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Abstract: In this paper, a homogeneous diffusive system of plant-herbivore interactions with toxin-
determined functional responses is considered. We are mainly interested in studying the existence of
global steady state bifurcations of the diffusive system. In particular, we also consider the case when
the bifurcation parameter, one of the diffusion rates, tends to infinity. The corresponding system is
called shadow system. By using time-mapping methods, we can show the existence of the positive
non-constant steady state solutions. The results tend to describe the mechanism of the spatial pattern
formations for this particular system of plant-herbivore interactions.
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1. Introduction

Plant-herbivore interactions have been studied previously by a huge number of investigators includ-
ing mathematicians and ecologists by using differential equation models and theories in dynamical
systems. One of the most commonly use differential equations used the traditional Holling Type II
functional response, which assumes that the growth rate of herbivore is a monotonically increasing
function of plant density. However, this will not be reasonable if the chemical defense of plants is
considered, in which case the negative effect of plant toxin on herbivore can lead to a decrease in the
growth rate when the plant density is high. To explore the impact of plant toxicity on the dynamics of
plant-herbivore interactions, models that include a toxin-determined functional response are proposed.
The toxin-determined functional response is a modification of the traditional Holling Type II response
by including the negative effect of toxin on herbivore growth, which can overwhelm the positive effect
of biomass ingestion at sufficiently high plant toxicant concentrations.

In this paper, we consider the following system of plant-herbivore interactions with toxin-
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determined functional responses:

∂U
∂τ
= D1∆U + AU

(
1 −

U
K

)
−

eU
1 + heU

(
1 −

eBU
1 + heU

)
V, (x, τ) ∈ Ω × (0,∞),

∂V
∂τ
= D2∆V − EV +

eCU
1 + heU

(
1 −

eBU
1 + heU

)
V, (x, τ) ∈ Ω × (0,∞),

∂νU = ∂νV = 0, (x, τ) ∈ ∂Ω × (0,∞),
U(x, 0) = U0(x) ≥ 0, V(x, 0) = V0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω is a bounded open domain in RN (N ≥ 1) with a smooth boundary ∂Ω; U and V are the
densities of the plant and herbivore for (x, τ) ∈ Ω × (0,∞) respectively; D1 and D2 stand for the
diffusion rates of the plant (for seed dispersal) and the predator respectively. A and K are the intrinsic
growth rate and carrying capacity of the plant species respectively; e is the rate of encounter per unit
plant per herbivore, h is the average time required for handling one unit of plant biomass; C is the
conversion rate of the consumed plant biomass into new herbivore biomass; E is the per capita death
rate of the herbivore due to causes unrelated to plant toxicity. The term 1 − eBU/(1 + heU), captures
the negative toxin effects, where it is required that h/4 < B < h.

System (1.1) has been studied extensively by several authors, but most of the research focuses ei-
ther on the corresponding ODEs system or on the PDEs system but concentrating on the traveling
wave solutions. For example, Feng, Liu and DeAngelis [1] studied the stability of the equilibrium
solutions and Hopf bifurcations of the ODEs system; Liu, Feng, Zhu and DeAngelis [2] further per-
formed detailed bifurcation analysis of the ODEs system reveals a rich array of possible behaviors
including cyclical dynamics through Hopf bifurcations and homoclinic bifurcation; Castillo-Chavez,
Feng and Huang [3] studied the global dynamics of the corresponding ODEs system. They were able
to find necessary and sufficient condition on the nonexistence of a closed orbit via the transformation
of the model to a new equivalent system. The Poincare-Bendixson theorem was used to show that
the existence of a unique interior equilibrium point guarantees its global asymptotical stability when-
ever it is locally asymptotically stable. Zhao, Feng, Zheng and Cen [4] studied the existence of limit
cycles and homoclinic bifurcation in the ODEs. By using the theory of rotated vector fields and the
extended planar termination principle, they showed the existence of limit cycles and homo-clinic loop.
Li, Feng, Swihart, Bryant and Huntly [5] considered an ODE system of n plant species and one her-
bivore population, which exhibits a rich variety of complex dynamics including Hopf bifurcation and
period-doubling bifurcations. Feng, Huang and DeAngelis [6] studied the reaction-diffusion models
for plant-herbivore interactions with toxin-determined functional response with two plant species that
have different levels of toxicity. It was shown that under suitable conditions, the system might have
traveling wave solutions; More recently, Xiang, Wu and Wan [7] use the steady state bifurcation theory
and Hopf bifurcation theory to study the existence of multiple bifurcations.

In this paper, however, we shall limit our attention to the occurrence of steady state solutions bi-
furcating from the positive constant equilibrium solution by using the classical local and global steady
state bifurcation theory in the sense of Crandall and Rabinowitz ( [8, 9]). By using the diffusion rate
d2 of the predator as the main bifurcation parameter, we are able to show the existence of global bi-
furcating branches consisting of positive non-constant steady state solutions, that is., for any d2 larger
than certain critical value, then the diffusive system will have at least a positive non-constant steady
state solution. On the other hand, compared with the diffusion rate d1 of the plant, the diffusion rate d2
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of the herbivore tend to be sufficiently large from practical point of view. Thus, for any fixed d1, the
dynamics of the system for sufficient larger d2 will be of great concern. Note that one way to solve the
steady states of (1.2) for the larger d2 case is to use the “shadow system”approach [10], which basically
considers the limiting system when the diffusion rate d2 tends to infinity. The shadow system is pre-
sumably easier to analyze, and the wish is that properties of solutions to the shadow system reflect that
of the solutions to the original system, at least for d2 sufficiently large. To a certain extent, this is true.
From this point of view, the shadow system approach is the main advantage of our work compared
with other existing literatures when we consider the case of d2 sufficiently large.

Based on the aforementioned observations, we are to prove the existence of the positive non-
constant steady state solutions of both original system and its limiting system-the shadow system.
To make our discussions simpler, we introduce the following change of variables:

t = τA, u = ehU, v =
ehV
C
, d1 =

D1

A
, d2 =

D2

A
, k = Keh, m =

C
hA
, θ =

E
A
, γ =

B
h
.

Then, we can reduce system (1.1) to the following dimensionless form

∂u
∂t
= d1∆u + u

(
1 −

u
k
)
−

mu
1 + u

(1 −
γu

1 + u
)v, (x, t) ∈ Ω × (0,∞),

∂v
∂t
= d2∆v − θv +

mu
1 + u

(1 −
γu

1 + u
)v, (x, t) ∈ Ω × (0,∞),

∂νu = ∂νv = 0, (x, t) ∈ ∂Ω × (0,∞),
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.2)

where γ ∈ (1/4, 1). System (1.2) is similar to the classical predator-prey system with Holling type-II
functional responses where γ = 0. (For more details, we refer to [11, 12] and references therein). To
facilitate the needs to perform our bifurcation analysis, without loss of generality, we treat only the
simpler case when Ω := (0, ℓ) for ℓ > 0.

The remaining parts of this paper are organized as follows. In Section 2, we consider the spatial
patterns of the original system by performing detailed local and global steady state bifurcation to the
original system; In Section 3, we study the spatial patterns of the shadow system (the limiting system
when d2 → ∞) by using the time-mapping methods; In Section 4, we end up our discussions by
drawing some conclusions.

2. The spatial patterns of the original system: Steady state bifurcation analysis

In this section, we shall perform detailed global steady state bifurcation analysis to the system by
using d2 as the bifurcation parameter. Without loss of generality, we shall limit our attention to the case
of Ω = (0, ℓ) for ℓ > 0. The steady state problem of system (1.1) is governed by the following elliptic
equations: 

d1∆u + u
(
1 −

u
k
)
−

mu
1 + u

(1 −
γu

1 + u
)v = 0, x ∈ (0, ℓ),

d2∆v − θv +
mu

1 + u
(1 −

γu
1 + u

)v = 0, x ∈ (0, ℓ),

∂νu = ∂νv = 0, x = 0, ℓ.

(2.1)
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One can check that: if 1/4 < γ ≤ 1/2 holds, then
u

1 + u
(1 −

γu
1 + u

) is increasing in u, while it
is unimodal if 1/2 < γ < 1 holds, more precisely, if 0 < u < 1/(2γ − 1), it is increasing, while if
u > 1/(2γ − 1), it is decreasing.

Clearly, if
1
4
< γ ≤

1
2

and
θ

m
∈

(
0,

k
1 + k

(
1 −

γk
1 + k

))
holds, then system (2.1) has a unique positive

constant solution, denoted by (λ, vλ), satisfying 0 < λ < k and

λ

1 + λ
(1 −

γλ

1 + λ
) =
θ

m
, vλ :=

(k − λ)(λ + 1)2

mk(1 + (1 − γ)λ)
.

Define X = {(u, v) : u, v ∈ C2[0, ℓ], u′ = v′ = 0 on x = 0, ℓ} and Y = L2(0, ℓ)× L2(0, ℓ) be the Hilbert
space with the inner product

(U1,U2)Y := (u1, u2)L2(0,ℓ) + (v1, v2)L2(0,ℓ)

for U1 := (u1, v1) ∈ Y,U2 := (u2, v2) ∈ Y . Define the mapping F : (0,∞) × X → Y by

F (d2, u, v) :=

d1u′′ + u
(
1 − u

k

)
−

mu
1 + u

(1 −
γu

1 + u
)v

d2v′′ − θv +
mu

1 + u
(1 −

γu
1 + u

)v

 .
Clearly, for all d2 > 0, we have F (d2, λ, vλ) = 0. The linearized operator evaluated at (λ, vλ) is given

by

L := F(u,v)(d2, λ, vλ) =
(
d1∆ + σ1(λ) −θ

σ2(λ) d2∆

)
,

where ∆ :=
∂2

∂x2 and

σ1(λ) :=
λ(−2(1 − γ)λ2 + (k − kγ − 3)λ + k + kγ − 1)

k(1 + (1 − γ)λ)(1 + λ)
, σ2(λ) :=

(k − λ)(1 + (1 − 2γ)λ)
k(1 + λ)(1 + (1 − γ)λ)

.

By [7, 10, 12], the eigenvalues of L can be determined by the eigenvalues of Ln defined by

Ln =

(
σ1(λ) − d1τn −θ

σ2(λ) −d2τn

)
, n ∈ N0 := {0, 1, 2, · · · }, (2.2)

where τn is the eigenvalue of −∆ on Ω subject to the homogenous Neumann boundary conditions
satisfying 0 = τ0 < τ1 < τ2 < · · · . The characteristic equation of Ln is given by

ρ2 − Tn(λ)ρ + Dn(λ) = 0, (2.3)

where
Tn(λ) = σ1(λ) − (d1 + d2)τn, Dn(λ) := d1d2τ

2
n − a11(λ)d2τn + θσ2(λ). (2.4)

One can check that: if k ≤ 1/(1 + γ) holds, then for all λ ∈ (0, k), σ1(λ) < 0; while if k > 1/(1 + µ)
holds, then there exists a λ̂ ∈ (0, k), such that for any λ ∈ (0, λ̂), σ1(λ) > 0, σ1(̂λ) = 0, while for any
λ ∈ (̂λ, k), σ1(λ) < 0.
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Then, if either k ≤ 1/(1 + γ) or k > 1/(1 + γ) but λ ∈ (̂λ, k), we have σ1(λ) < 0, indicating that
Tn(λ) < 0. Since σ2(λ) > 0 for λ ∈ (0, k), we have Dn(λ) > 0. Hence, (λ, vλ) is locally asymptotically
stable in system (2.1).

Now, we mainly consider the case when k > 1/(1 + γ) but λ ∈ (0, λ̂), in which case σ1(λ) > 0.
Then, zero is an eigenvalue of Ln if and only if

d2 = d(n)
2 :=

θσ2(λ)
(σ1(λ) − d1τn)τn

, for some n > 0 such that τn < σ1(λ)/d1. (2.5)

Defining d2 = d(n)
2 , we have kerL = span{Φ}, with Φ = (1, κn)Tϕn, where ϕn is the eigenfunction −∆

corresponding to τn, and κn = (σ1(λ) − d1τn)/θ > 0.
Consider the adjoint operator of L:

L∗ :=
(
d1∆ + σ1(λ) σ2(λ)
−θ d2∆

)
.

Then, kerL∗ = span{Φ∗}, with Φ = (1, κ∗n)Tϕn, where κ∗n = (d1τn − σ1(λ))/σ2(λ) < 0. Since
range L = (kerL∗)⊥, the codimension of rangeL is the same as dim L∗ = 1. Thus, kerF(u,v)(d

(n)
2 , λ, vλ)

and Y/range F(u,v)(d
(n)
2 , λ, vλ) are one-dimensional.

Finally, we show that F(d2,(u,v))(d
(n)
2 , λ, vλ)Φ < range F(u,v)(d

(n)
2 , λ, vλ). In fact, we have

F(d2,(u,v))(d
(n)
2 , λ, vλ)Φ =

(
0 0
0 ∆

) (
1
κn

)
ϕn =

(
0

−τnκnϕn

)
and

(
F(d2,(u,v))(d

(n)
2 , λ, vλ)Φ,Φ

∗
)

Y = (−τnκnϕn, k∗nϕn)L2 = −τnκnk∗n > 0. Thus, we can conclude that
F(d2,(u,v))(d

(n)
2 , λ, vλ)Φ < range F(u,v)(d

(n)
2 , λ, vλ).

So far, by Theorem 1.7 of [8], we have the following results on the local existence of the steady
state bifurcation branches:

Theorem 2.1. Suppose that
1
4
< γ ≤

1
2

, k > 1/(1 + γ),
θ

m
∈

(
0,

k
1 + k

(
1 −

γk
1 + k

))
, λ ∈ (0, λ̂) and n

is a positive integer such that τn < σ1(λ) and d(n)
2 , d(m)

2 for any integers m , n. Then, (d(n)
2 , λ, vλ) is

a steady state bifurcation point. More precisely, there exists a one-parameter family of non-constant
positive solutions (d2(s), u(s)(x), v(s)(x)) of system (2.1) for |s| sufficiently small, where d2(s), u(s),
v(s) are continuous functions, d2(0) = d(n)

2 , and u(s) = λ + sϕn + o(s), v(s) = vλ + sκnϕn + o(s),
where κn = (σ1(λ) − d1τn)/θ > 0. The zero set of F consists of two curves (d2(s), u(s)(x), v(s)(x)) and
(d2, λ, vλ) in a neighborhood of the bifurcation point (d(n)

2 , λ, vλ).

Definition 2.2. ( [13]) A componentA of the set of the non-constant solution of system (2.1) is said to
exist globally with respect to d2 if and only if Proj(A) contains 0, where Proj stands for the projection
operator from (0,+∞) × X to d2 space and the upper bar represents the closure operator in R.

Next, we shall consider the existence of global steady state bifurcation branches.

Theorem 2.3. Let C1 be the closure of the set of the non-constant solution of system (2.1) in (0,+∞)×X.
Denote by Cd(n)

2
the component in C1 to which (d(n)

2 , λ, vλ) belongs. Under the same assumptions of
Theorem 2.1, the component Cd(n)

2
exists globally with respect to d1.

Electronic Research Archive Volume 31, Issue 4, 2095–2107.



2100

Proof. 1) We first argue that, if (u(x), v(x)) is a non-negative solution of (2.1), then, either (u, v) is one
of (0, 0) and (k, 0), or for x ∈ Ω, (u(x), v(x)) is a non-constant positive solution such that 0 < u(x) < k
and 0 < v(x) < k(d2 + θd1)/(θd2). This can be obtained by slightly modifying the proof of Lemma 3.5
in [12].

2) We are going to use Theorems 2.2 and 2.3 of [13] to prove our desired results. Before going, we
would like to comment that our results (Theorem 2.3) are similar to but different from Theorem 2.2
of [13] since Theorems 2.2 and 2.3 of [13] chooses d1 as main bifurcation parameter (fixing d2), while
ours chooses d2 as main bifurcation parameter (fixing d1).

Following [13], we define the hyperbolic curves {Cn}
∞
n=1 in (0,+∞) × (0,+∞) by

Cn :=
{
(d1, d2) ∈ (0,+∞) × (0,+∞) : d2 = d(n)

2 :=
θσ2(λ)

(σ1(λ) − d1τn)τn

}
.

Let C1 be the closure of the set of the non-constant solution of system (2.1) in (0,+∞) × X. Denote
by Cd(n)

2
the component in C1 to which (d(n)

2 , λ, vλ) belongs.
To study the existence of global steady state bifurcations, it means to consider how the local bi-

furcating branch behaves when d2 leaves the critical value d(n)
2 . By the Rabinowitz’s standard global

bifurcation theorem [9], the component in (0,+∞) × X which contains the local bifurcating branch ex-
ists globally in the sense that either there is no closed bounded set in the interior of (0,+∞) × X which
contains the component, or else such a set must contain the bifurcation points other than (d(n)

2 , λ, vλ).
We shall rule out the possibility of the latter case.

For each fixed d1, we denote the countable set {d(n)
2 : (d1, d

(n)
2 ) ∈ ∪∞n=1Cn\{(d1, d2) ∈ Cn∩Cm : m , n}}

by Bd1 .
Since the non-constant positive solution of system (2.1) is bounded as shown in part 1, by the

Rabinowitz’s standard global bifurcation theorem, to prove the desired results, it sufficient to rule
out the possibility that Cd(n)

2
contains a finite subset P = {d(n)

2 : (d(n)
2 , λ, vλ) ∈ Cd(n)

2
} of Bd1 . Suppose

otherwise. Following [13], define

q = max{q, there exists an element d(q)
2 of P such that (d(q)

2 , λ, vλ) ∈ Cd(n)
2
},

and denote the value of d(q)
2 ∈ P which attains q by d(q)

2 . Under the assumptions of Theorem 2.1,
d(n)

2 , d(m)
2 for any integers m , n. Thus, the bifurcation point (d1, d

(q)
2 ) ∈ Cq is simple. By Remark 1.2

of [13], it follows that if (d1, d
(q)
2 ) ∈ Cq, then

(
q2d1, q

2d(q)
2

)
∈ C1. This implies that

(
q2d1, q

2d(q)
2

)
∈ C1 is

simple. In particular, by (2.3) of [13], we have

T q
(
C

(q2d(q)
2 )

(1)

)
⊂ Cd(n)

2
, (2.6)

where T q (with q any of the positive integer) is defined in the following way (See also (2.2) of [13]):

T q
(
U0(x)

)
=


U0

(
q
(
x −

i
q

))
, if i is even,

U0

(
q
(1
q
− x +

i
q

))
, if i is odd,

(2.7)

where U0(x) is any smooth solution of (2.1) with (d1, d2) = (d1, d
(n)
2 ).
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Suppose that C
(q2d(q)

2 )
(1) exists globally (does not contain a bifurcation point different from

(d(n)
2 , λ, vλ)), then T q

(
C

(q2d(q))(1)
2

)
also exists globally (does not contain a bifurcation point different from

(d1, d
(n)
2 ), which is impossible since by (2.6), Cd(n)

2
contains a finite subset P = {d(n)

2 : (d(n)
2 , λ, vλ) ∈ Cd(n)

2
}

of Bd1 . A contradiction!
Suppose that C

(q2d(q)
2 )

(1) does not exist globally, then it must contain a bifurcation point (d1, q
2d(s)

2 )

for some interger s ≥ 2. However, this is also impossible since it contradicts the fact that q is the

maximum value of q, since by T q
(
C

(q2d(q)
2 )

(1)

)
, we can obtain that Cd(n)

2
must contain (d(q)s

2 , λ, vλ). Again,

the contradiction occurs. Thus, the proof is completed.

3. The spatial patterns of the shadow system: the time-mapping methods

In this section, we shall consider the existence of non-constant positive steady state solution of the
shadow system of the original system, say letting d2 → ∞.

Rewrite the second equation of system (2.1) in the following way:

vxx + d−1
2

( mu
1 + u

(1 −
γu

1 + u
) − θ

)
v = 0. (3.1)

Since 0 < u(x) < k and 0 < v(x) < k(d2 + θd1)/(θd2), then for fixed d1 > 0, as d2 → ∞, we have
0 ≤ u(x) ≤ k, 0 ≤ v(x) ≤ k/θ. Then, as d2 → ∞, we have, ∆v → 0. Therefore, v → ξ, where ξ is a
constant satisfying 0 ≤ ξ ≤ k/θ.

Thus, as d2 → ∞, system (2.1) is reduced to the following limit system:
d1∆u + u

(
1 −

u
k
)
−

mu
1 + u

(1 −
γu

1 + u
)ξ = 0, x ∈ (0, ℓ),

∂νu = 0, x = 0, ℓ,∫ ℓ

0

( mu
1 + u

(1 −
γu

1 + u
) − θ

)
dx = 0,

(3.2)

with 0 ≤ u(x) ≤ k, 0 ≤ ξ ≤ k/θ, γ ∈ (1/4, 1). System (3.2) is called shadow system of (2.1).

As in Theorem 2.1, we assume that 1/4 < γ ≤ 1/2 and
θ

m
∈

(
0,

k
1 + k

(
1 −

γk
1 + k

))
hold so that

system (3.2) has a unique positive constant solution, denoted by (λ, vλ).
We claim that the set of increasing solutions will be able to characterizes all the solutions of (3.2).

In fact,

1) The set of increasing solutions can describe all the decreasing solutions of (3.2). Indeed, suppose
that system (3.2) has an increasing solution u = u(x) in (0, ℓ), then we can check that u−(x) := u(ℓ−x)
must be a decreasing solution of system (3.2); Thus, by using increasing solutions, we can construct
decreasing solutions;

2) The set of increasing solutions can describe all the solutions of (3.2) (not necessarily limited to the
decreasing solutions). Indeed, suppose that system (3.2) has an increasing solution u = u(x) in
(0, ℓ). Following Lemma 2.1 of [13], we define

un(x) =

u(n(x − iℓ
n )), if i is even,

u(n( ℓn − (x − iℓ
n ))), if i is odd,
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for iℓ/n ≤ x ≤ (i + 1)ℓ/n and 0 ≤ i ≤ n − 1, with n > 2; In fact, un(x) is constructed by means
of successive (n − 1)-times reflections of u(nx) (0 ≤ x ≤ ℓ/n) at iℓ/n (i = 1, 2, · · · , n − 1). Since
(3.2) is an autonomous system and un(x) is matched at iℓ/n (i = 1, 2, · · · , n − 1). Thus, one can
check that un(x) is the solution of d1/n2∆u + u

(
1 − u

k

)
− mu

1+u (1 − γu
1+u )ξ = 0. Since the purpose of

the paper is to find the non-constant solution of d1/∆u + u
(
1 − u

k

)
− mu

1+u (1 − γu
1+u )ξ = 0 for small d1

(See the conditions f ′(λ) > d1π
2

ℓ2
in Theorem 3.3). Thus, if we are able to prove the existence of the

increasing solution of (3.2) in (0, ℓ), we can construct other non-monotone solutions un(x) by using
d1/n2 to replace d1;

In the following, we shall only concentrate on the increasing solutions of system (3.2).
We define

f (u) := u
(
1 −

u
k
)
−

mu
1 + u

(1 −
γu

1 + u
)ξ, and F(u) :=

∫ u

0
f (s)ds, (3.3)

and introduce the energy functional I(x) :=
d1

2
(ux(x))2 + F(u(x)). Then, I′(x) = d1u′′(x) + f (u) in

(0, ℓ). If u = u(x) is a non-constant increasing solution of (3.2), then I′(x) ≡ 0 in (0, ℓ) and F(u(x)) <
F(u(0)) = F(u(ℓ)), since u′(0) = u′(ℓ) = 0. In particular, F(u) must attain its local minimal value at a
point in (u(0), u(ℓ)).

We rewrite f (u) as

f (u) =
mu

1 + u
(1 −

γu
1 + u

)(p(u) − ξ), where, p(u) :=
(k − u)(u + 1)2

mk(1 + (1 − γ)u)
. (3.4)

Clearly, p(0) = 1/m, p(+∞) = −∞. We have the following results on the function p(u):

Lemma 3.1. 1) Suppose that k ≤ 1/(1+ γ) holds. Then, p(u) is strictly decreasing in (0,∞) and there
exists a unique u∗ ∈ (0,∞), such that for any u ∈ (0, u∗), p(u) > 0 for any u ∈ (0, u∗), while p(u) < 0
for any u ∈ (u∗,∞). In particular, p(u) attains its local maximal value at u = 0.

2) Suppose that k > 1/(1 + γ) holds. Then, there exists u∗, u∗ ∈ (0,∞), with u∗ < u∗, such that for any
u ∈ (0, u∗), p′(u) > 0 for any u ∈ (0, u∗), while p′(u) < 0 for any u ∈ (u∗,∞). In particular, p(u)
attains its maximal value at u = u∗. Moreover, for any u ∈ (0, u∗), p(u) > 0 for any u ∈ (0, u∗), while
p(u) < 0 for any u ∈ (u∗,∞).

Proof. Note that

p′(u) =
u + 1

km(1 + (1 − γ)u)2

(
− 2(1 − γ)u2 + (k(1 − γ) − 3)u + k(1 + γ) − 1

)
.

Analyzing the properties of p′(u), we can obtain the desired results.

From (3.4) and Lemma 3.1, it follows that: if either k ≤ 1/(1 + γ) or k > 1/(1 + γ) but ξ ≥ p(u∗)
holds, F(u) will never its minimal value point in (0,∞). Therefore, system (3.2) will never have
positive non-constant solutions. Thus, to expect non-constant positive solutions, we need to assume
that k > 1/(1+γ) and ξ ∈

(
1/m, p(u∗)

)
. In this case, by (3.4), f (u) = 0 have two roots in (0,∞), denoted

by u1,2(ξ), satisfying 0 < u1(ξ) < u∗ < u2(ξ) < u∗; And f (u) < 0 for 0 < u < u1(ξ) and u2(ξ) < u < +∞,
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while f (u) > 0 for u1(ξ) < u < u2(ξ). Therefore, F(u) is decreasing in (0, u1(ξ)) ∪ (u2(ξ),∞), and
increasing in (u1(ξ), u2(ξ)). In particular, F(u) takes its local minimum value at u = u1(ξ). Define

κ0(ξ) :=

 0, if F(0) ≤ F(u2(ξ)),
κ(ξ), if F(0) > F(u2(ξ)),

where κ(ξ) ∈ (0, u1(ξ)), such that F(κ(ξ)) = F(u2(ξ)). Then, for any u(0) ∈ (κ0(ξ), u1(ξ)), there exists a
unique u0(ξ) ∈ (u1(ξ), u2(ξ)), such that F(u(0)) = F(u0(ξ)).

Since I′(x) ≡ 0, we have I(x) ≡ F(α), where we write u(0) = α and u(ℓ) = β. Since u′(x) is assumed
to be positive, we have

u′(x) =
1
√

d1

√
2(F(α) − F(u)), x ∈ (0, ℓ). (3.5)

Integrating (3.5) from 0 to ℓ, by u(0) = α and u(ℓ) = β, we have,

ℓ =
√

d1

∫ β

α

du
√

2(F(α) − F(u))
.

Regarding ℓ in (3) as a function of α, we have the following results:

Lemma 3.2. Suppose that
1
4
< γ ≤

1
2

, ξ ∈ (1/m, p(u∗)) and k >
1

1 + γ
hold. Then, for any α ∈

(κ0(ξ), u1(ξ)),
dℓ
dα
< 0.

Proof. Step 1: Following [10], for a given number u ∈ (α, β), define u = ρ(s) by the relation

F(ρ(s)) − F(u1(ξ)) =
s2

2
, sign s = sign(u − u1(ξ)) = sign( f (u)). (3.6)

Differentiating the first equation of (3.6) with respect to s, we have f (ρ(s))ρ′(s) = s. By the second
equation of (3.6), we have ρ(s) > u1(ξ) for s > 0, ρ(0) = 0 and ρ(s) < u1(ξ) for s < 0. This together
with f (ρ(s))ρ′(s) = s, implies that ρ′(s) > 0 for all s , 0, where we use the facts that f (u) > 0 for
u ∈ (u1(ξ), u2(ξ)) and f (u) < 0 for u ∈ (κ0(ξ), u1(ξ)). Then, s = ρ−1(u) is well defined and is strictly
increasing in (α, β). By [10] (pages of 314–315), we have

ρ′(s) =

√
2(F(u) − F(u1(ξ)))

| f (u)|
, ρ′′(s) =

− f 2(u) + 2 f ′(u)(F(u) − F(u1(ξ)))
f 3(u)

, (3.7)

and ρ′′′(s) = −
ρ′(s)
f 4(u)

z(u), where

z(u) := 2 f (u) f ′′(u)(F(u) − F(u1(ξ))) + 3 f ′(u)
(
f 2(u) − 2 f ′(u)(F(u) − F(u1(ξ)))

)
. (3.8)

In particular, ρ′(0) =
1√

f ′(u1(ξ))
and

ρ′′(0) = −
f ′′(u1(ξ))

3( f ′(u1(ξ)))2 , ρ
′′′(0) =

(
5( f ′′(u1(ξ)))2 − 3 f ′(u1(ξ)) f ′′′(u1(ξ))

)
12

√
( f ′(u1(ξ)))7

. (3.9)
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Step 2: Let ω > 0 be given by

1
2
ω2 = F(α) − F(u1(ξ)) > 0, α ∈ (κ0(ξ), u1(ξ)), (3.10)

which implies from (3.6) that 2(F(α) − F(u)) = ω2 − s2 and

ℓ =
√

d1

∫ ω

−ω

ρ′(s)ds
√
ω2 − s2

=
√

d1

∫ π

0
ρ′(−ω cos t)dt, (3.11)

where the last equality was obtained by making the change of variable s = −ω cos t, 0 ≤ t ≤ π.
Regarding ω in (3.10) as a function of α in (κ0(ξ), u1(ξ)), by f (α) < 0 and ω(α) > 0, we have ω′(α) =

f (α)/ω(α) < 0. Thus, the sign of
dℓ
dα

is opposite to the sign of
dℓ
dω

. By (3.11), we have

dℓ
dω
= −

√
d1

∫ π

0
cos tρ′′(−ω cos t)dt,

d2ℓ

dω2 =
√

d1

∫ π

0
cos2 tρ′′′(−ω cos t)dt,

dℓ
dω

(0) = −ρ′′(0)
√

d1

∫ π

0
cos tdt = 0,

d2ℓ

dω2 (0) = ρ′′′(0)
√

d1

∫ π

0
cos2 tdt =

ρ′′′(0)
√

d1π

2
.

(3.12)

After elementary calculations, we have

f ′(u) : =
2mkγξu − mkξ(1 + u) − 2u(1 + u)3 + k(1 + u)3

k(1 + u)3 ;

f ′′(u) : =
2kmξ

(
γ + 1 + (1 − 2γ)u

)
− 2(1 + u)4

k(1 + u)4 , f ′′′(u) :=
6mξ

(
(2γ − 1)u − (1 + 2γ))

(1 + u)5 .

Since mξ > 1 and k > 1/(1 + γ), we have f ′′(0) = 2mξ(γ + 1) −
2
k
> 0. Note that γ ≤ 1/2 holds.

Then, f ′′′(u) < 0 for all u > 0. Thus, f ′′(u) is decreasing in (0,∞). Since f ′′(0) > 0, by f ′′(∞) = −2/k
and the properties of f ′′′(u), f ′′(u) = 0 has a unique root µ∗ in (0,∞), such that f ′′(u) > 0 in (0, µ∗) and
f ′′(u) < 0 in (µ∗,∞). We argue that f ′(µ∗) > 0. Otherwise, since f ′(u) attains its maximum value at
u = µ∗, we have f ′(u) ≤ 0 for all u > 0. Since f ′(0) = 1 − mξ < 0, we have f ′(u) < 0. Since f (0) = 0,
thus f (u) < 0, which is again impossible. Thus, f ′(µ∗) > 0. By f ′(0) < 0 and f ′(∞) = −∞, f ′(u) = 0
has two roots µ1 and µ2 in (0,∞) with µ1 < µ∗ < µ2. In particular, 0 < µ1 < u1(ξ) < µ2 < u2(ξ).

Step 3: Since f (u1(ξ)) = 0, we have z(u1(ξ)) = 0. For u ∈ (0, µ1], we have f (u) < 0, f ′(u) ≤
0, f ′′(u) > 0, F(u) − F(u1(ξ)) > 0. Then, for u ∈ (0, µ1], we have z(u) < 0. For u ∈ [µ2, u2(ξ)), we have
f (u) > 0, f ′(u) ≤ 0, f ′′(u) < 0, F(u) − F(u1(ξ)) > 0. Then, for u ∈ [µ1, u2(ξ)), we have z(u) < 0. Next,
we show that for u ∈ (µ1, µ2), z(u) < 0. A straightforward calculation shows that,

z′(u) = 2 f (u) f ′′′(u)(F(u) − F(u1(ξ))) + 5 f ′′(u)
(
f 2(u) − 2 f ′(u)(F(u) − F(u1(ξ)))

)
,

5 f ′′(u)z(u) − 3 f ′(u)z′(u) = 2 f (u)(F(u) − F(u1(ξ)))z1(u),
(3.13)

where z1(u) := 5( f ′′(u))2 − 3 f ′(u) f ′′′(u). For u ∈ (µ1, µ2), we have f ′(u) > 0. By f ′′′(u) < 0, we have
z1(u) > 0. On the other hand, by (3.9) and (3.13), we have ρ′′′(0) = z1(u1(ξ))/(12

√
f ′(u1(ξ))7) > 0.

This implies that for s close to zero, ρ′′′(s) > 0. Hence, by ρ′′′(s) = −ρ′(s)z(u)/ f 4(u), for u close to
u1(ξ), but not equal to u1(ξ), we have z(u) < 0. As in [10], suppose for contradiction that there exists
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a û ∈ (u1(ξ), µ2) such that z(̂u) = 0 and z(u) < 0 for u ∈ (u1(ξ), û), then z′(̂u) ≥ 0 and f ′(̂u) > 0 and
z1(̂u) > 0, which contradicts (3.13). Thus, z(u) < 0 for all u ∈ (u1(ξ), u2(ξ)). Similarly, we can show that
z(u) < 0 for all u ∈ (0, u1(ξ)). Finally, by ρ′′′(s) = −ρ′(s)z(u)/ f 4(u) and (3.12), for α ∈ (κ0(ξ), u1(ξ)),
dℓ/dα < 0.

So far, we are in the position to state our results on the existence of positive non-constant solutions
of the shadow system:

Theorem 3.3. Suppose that
1
4
< γ ≤

1
2

, f ′(λ) >
d1π

2

ℓ2
and k >

1
1 + γ

hold, where λ is the first

component of (λ, vλ). Then, the shadow system (3.2) admits at least one strictly increasing solution,
and the same number of strictly decreasing solutions. The corresponding ξ satisfies ξ ∈ (ξ−, ξ+), for
some ξ−, ξ+ ∈ (0, p(u∗)).

Proof. For ξ ∈
(
1/m, p(u∗)

)
, since ρ′(0) =

√
d1π/ f ′(u1(ξ)), we have limα→u1(ξ) ℓ(α) = ρ′(0) =

√
d1π/

√
f ′(u1(ξ)) =: ℓ0. Then, for ℓ < ℓ0, d1∆u + f (u) = 0 has no non-constant solutions, while

for ℓ > ℓ0 it does have. On the other hand, from the argument in the proof of Theorem 5 in [10], it
follows that limα→κ0(ξ) ℓ(α) = +∞ and u is non-degenerate.

As in the Step 3 of the proof of Lemma 3.2, we have shown that f ′(u1(ξ)) attains its unique maximal
value (positive) at u1(ξ) = µ∗ for some µ∗ ∈ (µ1, µ2). Define ℓ∗ =

√
d1π/

√
f ′(µ∗). Then, f ′(µ∗) =

d1π
2/ℓ2∗ and for any ℓ > ℓ∗, there have two numbers uℓ− < uℓ+ , such that δ∗ ∈ (uℓ− , uℓ+) ⊂

(
0, u∗

)
and

f ′(uℓ−) = f ′(uℓ+) = d1π
2/ℓ2. Let ξ− := p(uℓ−) and ξ+ := p(uℓ+). Then, for ξ ∈ (ξ−, ξ+), we have

f ′(u1(ξ)) > d1π
2/ℓ2; Thus, there must be a unique, increasing and non-degenerate solution u = uℓ(x)

to d1∆u + f (u) = 0 subject to Neumann boundary conditions. Recall that under our assumptions,
u1(ξ) = λ if and only if ξ = vλ. Then, if f ′(λ) > d1π

2/ℓ2, we have f ′(µ∗) ≥ f ′(λ) > d1π
2/ℓ2, which

implies that ℓ > ℓ∗ and ξ ∈ (ξ−, ξ+). In particular, λ ∈ (uℓ− , uℓ+). As ℓ → ℓ∗, the set (ξ−, ξ+) shrinks to
an empty set, and as ℓ → ∞, (ξ−, ξ+) expands to (1/m, p(u∗)). For fixed ℓ > ℓ∗ and a given ξ ∈ (ξ−, ξ+),
we write

αℓ(ξ) = uℓ(0), M(ξ) :=
1
ℓ

∫ ℓ

0

mu
1 + u

(1 −
γu

1 + u
)dx. (3.14)

It follows from the non-degeneracy of uℓ that both αℓ(ξ) andM(ξ) are continuous functions of ξ.
If ξ ∈ (ξ−, ξ+) is close to ξ−, then u1(ξ) is close to uℓ− . Since ℓ =

√
d1π/

√
f ′(uℓ−), we know that αℓ is

close to u1(ξ) and then close to uℓ− too. Furthermore, the solution uℓ(x) is nearly a constant. Then, by
uℓ− < λ,M(ξ) is close to uℓ− and then we haveM(ξ) < M(λ) = θ/m, where the integrant function in
M(ξ) is increasing with respect to u when γ ≤ 1/2. Similarly, for those ξ close to uℓ+ , by uℓ+ > λ, we
haveM(ξ) > M(λ) = θ/m. Then, by the continuity ofM(ξ), there must have some ξ ∈ (ξ−, ξ+) such
thatM(ξ) = θ/m.

4. Conclusions

In this paper, we are mainly concerned with the existence of the spatial patterns of the diffusive
system with plant-herbivore interactions with toxin-determined functional responses. By using the
standard steady state bifurcation theorem, we are able to show that, for any fixed d1 > 0, if the diffusion
rate d2 is larger than certain critical value, then the original non-degenerate system (both d1 and d2 are
positive and finite) will have non-constant positive steady state solutions. Then, we continue to consider
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the limiting case when d2 tends to infinity. The corresponding limiting system is called the shadow
system of the original system. By using the time-mapping methods, we have showed that the shadow
system has non-constant positive steady state solutions under certain conditions. In the future, we shall
concentrate ourselves on the dynamics of the predator-prey system with discontinuous reaction terms,
which tends to be much more interesting than the current counterpart (see for example, [14, 15]).
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