalues of the Sturm-Liouville problems (1.1)–(1.5).
Then the corresponding the eigenfunctions u1(x) and u2(x) are orthogonal, i.e.,

p2
1

∫ 0

−a
u1(x)u2(x)dx + p2

2

∫ b

0
f1(x) f2(x)dx +

1
ρ1

f1(u1) f1(u2)

+
1
ρ2

f2(u1) f2(u2) + 〈f1(u1), g1(u2)〉1 + 〈f2(u1), g2(u2)〉1 = 0.
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3. Fundamental solutions and characteristic determinant

Lemma 3.1. ( [5]) All eigenvalues of Sturm-Liouville problems (1.1)–(1.5), not at poles of µ(λ) or ν(λ),
are geometrically simple. In the case, Herglotz condition (1.4) and (1.5) can be transformed into(

y(0+)
y′(0+)

)
=

(
1 ν(λ)
µ(λ) 1 + µ(λ)ν(λ)

) (
y(0−)
y′(0−)

)
.

Lemma 3.2. ( [16]) Let q(x) ∈ C[−a, b], and f (λ) and g(λ) be given entire functions. Then for ∀λ ∈ C,
the equation

−p(x)u′′ + q(x)u = λu, x ∈ [−a, b]

has a unique solution u = u(x, λ) satisfying the initial conditions

u(a) = f (λ), u′(a) = g(λ) (or u(b) = f (λ), u′(b) = g(λ)).

Moreover, for each fixed x ∈ [−a, b], u = u(x, λ) is an entire function of λ.

Lemma 3.3. Let u−(x, λ), x ∈ [−a, 0) be the solution of the Sturm-Liouville problem (1.1) satisfying
conditions

u−(−a) = −α2 + λα′2, u′−(−a) = −α1 + λα′1 (3.1)

and v(x, λ), x ∈ (0, b] denote the solution of the Sturm-Liouville problem (1.1) satisfying the conditions

v+(b) = −β2 + λβ′2, v′+(b) = −β1 + λβ′1. (3.2)

Then the Wronskian W[u−, v+] = u−v′+ − v+u′− is independent of x.

Proof. Direct computation, we have

∂

∂x
W[u−(x, λ), v+(x, λ)] = u−(x, λ)

∂2

∂x2 v+(x, λ) − v+(x, λ)
∂2

∂x2 u−(x, λ)

=
qv+ − λv+

p
u− −

qu− − λu−
p

v+ = 0.

It follows that the Wronskian W[u−(x, λ), v+(x, λ)] is constant on [−a, 0) ∪ (0, b] and by virtue of
Lemma 3.2, it is a function of λ.

We know that the problem (1.1) exists two fundamental solutions on whole [−a, 0)∪(0, b] satisfying
the boundary conditions (1.2)–(1.5). First, we extend u−(x, λ) and v+(x, λ) by the zero function to
[−a, 0) ∪ (0, b], i.e., we define

u−(x, λ) =

u−(x, λ), x ∈ [−a, 0),
0, x ∈ (0, b]

and

v+(x, λ) =

0, x ∈ [−a, 0),
v+(x, λ), x ∈ (0, b].
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Now by virtue of Lemma 3.1, it’s workable to extend u−(x, λ), x ∈ [−a, 0) and v+(x, λ), x ∈ (0, b] by
nontrivial solution u+(x, λ), x ∈ (0, b] and v−(x, λ), x ∈ [−a, 0) satisfying the conditions(

u+(0+)
u′+(0+)

)
=

(
1 ν(λ)
µ(λ) 1 + µ(λ)ν(λ)

) (
u−(0−)
u′−(0

−)

)
and (

v−(0−)
v′−(0

−)

)
=

(
1 + µ(λ)ν(λ) −ν(λ)
−µ(λ) 1

) (
v+(0+)
v′+(0+)

)
.

Moreover, we define two linearly independent solutions of the problem (1.1) on the whole [−a, 0)∪
(0, b] as

u(x, λ) =

u−(x, λ), x ∈ [−a, 0),
u+(x, λ), x ∈ (0, b],

(3.3)

v(x, λ) =

v−(x, λ), x ∈ [−a, 0),
v+(x, λ), x ∈ (0, b].

(3.4)

It note that u and v must satisfy boundary conditions (1.2)–(1.5). Let

y(x, λ) = ϕ(λ)u(x, λ) + ψ(λ)v(x, λ). (3.5)

According to (1.4) and (1.5), we have

y(0+)(λη − ξ) + ∆′y = y(0+)
N∑

i=1

b2
i

λ − ci
,

−y′(0−)λ(κ + ζ) + ∆y = −y′(0−)
M∑
j=1

a2
j

λ − d j
.

Moreover, we define
U1(y, λ) := −(y(0+)(λη − ξ) + ∆′y)

∏N
i=1(λ − ci) + y(0+)

∑N
i=1 b2

i
∏

k,i(λ − ck) = 0,

U2(y, λ) := (y′(0−)(λκ + ζ) + ∆y)
∏M

j=1(λ − di) − y′(0−)
∑M

j=1 a2
j
∏

k, j(λ − dk) = 0

(3.6)

and any solution to problem (1.1) on [−a, 0) ∪ (0, b] satisfying the boundary conditions (1.2) and (1.3)
must be of the form (3.5). Let

ω(λ) = det
(
U1(u, λ) U1(v, λ)
U2(u, λ) U2(v, λ)

)
.

Therefore, ω(λ) will be referred to as the characteristic determinant of (1.1)–(1.5). It is shown in
Theorem 3.1 below that ω(λ) has the properties expected of the characteristic determinant.

Theorem 3.1. The eigenvalue λ of the Sturm-Liouville problems (1.1)–(1.5) consists of the zero of the
characteristic determinant.
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Proof. The relation (3.6) implies

Uk(y, λ) = ϕ(λ)Uk(u, λ) + ψ(λ)Uk(v, λ), k = 1, 2, (3.7)

That is, λ is an eigenvalue of Sturm-Liouville problems (1.1)–(1.5) if and only if U1(y, λ) = 0,
U2(y, λ) = 0. Moreover, these two equations exist nontrivial solution ϕ(λ) and ψ(λ) if and only if

ω(λ) = det
(
U1(u, λ) U1(v, λ)
U2(u, λ) U2(v, λ)

)
= 0.

Therefore, we proved that the eigenvalue of Sturm-Liouville problems (1.1)–(1.5) coincides with
the zero of ω(λ).

Similar to Lemma 3.3, let W[u(x, λ), v(x, λ)] =: $(λ). In view of Theorem 3.1, we define

g(x, λ) :=
v(x, λ)
$(λ)

∫ x

−a
u(t, λ)h(t)dt +

u(x, λ)
$(λ)

∫ b

x
v(t, λ)h(t)dt, h ∈ L2(−a, b).

and the Green’s function of the Sturm-Liouville problems (1.1)–(1.5) is given by

G(x, t) =

u(t,λ)v(x,λ)
$(λ) , t < x, t ∈ [−a, 0) ∪ (0, b],

v(t,λ)u(x,λ)
$(λ) , x < t, t ∈ [−a, 0) ∪ (0, b].

Theorem 3.2. Let

g(x, λ) =

∫ b

−a
G(x, t)h(t)dt := Th. (3.8)

Then g(x, λ) is the solution of operator equation (λ − L)g = ph on J. Moreover, g satisfies the
boundary conditions (1.2)–(1.5).

Proof. The relation (3.8) implies

g$(λ) = v(x, λ)
∫ x

−a
u(t, λ)h(t)dt + u(x, λ)

∫ b

x
v(t, λ)h(t)dt. (3.9)

Furthermore, we have

∂

∂x
g$(λ) =

∂

∂x
v(x, λ)

∫ x

−a
u(t, λ)h(t)dt +

∂

∂x
u(x, λ)

∫ b

x
v(t, λ)h(t)dt (3.10)

and

p
∂2

∂x2 g$(λ) =
∂2

∂x2 v(x, λ)
∫ x

−a
u(t, λ)h(t)dt +

∂2

∂x2 u(x, λ)
∫ b

x
v(t, λ)h(t)dt + ph(x)$

=(q − λ)g$(λ) + ph$(λ).
(3.11)

Therefore, (λ − L)g = ph holds.
It remains only to show that g satisfies (1.2) and (1.3), (1.4) and (1.5). By (3.9) and (3.10), we

obtain

g(−a) =
u(−a, λ)
$(λ)

∫ b

−a
v(t, λ)h(t)dt, g′(−a) =

u′(−a, λ)
$(λ)

∫ b

−a
v(t, λ)h(t)dt.

Moreover, we know that u satisfies (1.2). Then, g satisfies (1.2). Similarly, g satisfies (1.3). More-
over, (

g(0±)
g′(0±)

)
=

1
$(λ)

(
v(0±)
v′(0±)

) ∫ 0

−a
u(t)h(t)dt +

1
$(λ)

(
u(0±)
u′(0±)

) ∫ b

0
v(t)h(t)dt.

Obviously, (1.4) and (1.5) are obeyed.
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4. The resolvent operator of A

In this section, we study the resolvent operator in the Hilbert spaceH . We first consider nonhomo-
geneous conditions

−ε∆′ f + (λI − [γi])f1 = ph1, (4.1)
−ε∆ f + (λI − [δ j])f2 = ph2. (4.2)

Meanwhile, the domain of the operator A implies

− f (0+) + σ∆′ f − 〈f1, ε〉1 = 0, (4.3)
f ′(0−) − τ∆ f − 〈f2, ε〉1 = 0. (4.4)

If λ , γi for all i, then from (4.1) we have

− f (0+) + σ∆′ f = 〈(λI − [γi])−1(ph1 + ε∆′ f ), ε〉1.

By inner product calculation, we get

− f (0+) + σ∆′ f =

N′∑
i=1

(
ph1

i εi

λ − γi
+
ε2

i ∆
′ f

λ − γi
).

Therefore, by (1.7), we have

− f (0+) +
1
µ(λ)

∆′ f = 〈ph1, (λI − [γi])−1ε〉1.

If λ = γI for some I ∈ {1, · · ·,N′}, then from (4.1) we have ∆′ f = −
ph1

I
εI

. For i ∈ {1, · · ·,N′} \ I,

f 1
i =

h1
i +εi∆

′ f
γI−γi

. Thus, from (4.3) we get

− f (0+) − σ
ph1

I

εI
−

∑
i,I

εi

εI

εI ph1
i − εi ph1

I

γI − γi
= εI f 1

I .

Similarly, if λ , δ j for all j, then

f ′(0−) −
1
ν(λ)

∆ f = 〈ph2, (λI − [δ j])−1ε〉1.

If λ = δJ for some J ∈ {1, · · ·,M′}, then

f ′(0−) + τ
ph2

J

εJ
−

∑
j,J

ε j

εJ

εJ ph2
j − ε j ph2

J

δJ − δ j
= εI f 2

J .

Therefore, the operator equation

(λI − A)Y = H, H = (ph, ph1, ph2, ph1, ph2)T ∈ L2(−a, b) ⊕ C ⊕ C ⊕ CN′ ⊕ CM′

is equivalent to the discontinuous nonhomogeneous BVP

−p(x)y′′ + q(x)y = λy(x) − ph(x), x ∈ J,

together with inhomogeneous boundary condition
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λ(α′1y(−a) − α′2y′(−a)) − (α1y(−a) − α2y′(−a)) = ph1,

λ(β′1y(b) − β′2y′(b)) + (β1y(b) − β2y′(b)) = ph2

and transmission conditions (the case of λ , γi and λ , δ j)

y(0+)µ(λ) − ∆′y = 〈ph1, (λI − [γi])−1ε〉,

y′(0+)ν(λ) − ∆y = 〈ph2, (λI − [δ j])−1ε〉.

We consider the resolvent set ρ(A) = {λ ∈ C|(λI − A)−1 ∈ D(A)}. Then, we need to show (λI − A)−1

is the resolvent operator, just prove (λI − A)−1 ∈ D(A).

Theorem 4.1. Let λ not be an eigenvalue of operator A. Then

(λI − A)−1H =


Tλh

(Tλh)1

(Tλh)2

(λI − [γi])−1ε∆′Tλh
(λI − [δ j])−1ε∆′Tλh


=: G̃h.

Proof. Obviously, the resolvent operator (λI − A)−1 exists. It remains only to show G̃h ∈ D(A). The
definition of Tλh and Theorem 3.2 imply that g ∈ AC[−a, b], g′ ∈ AC[−a, 0) ∪ (0, b] and obeys the
boundary conditions (1.2) and (1.3). Moreover, the equalities

g(0+) = (Tλh)(0+) =

(
σ −

N′∑
i=1

ε2
i

λ − γi

)
∆′(Tλh) = σ∆′g − 〈g1, ε〉1, λ , γi

and

g′(0−) = (Tλh)′(0−) =

(
τ +

M′∑
j=1

ε2
j

λ − δ j

)
∆(Tλh) = τ∆′g − 〈g2, ε〉1 λ , δ j

hold. Meanwhile, the properties of the Nevanlinna-Herglotz function imply that if λ = γI for some
I ∈ {1, · · ·,N′}, then (∆′Tλh) = 0 and g1 =

−y(0+)
εI

eI . Therefore,

g(0+) = −〈g1, ε〉1 = σ∆′g − 〈g1, ε〉1.

Similarly, we have
g′(0−) = 〈g2, ε〉1 = τ∆g + 〈g1, ε〉1.

Thus, G̃h ∈ D(A) and the desired result holds.

Theorem 4.2. Let R(λ, A) = (λI − A)−1. Then

‖R(λ, A)H‖ ≤ |Imλ|−1‖H‖, H ∈ H

holds, where ∀λ ∈ C satisfies Imλ , 0.

Proof. For ∀ H = (ph, ph1, ph2, ph3, ph4)T ∈ H and Y = R(λ, A)H. Since (λI − A)Y = H, we have

〈AY,Y〉 = 〈λY − H,Y〉 = λ〈Y,Y〉 − 〈H,Y〉
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and
〈Y, AY〉 = 〈Y, λY − H〉 = λ̄〈Y,Y〉 − 〈H,Y〉,

which imply |Imλ|‖Y‖2 = |Im(H,Y)|. On the other side, in view of Cauchy-Schwartz inequality, we get

|Im(H,Y)| ≤ |(H,Y)| ≤ ‖H‖‖Y‖.

Therefore, the inequality

‖R(λ, A)H‖ = ‖Y‖ ≤ |Imλ|−1‖H‖, H ∈ H

holds.

Theorem 4.3. In Hilbert spaceH , the operator A is self-adjoint.

Proof. Obviously, A is a dense symmetric operator. To show that A is self-adjoint, it remains only to
verify that D(A∗) = D(A). Let H ∈ D(A∗). Then

〈AH,G〉 = 〈H, A∗G〉 for all G ∈ D(A). (4.5)

It follows from (4.5) that
〈(iI − A)G,H〉 = 〈G, (−iI − A∗)H〉. (4.6)

Note that λ = −i is a regular point. Then, we have

(iI − A)Y = −iH − A∗H, Y ∈ D(A). (4.7)

Substituting (4.7) in (4.6), we have

〈(iI − A)G,H〉 = 〈(iI − A)G,Y〉. (4.8)

Similarly, from λ = i is a regular point, let G = R(i, A)(H − Y). Then by (4.8), we have H = Y and
thus H ∈ D(A).
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