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Abstract:  This article is devoted to study the following quasilinear Schrodinger system with
super-quadratic condition:

—Au+ Vi(xX)u — Aw®)u = h(u,v), x € RY,
—Av + Vo(x)v — AV = g(u,v), x € RV,

where N > 3, Vi(x), V,(x) are variable potentials and 4, g satisfy some conditions. By establishing a
suitable Nehari-PohoZaev type constraint set and considering related minimization problem, we prove
the existence of ground states.
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1. Introduction

In this work, we consider the following quasilinear Schrodinger system:

{_AM + Vi(u = A@w?)u = h(u,v), x € R, (1.1)

—Av + Vo(x)v = AV = g(u,v), x € RV,
where N > 3, V,(x), Va(x) are potential functions and 4, g : R> — R are nonlinear terms. Before
stating our assumptions and main result, now introduce some related results that motivate the present
work briefly.

1.1. Motivation and related results

The study of (1.1) was in part motivated by the nonlinear Schrédinger equation

i0,z = =Az + W(x)z = k(x, 2) = AP (12P)z, (1.2)
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where z : RxRY — C, W : RV — Ris a given potential and / : R — Rand k : R¥ xR — R are
suitable functions. In recent years, this form of quasilinear equations have received much attention in
mathematical physics. For various types of nonlinear term I(s), (1.2) can be derived as models in
different areas of physics. For instance, when [(s) = s, (1.2) models a superfluid equation in plasma
physics by Kurihara [1] (also see [2]). Moreover, in the case I/(s) = VI1+s, (1.2) models
self-channeling of a high-power ultrashort laser in matter, see [3—6]. It also appears in the theory of
Heidelberg ferromagnets magnons, in dissipative quantum mechanics and in condensed matter theory,
see for instance [7, 8]. For further detailed mathematical models and physics applications of (1.2), we
infer also the readers to [9—-16] and the references therein.

It is well known that (1.2) can be reduced to the following equation of elliptic type when setting
7(t, x) = exp(—iEt)u(x), where E € R and u is a real function (see [6]):

—Au + V(x)u — Al @u = k(x,u), x € RV, (1.3)
Assuming that I(s) = s, then (1.3) turns out to be the superfluid film equation in plasma physics
—Au+ V(x)u — Aw*)u = k(x,u), x € R". (1.4)

To our knowledge, (1.4) has been studied extensively. Especially, the following case that k(x, u) =
ulP~u, 4 < p < 2% have attracted much attention:

—Au + V(x)u — kuA@w?®) = |ul’u, x € RV, (1.5)

Poppenberg et al. [15] proved the existence of positive ground state of (1.5) by using a constrained
minimization argument. Furthermore, with the help of changing of variables and the Mountain-pass
Lemma, Liu and Wang [17] proved the existence of a positive solution for (1.5) in a new Orlicz space
framework. In their work, the potential V(x) € C(RY, R) satisfies

(A1) inf V(x) > a > 0,YM > 0, meas{x € RV|V(x) < M} < +c0.
xeRN

Such kind of hypotheses was first introduced by Bartsch and Wang [18] to guarantee the compactness
of

E :={uec H'[®RY) f V(x)u? < oo} < L'(RY)
RN

when 2 < s < % Colin and Jeanjean [19] also proved the existence of solutions for (1.5) in the

usual Sobolev space H'(RY) via changing variables. Recently, Ruiz and Siciliano [20] studied (1.5)
under the case 2 < p < %. They used a technique of minimizing a functional under a PohoZaev
constraint to show that (1.5) has ground state solution. Moreover, Chen et al. [21] proved the existence
of ground states for (1.4) under super-quadratic condition, weaker monotonicity condition and a new
decay condition on the potential V(x).

From a mathematical point of view, quasilinear Schrodinger systems have been widely considered

in the literature. Guo and Tang [22] studied the following system

—Au + (la(x) + Du — %A(uz)u = ;—fﬁlula‘2u|v|ﬁ, xRV,
—Av + (Ab(x) + Dy = 1A = 2Zjul* w2y, x € RY,

a+f
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where A > 0 is a parameter, @ > 2,5 > 2, ¢+ < % for N > 3. They proved the existence of positive
ground states via the Nehari manifold and the concentration compactness principle. In [23], under the
assumptions of (h, g) = VF that

(G1) there exists C > 0 such that

IA(x, u, )| + 1g(x, u, vl < C(L+ [(u, »IPT), Y(x,u,v) € RY X R?,
where 2 < p < 2%
(G2) the following limits hold
h(x,u,v) . g(x,u,v)
m ——= lim =—/7—7~
@)—0.0) |(u,v)| w)—0.0) |(u,v)|

(G3) there exists 8 > 4 such that

= 0 uniformly in x € R";

Ly(x,U) <0, ¥(x,U) € RV x R?,
uh(x,u,v) >0, vg(x,u,v) > 0 for all (x,u,v) € RY x R?,
U= (u,v), L(x,U) = 0F(x,U) - U - VF(x, U),
Severo and Silva considered the gradient system

{_AM + Vi(u — A@wP)u = h(x,u,v), x € R, (1.6)

—Av + Vo(x)v — AWV = g(x,u,v), x € RV,

They obtained the existence of nontrivial solution under some other conditions on V;(x), V,(x) and
(G1)—(G3) for the case of

4N
lul*Ivf witha > 2, B>2and a + 8 < .
a+p N-2

Recently, Chen and Zhang [24] studied the following periodic quasilinear Schrodinger system with

F(x,u,v) =

4N
2<a +ﬁ < N7
—Au +A(X)u — %A(uz)u = %lul“‘zulvlﬁ, xRV,
2 _
—Av + By — 1AWy = ﬁlul"lvlﬂ 2y, x e RV,
and proved the existence of positive ground states with 2 < a + 8 < %. Furthermore, they

generalized the results by Guo and Tang [22] and obtained the similar results via a constrained
minimization argument. There’s also a lot of interesting work focusing on the existence or
concentration of solutions to Choquard equations, Schrodinger equations and other elliptic equations,
we can refer to [8,23,25-34] and the references therein.

Motivated by the mentioned papers [21, 23, 24], an interesting question is that, whether or not
we can generalize the single quasilinear Schrodinger equation studied in Chen et al. [21] to a system,
furthermore, whether we can find the existence of ground states for it with variable potential and super-
quadratic condition. And thus, in the current paper, we shall establish the existence of ground states
for quasilinear Schrodinger system (1.1) under some suitable assumptions via Pohozaev maniflod and
the techniques in [21]. We point out that we consider two general classes of nonlinear terms A(u, v)
and g(u, v), which include the particular nonlinearities treated in for example [22,24,35]. Besides, our
potential functions do not depend on a real parameter.
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1.2. Assumptions and main theorems

In order to establish a variational approach, we first suppose the following hypotheses:
(V1) Vi(x) € CRY, [0, 00)), i = 1,2 satisfy

0< Vi,() =min V;(x) < Vi,oo = lim Vl(y)
xeRN [y|—o0

(V2) Vi(x), i = 1,2 satisfy the set {x € RY : [VVi(x) - x| > &} has finite Lebesgue measure for every

£>0,and t — [(N + 2)Vi(tx) + VVi(tx) - (tx)]/t"~? is nonincreasing on [0, co) for any x € RY, where

p > 2 is given by (F3).

(F1)
h(u,v) ) g(u,v)
m = lim =
@)—©00) |(u, V)]  @»—=0.0 |(u,v)]
h(u,v ) u,v
m e 8wy
luw=eo [(u, VP21 )= |(u, v)[F2 1
where 2" = ,31_\’2 is the Soboleyv critical exponent.

(F2) lim 2% = too, where VF(u,v) = (h(u,v), g(u, v)).

(u,v)| >0 |(M,V)|2
(F3) there exists a constant p > 2 such that
t € (—=00,0) and 1 € (0, ), where 7;, 7, € R\{0}.

NF(tty,t12)+h(tty tmo)tT +g(tT1 ,1T2)tT)2
tri72lP

is nondecreasing on both

Remark 1.1. We would like to point out that (F1) is much weaker than (G4) and (F2) is much weaker
than (G6).

Our result can be stated in the following form:

Theorem 1.1. Suppose (V1), (V2) and (F1)—(F3) are satisfied. Then system (1.1) has a ground state
solution.

Now we introduce the following system

{—Au + Vil — Aw?)u = h(u,v), x € RY,

—Av + ViV — Ay = g(u,v), x € RV, (1.7

which acts as a limit problem for (1.1) with Vi(x) = V,, (i = 1,2). Applying Theorem 1.1 to (1.7), we
have Corollary 1.2.

Corollary 1.2. Suppose (F1)—(F3) are satisfied. Then system (1.7) has a ground state solution.

1.3. Notations

Throughout the paper we make use of the following notations:
e we use C or C; to denote various positive constants in context;
. jx\w & denotes |, & dx;

e L*(RY) denotes the Lebesgue space with norm |Ju; = ( fRN Iulsdx)ﬁ, where 1 < r < oo;

e H'(R") denotes a Hilbert space with norm |Jul|z1 gy = (fRN IVul® + u?)?;

e D'2(RY) is a Hilbert space with norm [|ul|p12@wy = (fRN IVul?)?;

e S is the best constant for the embedding of D'*(R") in L* (RV);

e the weak convergence in H'(R") or H is denoted by —, and the strong convergence is denoted by —.
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1.4. Outline

The rest of this paper is organized as follows: In Section 2, we use a change of variable and thus we
are able to introduce a variational framework. In Section 3, we give some important primary results.
In Section 4, we give the proof of Theorem 1.1.

2. The variational framework

Set H := H'(RY) x H'(RM). It is no hard to verify that H is a complete space endowed with the
norm

) = ( f (Vul + VP + 1 + vz))z.
RN

We note that, (1.1) is formally the Euler-Lagrange equation associated with the functional
1 1
d(u,v) = = f [(1 + 2u®)|Vul* + (1 + 203 V] + = f [Vi(0)u® + Va(x)v*] — f F(u,v).
2 RN 2 RN RN

However, © is not well defined in H because of the appearance of the nonlocal term fRN(uleul2 +
v2|Vv|?). We shall follow [17,19,36] and make the changing of variables (u,v) = (f(z), f(w)), where f
is defined by

’ 1
= 0, c0),
1o [1 +2f2(t)]% on | )

f(@) = =f(=1) on (=c0,0].

Then we obtain

1(z,w) :=0(f(2), f(W))

1 1
=3 | VP +19uf] + 3 fR ViDL @) + Va0 L) 1)
- fR F(fQ. fow)).

Under hypotheses (V1), (V2) and (F1)—(F3) it follows that / € C'(H,R). In addition, for any ¢,
© € Cy (RM), (z,w) € H and (z,w) + (@1, ¢2) € H, we compute the Gateaux derivative

T W), (1. ¢2)) = f (VY1 + VniVey) + f Vi fQDF @er + Va@F ) f W]
RN RN

- f [h(f(2), FWDf @1 + &(f ), fFWDS (w)ea].
RN

Then (u,v) = (f(z), f(w)) is a weak solution of (1.1) if and only if (z,w) is a critical point of
1. Moreover, every critical point of / corresponds precisely to the weak solutions of the semilinear
system

{ ~Az+ Vi) fQf () = h(f @), fFW)f (2) inRY, 2.2)

—Aw + Vo) fw)f (W) = g(f(2), fw)f (w) inRY.
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Next, we define the PohoZaev type functional of (2.2):

N-2
P(z,w) 2=TIIVZII§ +

1
) LN[NVZ(X) + VVa(x) - x1f2(w) —NfRN F(f(@), fw))

N-2

1
S IVwi + 5 f [NV (x) + VVi(x) - x1f2(2)
RN

2

for all (z,w) € H. It is standard to prove that any solution (z, w) of (2.2) satisfies P(z,w) = 0 and
(I'zw), (53, £2)) = 0, where

(F o, (1, 00

. 2 zfz(z) 2 2f2(w) 2 2
- fR i [|Vz| (1 ¥ m% Vvl (1 + m)] 4 fR VL@ V@Lm 23)

- L i [A(f (@), fW) [ (2) + 8(f(2), f(W))f(W)].
Motivated by Chen et al. [21], we introduce the Nehari-PohoZaev manifold of I by
M:={(z,w) € H\{(0,0)} : J(z,w) = 0},

where

JGw) ::<1’(z, W), (]% ]%» + P(z,w)

Novae + Nivwie 2@ oo f 22W) o o
= IVl + 19wl + f 2P0 | Te ™

! 1
+ 5 fRN[(N +2)Vi(x) + VVi(x) - x1f2(2) + 5 fRN[(N +2)Va(x) + VVa(x) - x]£2(w)

(2.4)

- L [INE(f@), fw) + h(f(2), fWf (@) + 8(f (). fw)) f(W)]-

Then every non-trivial solution of (2.2) is contained in M.
Similarly, for (1.7), we have

1 1
"Gz w) =5 f [IVz|2+|VWI2]+§ f [Vief?(@) + Vasf2(W)]
RY RY (2.5)

- fR @S0,

N N 212 212
Iz w) =5 IV2IB + SIVwiB + fR N1+];}§)(Z)'VZ'2+ fR N%IVWIZ

N+2 N+2
5 5 VawllfF W3 (2.6)

-, INF(f(2), f(W)) + h(f(2), fW) f(2) + g(f(2), f(W) f(W)]

+ Vil f @I +
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and define
M :={(z,w) € H\{(0,0)} : J®(z,w) = 0}.

For any z € H'(RV) \ {0} and ¢ > 0, we make scaling refer to the method proposed by Chen et

al. [21] that z,(x) = f~'(¢f(z(t ' x))). Let (z,w) € H, we have

N 1+22f2(2) o » 1 +2212w) _
I(z, wy) =5 fRN [sz(z)lvzl + sz(w)WM ]
Z‘N+2

= [ i@ + Ve fon) - f F(f (), tfw)),
RN RN

+

_ 4N
TG w) =5t 1+272(2) vz 1+2f%(w)

N+2 fz(Z) 2 fz(W) 2
2 fRN [1 20 T T pm ]

2 12 2 12
N f [1+2tf 2 2y 1+2t°f (W)|VW|2]
RN

N+2
+

[(N +2)Vi(tx) + VVi(tx) - ()] f2(2)
RN

N+2

+ [(N + 2)Va(tx) + VVa(tx) - (tx)]f*(w)

2 RN

_ f h( £, EF L) + gt FD)s LFOOLEw) + INF Q) Lf ).
RN

Define m := i/%(f I(z,w) and m™ := iAIAlf I*(z,w), then our aim is to prove that m is achieved.

3. Preliminaries

(2.7)

(2.8)

In this section we give some primary results used throughout the paper. First, for easy reference we
present below some properties of the function f and its derivative, which are extensively used in the

rest of the paper.

Lemma 3.1. [8,19] f(t) and its derivative have the following properties:
(1) f is uniquely defined C* function and invertible;

2)If O < 1forallteR;

(3)1f(O] < |t for all t € R;

(4L > 1ast— 0

(5) L2 - 2% st — +oo;

(6) @ <tf'(t) < f@t) forallt > 0 and f()f () < f2(t) forall t € R;

(7) If ()] < 23112 forall t € R;

(8) the function f*(t) is strictly convex;

(9) there exists a positive constant C such that

Cld, <1,

o= {cm%, =1
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(10) there exist positive contant Cy and C, such that
1l < Cllf O]+ Cof (@) forallt € R;

(11) 1) f ()] < %for allt e R.
Inspired by [21,37,38], we establish the following important inequality.
Lemma 3.2. Assume that (V1), (V2), (F1)~(F3) hold. Then

N+p

! J(z,w) + lQ(t, z,w), Y(z,w) € H\{(0,0)}, t > 0,
+p 2

I(Z’ W) Z I(Zta Wt) + N

where Q(t,z,w) is defined as

Otz w) = LN {[1 N+ 2;2f2(z))] 1= [N+ 4£2(2) ]}IVZI2

1+2f2(z) N+p 1 +2f%(z)
N+ 222m) ] 1=V 4F2(w) )
+fRN{[1_ 1+ 22(w) ]_ N+p [N+ 1+2f2(w)]}|vwl'

Proof. Set 0;(t, x) := Vi(x) - £2V(tx) = SN + 2)Vi(x) + VVi(x) - 1], i = 1,2, and

Os(t, 71, 12) :=t" F(t11,172) — F(11,72)
1 — N+

N+p

—+

[A(T1, T2)T1 + 8(T1, T2)T2 + NF (71, 72)].

It follows from (2.1), (2.4) and (2.5) that

I(z,w) — I(Zt w;)

R N 142220, 1428w
—§||VZ||2 ||V ||2—3f [TJQ(Z)WH +sz(w)|vwl]

. f [Vl(X)—tN+2V1(IX)]f2(z)+% f Va(x) = Y 2V5(10] 200
RN RN

; fR Ff@,00) = F(@), fon)]

=N N 2@ o0 21w o
N {5||VZ||2+5||Vw||2+fRN1+2f2(z)|vZ| +f ey

! 1
+ 2 ‘L;N [(N +2)Vi(x) + VVi(x) - x]f2(2) + 3 ‘[RN[(N L 2)WVa(x) + VVa(x) - x]1f2(w)

INF(f(2), f(W)) + h(f(2), fWf(2) + 8(f (@), f(W)f (W)]}

RN
1 N +22f7 (@) 1 =M 412(z) 5
"2 f 1 +2£2(z) ]_ N+p [N+ 1+2f2(z)]}|vz|
A 222w 1= 4F2(w) ,
L 1+ 2/2(w) ]_ N+p [N+1+2f2(w)]}|vw|}
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1 _ +N+p

t3 LN {Vl(x) — "2V (tx) — N+ [(N +2)Vi(x) + VV (%) - x]}fZ(z)
1 _ ¢N+p

+ 5 fN {Vz(x) - tN+2V2(tX) — [(N + 2)Va(x) + VVi(x) - X]}fz(w)

R N+p
N+p

+ f (YR, 1700 ~ FUf@, 100 + T L1t 10m) 2
RN P

+ g(tf@). tf W) fw) + NF(t(2), tf(W))]}

1= 1 1 , 1 ,
“N+p (Z,W)+§Q(I,Z,W)+§fRN 01, x)f (Z)+§fRN (1, %) f~(w)

+ fRN Qs(t, f(2), f(w)).

It suffices to prove that

Q:it,x) >0, Vt>0, xeR,i=1,2, (3.1)
Q3(l, T],Tz) > 0, Yt > O, T1,T2 € R, (32)
(3.3)

O(t,z,w) >0, Yt > 0, (z,w) € H.
In deed, through a simple calculation, for any x € RY and # > 0, by (V2) we have
_ (N +2)Vi(tx) + VVi(tx) - (tx)

in(t? x) _ +p-1

— - [(N +2)Vi(x) + VVi(x) - x =
>0,t>1,
<0,0<t<1,

then, thanks to the continuity of Q;(, x) on #, (3.1) holds. For 7y, 7, # 0, by (F3) we have
dOs(1,71,72) _ Nipo NF(tty,112) + h(i71, 112)17) + g(IT1, IT)IT)
——— =t "l
dr |tTTo|P

Wi, 1)1 + g(T1, T2)T2 +NF(T1,T2)] >0,t>1,
<0,0<t<1,

|T172/P

then, together with the continuity of Qs(#, 71, 72) on ¢ imply that Qs(¢, 71, 72) > O3(1, 71, 72) = 0 for all

t > 0and 1y, 7, € R\{0}, i.e., (3.2) holds. From the definition of f, we have
IVzll > IVf(2)ll2, Yz € RY. (3.4

Then, together with

4oz w) _ NTHEE? = DINIVZDS + 231V2l = IVA@ID] + N = DI f)I15)

dr
+ U@ = DINIVWIE + 2(IVwll3 = IV LI + N@E = DIFw)IB),

imply that (3.3) holds. The proof is completed.
From Lemma 3.2, we have the following corollary.
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Corollary 3.3. Assume that (V1), (V2), (FI1)—(F3) hold. Then for any (z,w) € M,

I(z,w) = max 1(z;, wy). (3.5)

Similar to the proof of Lemma 3.2 and Corollary 3.3, we can get the following corollary.

Corollary 3.4. Assume that (F1)—(F3) hold. Then

N+p

I (z,w) > I7(z,, +
(z,w) (2, wr) N7 op

J¥(z,w) + %Q(t, z,w), Y(z,w) € H\{(0,0)}, t > 0.

Corollary 3.5. Assume that (F1)—(F3) hold. Then for any (z, w) € M®,

I7(z,w) = max I (z;, w). (3.6)

Lemma 3.6. Assume that (VI1), (V2) hold. Then there exist two constants dy, d, > 0 such that for all
ue H'(RY),

N
5||Vu||§ + [(N+2)V(x)+VV(x) X > dillul vy i = 1,2,

2‘/I max

Proof. Set V; . := max Vi(x) € (0,00),i=1,2,and f; := = (5= )N+z > 1. Then we have

_ +(N+p)

1-1¢
N—er[(N +2)Vi(x) + VVi(x) - x] > N—[(N +2)Vi(x) + VVi(x) - x]
> £ [Vildix) - £ VP Vi)
2 A—(N+2)V

IV

max]
2-p

N+2
) , Yx e RV,

[V,
"LV
V (2Vl ,max
2
We conclude by taking d; = min{ ,(N + )V’O(zv’,";‘“) - } i=1,2.

Lemma 3.7. Assume that (VI1), (V2) and (F1)—(F3) hold. Suppose that (z, w) € H\{(0,0)}, then, there
is a unique ty > 0 such that (z,,, w;,) € M.

Proof. Let (z, w) € H\{(0,0)} be fixed. Define Y(¢) := I(z,, w,) on (0, c0). If

2 2 2 12
Y(t) 2 N 1f [M|VZ|2+M|VW|2]

1+2£2(2) 1+2f2(w)
N 4tf*(z) ,  Atfi(w) )
2 Jun [1 2Rt T ]
N +2

N 2N f [Vi(tx) 2 (2) + Va(tx) A ()]

N+2

2

—+

[VVi(1x) - xf(2) + VVa(tx) - xf>(w)]
RN
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- N fR F@f@.1fw) - a f [h(f(@). tf W) f(2) + g(2f @), tf W) f(W)]

R
=0.

Obviously,
YH=0 o

J(z,
(Ztt W) _ 0 & (z,w)e M.

From (V1), (V2) and (F2), it is easy to prove that ltl—%l Y() =0, Y(t) > 0 for t > 0 small enough and
Y(t) = —oo ast — +oo. This implies that Y () attains its maximum. Let (z,,, w,,) be the unique point at
which this maximum is achieved with 7, > 0 such that Y (z,) = 0 and (219> Wr) € M.

Now we prove the uniqueness. Indeed, if there exists another positive constant #; # f, such that
(21, wy) € M, ie., J(z,,,wy) = 0, then (3.3) and Lemma 3.2 imply

N+p _ N+p
1 0
I(Z119wt1) > I(ZZ()’ Wto) + —]\HI)J(ZII’WH)
+ p)L,
= I(Zt()’ Wl‘())
N+p _ N+p
0 1
> I(thwﬂ) + tN+p‘](Zt()7WI())

0
= I(Ztl s th)7

which is a contradiction, this finishes the proof.

Corollary 3.8. Assume that Vi(x) = V,«, i = 1,2 and (F1)—~(F3) hold. Suppose that (z,w) € H\{(0, 0)},
then, there is a unique ty > 0 such that (z,,, w,,) € M.

By Corollary 3.3 and Lemma 3.7, we have M # 0 and the following lemma.
Lemma 3.9. Assume that (V1), (V2) and (F1)—(F3) hold. Then

inf I(z,w) =m = inf max I(z;, wy).
M (Zw)EH\[(0.0)} >0

Proof. For any (z, w) € M, it follows from Corollary 3.3 and M c H \ {(0,0)} that

inf I(z, w) > inf I(z,, w,). 3.7
by @ w) (e (0.0)) (2, wi) 3.7)

On the other hand, by Lemma 3.7 there is a unique f, > O such that (z,,w,) € M, then

max Iz, wy) = 1(24 Wyy) > i/r\14f I(z, w), which implies
>

inf max I(z;, w,) > inf I(z, w). 3.8
@w)eH\{(0.0)) >0 (20 W) M @ w) (3-8)

(3.7) and (3.8) complete the proof.

Lemma 3.10. Assume that (V1), (V2) and (F1)—(F3) hold. Then
(i) there exists p* > 0 such that ||Vz||% + ||Vw||§ > p? for any (z,w) € M;
(ii) m = i}’\l/(f] > 0.

Electronic Research Archive Volume 31, Issue 4, 2071-2094.



2082

Proof. (i) For any (z,w) € M, we have J(z,w) = 0. By (F1l), (2.4), (3.4), Lemma 3.1 (3), (7),
Lemma 3.6 and the Sobolev embedding inequality, for any £ > 0, one has

N Y Y
2 AV2IE +19WB) + ZHF @y + 5 IO e
N N
<7 (V2 + 1I9wIE) + 2V @I + IV FO)IE)
= % f [(N +2)Vi(x) + YVi(x) - x1£22) + % f [(N +2)Va(x) + VVa(x) - x]f2(w)
RN RN

N 2 2 2f2(Z) 2 2f2(W) 2
SE(”Vlez + IVwll3) + fRN sz(z)lvzl + fRN sz(w)lvwl

! 1
i) ‘L;N [(V +2)V1(x) + VVi(x) - x]f*(2) + 2 fRN[(N + 2)Va(x) + VVa(x) - x]f*(w)

= fR [INF(f(@), fw)) + h(£(2), fWDF (@) + g(f (). fw))f(W)]

<Ciell f@i5 + Crall fw)ll; + CoCellzlz: + CoCellwlls:
<Ciellf@IB + CrellfWIB + C2C.S T IV2E + C2C.8 Vw3 .

1. Y1 Y2 .
If we choose & = Fmin{ 05 20, ﬁﬁ} (81 and B, are embedding constants), then

%uwné +IVWIR) + (5 = CiaBDIF @i, + 5 = CraBIF DI 59
<C2CS (VIR + 19w,
By a simple calculation, we can deduce that there exists p> > 0 such that
V215 + VWil > p%, Y(z,w) € M.
(i1) By (3.1) and (3.2), we can deduce that
(p-2Vi(x) = VVi(x)- x> 0,Yx e RY,i=1,2,
hty, )1 + g(11, T2)T2 — pF(11,72) =2 0,Y71, 72 € R,

Note that

1
I(Z, W) - N—-l-pJ(Z, W)

p 2 2 2
= (|IV + ||V +
2(N )(” Z”z ” W”z)

1
+—
2(N + p) Jrv

1
Y p(IIVf(z)Ili +IVLIR)

[(p - 2)Vi(x) = VVi(x) - x]f2(2)

2
+ m RN[(P = 2)Vao(x) = VVa(x) - x] f*(w)

» [A(f(2), W) f(2) + g(f(2), fF(W) f(w)

+

N+p
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- pF(f(2), fw)], Y(z,w) € M.

Then for any (z, w) € M, by (i) we can get

1
I(z,w) = I(z,w) — N—+pJ(Z’ w)
s _P=2
2(N + p)
2(N + p)
> 0.

AIVzll5 + IVwll3)

This implies that m = i/r&(f 1 >0.

Lemma 3.11. Assume that (V1), (V2) and (F1)—(F3) hold. Then m* > m.

Proof. If the conclusion is false, that is, m™ < m, then set x := m —m™ > 0 and there exists (z;’, ;)
such that .
(z7,wy) e M® and m™ + > > I1%(z7,wy). (3.10)

By Corollary 3.8, there is #, > 0 such that ((z"), , (W), ) € M. It follows from (3.10) that

K
m® 4+ = > 172, wy)

2
> I W)
> I((Z:O)t,(, (Wzo)t,()
>m=m" +«,

which is a contradiction. This completes the proof.
4. Proof of Theorem 1.1

Lemma 4.1. Assume that (V1), (V2), (FI1)~(F3) hold. If z, — 7, w, — w in H'(RYN), then

1(Z0, wn) = 1(Z,w) + (2, = Z, W, — W) + 0(1);
J(@Zn, W) = J(Z,W) + J(2, — Z, W, — W) + 0(1).

Proof. Since

1 1
Iz.w) =5 fN[IVZIZ +|[Vwl] + 5 fN[Vl(x)fz(Z) + Va(0) f2(w)]

R R

- LN F(f(2), f(w)),

it suffices to prove
f (Vzl? + [Vw,P) = f (VZP + Vi) - f (VG = DF + 190w, = WP) +0(1),  (4.1)
RN RN RN
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f Vi) (z,) = f Vi) @) + f Vi) f2(z, = 2) + o(1), (4.2)
RN RN RN
f Va(x) f2(w,) = f Va(x) f2 (W) + f Va(x0) f2(w, — W) + o(1), (4.3)
RN RN RN

fR (). fn) = fR R ) + fR F(G= 2 =) 4o, (44)

By the Brezis-Lieb Lemma,

f V(z, =2 = f Vzal® - f IVzl* + o(1),
RN RN RN

f IVOw, = W) = f [Vw,l? = | IV +o(1).
RN RN RN

Then we have (4.1). Note that by Lemma 3.1 (2), (6), (7) and the Young inequality, one has

1
P —7+2) = fAan—3)] = f dgf2(zn—2+t2)dt'
0 t

1
= '2f fn—Z2+2)f (zn—7+ tZ)Zdr'
0

<2-2%(z, - 2z + )
< Cl(8|zn - le + Cazz)-

Then by Lemma 3.1 (3), we can get
2@ =242 = [z =2 = POl < Crglz, = 2 + (C2 + C1CH)Z.
Define G,(x) := max{|f2(z, — 2+ 2) — [z, — 2) — f2(@)| = Ci&lz, — 77, 0}, which satisfies that
G,(x) - 0ae. inR",

0<G,(x) <(Cy + C,CZ

Hence, by the Lebesgue dominated covergence theorem, we have fRN G,(x) = 0asn — oo. By the

definition of G,,, we obtain

|f2(z" - Z + Z) - fz(Z” - Z) - fz(z)l < f 2 . 2%8|Zn - le + f Gna
RN RN RN

which implies that

LN 2@ = Az =2 = @)1 = o(1),

thus gives (4.2). Analogously, we get (4.3).

To prove (4.4), we claim that

fRN |F(fzn), fWn)) = F(f (20 = 2), fWn = W)) + F(f(2), fOW)] = o(D). (4.5)
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Define
Z(z,w) = F(f(2), f(w)),
then by (F1) and Lemma 3.1 (3), (7), we have
Z(z,w) . F(f@, f0) (@), fm)IP _0

1m I 1m ) 3
@m=00 |z, w)I* =00 |(f(2), fW))] |(z, wl

and

Z(z,w) . F(f(2,fw) 1(f@, fw)IF*
m = h . —
ewl=eo [(z, WIF ewi=e |(f(2), fW)EF |(z, w)I*

0,

from which we can deduce that, given any & > 0, there exists C, > 0 such that for all (z, w) € R?,

Z(z, W)l < &z, W) + 1z, w)IP) + Colz, W',

Iz, W)l < &z, W)l + 1z w)F ™) + Celz w) ™,

8z w)l < &z W)l + 1z w)P ™) + Cel @ w) ™,

(4.6)

4.7)

(4.8)
4.9)

where VZ(z,w) = (h,8) and r € (2,2). By (4.6)—(4.9), the Mean value theorem and the Young

inequality, one has
|Z(Zn —Z+Z,wy _W+W)_Z(Zn —Z, Wy —W)|
<|Z(zy =2+ 2w, =W+ W) = Z(zy — 2w, — W+ W)
+ |Z(Zn _Z’Wn _W+W)_Z(Zn _Z’Wn _W)|

1 1
Sfil(zn—2+t2,wn—w+v71)2dt‘+‘fg(zn—Z,wn—W+tW)vT/dt'
0 0

1
< f [sl(zn Czt o wllEl + el — 2+ ZwP T+ Culan — 4 15, wn>|"1|2|]dr
0

1
+ f [s|<zn Wy =+ )]+ 81z — 2w — W+ 1)
0

+ Col(zn — Z, Wy — W + W) ] |dr
<Cse(lz, — 2 + Wy = W + |zu = 2 + 1wy = W17 + 22 +w) + 127 + w,*
+ W+ W) + CaCullzy — 217 + Iy — W7 + 27 + [wal” + W)
and

|Z(Zn’ Wn) - Z(Zn - Z’ Wy — W) - Z(Z’ W)l
<|Z(x, 20, Wn) — Z(X, 20 — 2, Wy — W)| + |Z(x, Z, W)|
<Cse(lzy — 21 + Wy — W1 + 120 = 21F + w, =W + 22 + w2 + 7 + w,l*

+ W+ W) + CsCollz, — 21 + Iy — W™ + 27 + Wl + []").
Define the function

H,(x) =max{|Z(z,, W) = Z(zy = Z, Wn — W) — Z(Z, W)| = Cs&(|z, — 2> + w, — W]
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— 2% 2% — _
+ |Zrz - Zl + |Wn - Wl ) - Cécs(lzn - er + |Wn - er)’ O},

which satisfies that
H, —» Oa.e.in RN,
0 < Hy(x) < Cse@ + w2 + 217 + wl* + W + W) + CeCo(Z" + Wil + [W]").

Then similar to the proof of (4.2), one can get (4.5).
The first half of the proof of the lemma is completed. Similarly, we can prove the second half of the
lemma.

Lemma 4.2. Assume that (V1), (V2) and (F1)—(F3) hold. Then m is achieved.

Proof. Let {(z,,w,)} € M so that I(z,,w,) — m. Then, as the proof in Lemma 3.10, we have

p—2 2 2
=1 s Wn) = 1(Z, W) — J(Zn, W) 2 Vn + IV nll2)s
m+ o(1) = I(z,, wn) = 1(2p, Wy) N7 op (Zn> Wn) 2(N+p)(” Zally + [[Vwall3)

which shows that {||Vz,|»} and {||Vw,||,} are bounded. In view of (3.9), we have
L@, + ZEF OO
<C\CSTE (VIR + VwilB),

which implies that {|| f(z)||z: &y} and {[|f (W)l vy} are bounded. Then it follows from Lemma 3.1
(9) and the Sobolev embedding inequality that

[a=] a+[ 2
RN lznl<1 [zn|>1
2 2%
<G f P + f ]
|Zn|S] RN

< Cillf @R+ S~ TIVzl2,

which shows that {z,} is bounded in H'(R"). Similarly, {w,} is bounded in H'(R"Y). Up to a
subsequence, there exist 7, w € H '(RN) such that

Ze = %, w, = win H'(RY);

Zw =% w, o> win L (RY), 2 <5 <2%

Zn— 7, W, » w ae. inRY.
If (Z,w) = O, then
lim f [Vieo = Vi1 (z0) = 0,i = 1,2. (4.10)
RN

In fact, it follows from (V1) that for any € > 0, there exists R > 0 such that
[Vi(x) — Vil < &, Y|x| = R.
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On the one hand, we have

‘ f Vi = Vi1 2(20)
[x|<R

On the other hand, it is easy to check that

< 2Vi,oo f Zﬁ.
|x|<R

lim [Vieo — Vi(x)]zﬁ = lim Ef zﬁ — 0asn — oo.
[x|>R

n—oo IxI>R n—oo

It is clear that (4.10) holds. Now we prove

lim | VVi(x) - xf3(z,) =0,i=1,2. 4.11)
n—oo RN

+00
Let A, = {x € R? : [VVi(x) - x| > &}, by the Openset construction theorem, A, = |J(A, N B,), then

n=1
we have lim meas(A, N B,) = meas(A,) < +oo, which implies
lim meas(A. N B;) = 0. (4.12)
From (3.1) we have
lim Qi(t, x) > 0, Vx € RN i=1,2,
—
it .
im 2809 5 0 vy e RN i= 1,2,
t—00 tN+p
then we can obtain —(N + 2)Vi(x) < VVi(x) - x < (p — 2)V;(x), this implies
IVVi(x) - x| < C4Vi(x) < C4Vio := M. (4.13)

By Lemma 3.1 (3), (4.12), (4.13) and the Holder inequality, for large R we have

lim IVV (x) - xlf*(z0)

n—00

n—oo

R

= lim f [VVi(x) - xlz +f IVVi(x) - xlz +f IVVi(x)-xlz,%
=L Uy BSNA, BSNAS

< lim M f o+ M z + f ez
=00 BSNA, BSNAS

slimM 2+M z,,+sf zﬁ]
n—eol B BSNA, RY

0 ) 2\ ,
<lim|M | z,+ +M( 1) ( z,?’*z) +& Zn]
n—=eel B BSNA, BSNA, RY

< lim Mf Z’21 + M(meas(Bj ﬁAg))%llznlli* + 8f Zi]
Br RV

< lim [VVi(x) - xlzn
N

n—oo |
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=0.

Next, we claim that there exist 61, 6, > 0 and {y,, }, {y,,} € R" such that - )zﬁ > 0y, fBz(y )wﬁ >
n )
0,. Otherwise, by Lions’ concentration compactness principle lemma, we know

ZosWn — 0in L'(RM), Vr € (2,2%). (4.14)

Under (F1), (F2) and Lemma 3.1 (3), for any € > 0 and some p € (2,2 -2%), there exists C, > 0 such
that

fR i [A(f(2), FWNf(2) + g(f(2), FWNf (W) + F(f(2), fF(w))]
<Cselllf @I + IFWIR] + CsColllzll3. + lwll3.
FURIBZ + W2+ 121 + IwlZ].
By (2.4), (3.4), (4.15) and Lemma 3.6, one can get

(4.15)

N

2 dl 2 dZ 2
2Pt Ellf(zn)ll + Ellf(wn)ll

<TIVEIB + IVl + IV FEIB + IV 703
; % (N + V100 + YV (0 - 21/2(z0) + % f [(N + 2Va(x) + TVa(x) - €1 20m)
RN RN

212(z,) 5 2f2(w,)
v1+2 f%z,,)lvz”l " fRN 1 +2£2(w,)

1 1
v f [V + Vi) + TV () - ) + 3 f [N + 2Va(x) + VVa(x) - x1f20m)
RN RN

N N
<= IVzalls + =1Vl + f IVw,|*
2 2 o

=) INF(f(zn), fWn)) + (f(zn), fW)) [ (2n) + &(f (2n), fWn)) f(Wy)]
<(1+ N)Cselllf @Il + 1 w)lE] + (1 + N)CsCelllzally: + lwall3-

2:2% 2:2*
+llzally 2 + Wil + lzallh + lwallP],

which contradicts to (4.14).
If we set ,(x) = zu(x+Yn,), Wa(x) = wa(x+yy,), then we have ||Z|g1 gy = llzallz @yy and (Wl gy =
[Wallg gy By (2.1), (2.4)—(2.6), (4.10) and (4.11), we have

I7(zp, wy) = 125, w,) — m,
Jm(Zna Wn) - J(Zn, Wn) =0.

Then
I7(Zp, W) = m, J¥(Z,,W,) = o(1), (4.16)

f AP > 6, f W2 > 6. @.17)
B1(0) B>(0)

Moreover, there exist Z, w € H'(RY) \ {0} such that, passing to a subsequence,
% — 2 W, = Wwin H'R");
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i =% W, > win L

RM), 1 <5< 2%

Z, > % W, > wa.e. on RY.

Let (r,, s,) = (2, — 2, W, — W). Then from (4.16) and Lemma 4.1 we have

I7(Z, W) = 172, W) + I7(1y, 50) + 0(1), (4.18)
JZ (G, W) = JZ(@EW) + 7 (1, 54) + 0(1). 4.19)
Define .
Y= (z,w) = I7(z,w) — ——J%(z,w), Y(z,w) € H. (4.20)
N+p

From (4.18)—(4.20), one can get
Yy, sp) = m—¥Y7(Z, W) + o(1), 4.21)

JZ(ryy sp) = =J7(2, W) + 0(1). (4.22)

If there exists a subsequence {(7,,, S,,)} of {(r,, s,)} such that (r,,, s,,) = 0, i.e., r,, = 5, = 0, then we
have
I°EZ,w)=m, J®(EZ,w) =0. (4.23)

Next, we assume that (7, s,) # O. We claim that J*(Z,w) < 0. If not, that is, J*(Z, w) > 0, then it
follows from (4.22) that J*(r,, s,,) < 0 for n large enough. From Corollary 3.8, there exists ¢, > 0 such
that ((r,,),,, (sn),,) € M for large n. By (4.20)—(4.22), Corollary 3.4 and Lemma 3.11, one has

1
m =Y, W) +o(1) =¥ (r,, 5,) = I7(ru, $0) = ———J"(Fn> $n)
N+p
N+p

t
IOO n . n - = Joo ns On
> I7((rn)s,> (Sn)r,) Ntop (Fns Sn)

>m> >m,

which is a contradiction with W (zZ, w) > 0. Thus, J*(Z,w) < 0. By Corollary 3.8, there exists f,, > 0
such that (Z,_, W, ) € M>. Moreover, by using (4.15), (4.21), the Fatou’s lemma and Lemma 3.11 we
have

m = lim I°(Z,,,)

1
=1 7 An, An_ JZ Ana An
B [ o) = 3Gt
1
Zloo/\,/\_ Joo/\,/\
(Z, W) N+p (Z,W)
N+p

2 I‘X’(%tm’ Wtoo) - Noo+ pJOO(27 W)

>m™ >m,
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which shows that (4.23) holds also. By Lemma 3.7, there exists 7 > 0 such that (3;, w;) € M. By (V1),
Corollary 3.5, (4.26), we have

m < 1(Z;, Wp) < 17, Wy) < IT(Z, W) = m,
which implies that m is achieved at (Z;, W;) € M.

If (z,w) # O. In this case, similar to the proof of (4.23), by using I and J instead of /* and J~, we
can prove that I(z, w) = m, J(Z,w) = 0.

Proof of Theorem 1.1. Let (z, w) € M be a minimizer of the functional |». Then, from Lemma 3.9,

one has

I(Z,w)=m=  inf  maxI(z,w,).
@ W) (@w)eH\{(0,0)} >0 (21 wi)

Suppose by contradiction that (Z, w) is not a critical point of /, then one can find ¢, ¢, € C(RY)

such that
I'@Z W), (@1, 92))

= | (ViVe; + VitVe,) + f Vi) f@f @1 + Va(x) fW) f'(W)e2]
RN

RN

- f [R(f@, SN @ + 8(FQ@), fORDS (W]

R
<-1.

We choose small € > 0 such that
)= _ 1
<I (Zt + O-SOI,WI + 0-902)7 (9017 ()02)> < _55 |t - 1|7 |O-| < &,

and introduce a cut-off function 0 < & < 1 satisfying &) = 1 for [ — 1| < £ and §(r) = O for [t — 1] > &.
For ¢ > 0, we define

Zl‘a |t - 1| > &,

m) =19 _
i +eler, t—-1]<e,
) = Wy, lr—1] > &,
A W+ eé()gr, t—1] <e.

Then 7;(¢) is a continuous curve in the metric (H'(R"), d), and eventually choosing a smaller &, we
get dHl(RN)(T]i(t), O) > 0 for |t - 1| <g, where dHl(RN)(l/l, V) = ”M - V”HI(RN).
Next, we claim that sup I(n;(¢), 7,(t)) < m. Indeed, if |t — 1| > &, then by Lemma 3.2, for all 7 > 0

>0
we have

1 1
I(n1(D),n2(D) = 1z, wy) < 1(Z, W) — EQ(t’ ZLw)=m-— EQ(I, Z,w) <m.

If |t—1| < &, ¢t > 0, by using the mean value theorem to the C'-map [0, &] > o I/(Z,+a-§(t)(pl, w,+
oé(t)ey) € R, we find, for a suitable & € (0, €),

11 (1), () = 1(Z + TEB)p1, Wi + TE)p2)
= 1z, W) + (I @ + FED@1, Wi + TEDP), (D1, ED)p2))
1
<IE,wy) - if(f)

< m.

(4.24)
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Define Wy(7) := J(1(2), n2(2)). It follows from (F1), (F2) that there exist T, € (0, 1) and T, € (1, 00)
such that J(Z7,, wr,) > 0 and J(Zr,, Wwr,) < 0. Then we observe

Yo(T1) = Ju(T1), n(T1)) = JZr,, wr,) > 0
and

Yo(T2) = J(1(T2), mo(T2)) = J(Zr,, wr,) > 0,

which, together with the continuity of W (#) on ¢ € [0, c0), imply that there exists #, € [T}, T>] such that
J(n(ty), na(tp)) = 0. Thus, we have

(M1 (t0), m2(t0)) N M £ 0
and
I(n1(20), m2(29)) < m.
This contradicts to the definition of m.

To conclude, there exists (z, w) € M such that

IZ,w)=m = inf  maxI(z,w,), I G w)=0.
@w)eH\{(0,0)] >0

This shows (Z, w) is a ground state solution of (1.1) such that I(z, w) = i/rétf I1>0.

The proof is completed.
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