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Abstract: In this paper, a complete optimization design verification process is proposed and a novel 
structure of connecting brackets is presented, solving the fatigue failure of chassis connecting 
brackets operating on harsh roads. First, an endurance road test and fatigue life analysis were applied 
to the truck equipped with the original brackets, verifying the fatigue damage of the structure. Based 
on the solid isotropic material with penalization method, a novel lightweight connecting bracket 
layout was obtained by using the method of moving asymptotes (MMA) for topology optimization 
under multiple working conditions with multiple performance constraints. Moreover, the derivatives 
of objective and constraint functions concerning design variables were applied for the MMA. 
Considering manufacturability and functionality, the improved model based on the topology 
optimization results was further optimized by size optimization. Finally, fatigue life analysis and an 
endurance road test were conducted using the optimal design. Compared with the original structure, 
the novel brackets showed better stiffness, strength and fatigue performance while reducing the total 
mass by 15.2%. The whole optimization and validation process can provide practical ideas and value 
for developing multi-performance suspensions in the pre-product development stage. 
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1. Introduction  

As a crucial method to improve the efficiency of freight transport, globally, heavy-duty 
transportation has become the main development direction for freight transport [1]. With the 
burgeoning prosperity of the long-distance freight and urban logistics industry, the demand for cargo 
trucks is gradually increasing. As shown in Figure 1, the connecting brackets in blue are an essential 
connecting part of the chassis in the cargo truck, bearing the load transmitted by the road excitation. 
However, the occurrence of harsh road conditions in heavy-duty transportation is inevitable. 
Therefore, to mitigate the impact on the vehicle and ensure safety, obtaining a lightweight structure 
with high performance via a complete design optimization and verification process is the key to the 
performance development stage of the vehicle suspension. 

 

Figure 1. Model of connecting bracket. 

Topology optimization does not involve specific structural dimensions, but it can suggest the 
best conceptual design solution [2]. However, it needs to be modified appropriately according to 
engineering rationality as a conceptual design result. The improved design solution is then optimized 
by size to obtain the optimal structure. The research of topology optimization in continuum structure 
can be traced back to 1981 [3], i.e., when the microstructure concept was first introduced into the 
optimization problem by minimizing the compliance of the solid plate. Cheng and Olhoff employed 
the plate thickness function as the design variable and took both maximum and minimum allowable 
thickness values into account. Bendsoe and Kikuchi [4] proposed a homogenization method for 
structural topology optimization, describing the structural topology in terms of microstructural 
concepts and homogenization methods. The variable-density method transforms the topology 
optimization problem into an optimal distribution of materials problem, inspired by the 
homogenization method. Bendsoe and Sigmund [5] conducted an in-depth study of material 
interpolation models for variable-density methods by theoretically investigating various material 
interpolation models for different variable-density methods. Martínez [6] discussed the theoretical 
convergence of the solid isotropic material with penalization (SIMP) method for topology 
optimization. Stolpe and Svanberg [7] presented the ramp approximation of material properties 
method to find the optimal distribution of two linearly elastic materials such that the compliance was 
minimized. To minimize the compliance, Zhang and Ren [8] proposed an optimality criteria method 
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for the topology optimization of continuum structures based on SIMP. The examples showed that 
the algorithm had good convergence and application values. Zuo et al. [9] presented a new sensitivity 
reanalysis of static displacement for arbitrary changes of design variables; it has great potential 
application in the gradient-based structural optimization. Zuo et al. [10] developed a modified 
topology optimization method by adding manufacturing and machining constraints to the topology 
optimization formulation while applying the MMA and wavelets to solve this optimization problem. 
Gao et al. [11] developed an adaptive continuation method for the buckling-constrained topology 
optimization of continuum structures by using a SIMP model. Besides a mass constraint, a cost 
constraint was also considered in the compliance minimization problems. Xu et al. [12] proposed a 
novel solution to the stress-constrained multi-material topology optimization problem based on the 
ordered SIMP method; an adjoint sensitivity analysis was performed and the optimization problem 
was solved by using an MMA optimizer. The variable-density method has also been widely used for 
optimization problems in various fields [13−15]. 

In the past few decades, topology and size optimizations methods have been widely used to 
redesign and achieve better performance of vehicle components, such as stiffness, strength, vibration, 
and fatigue. Liu et al. [16] explored the topology optimization and sizing optimization in the 
lightweight design of frames for energy-saving vehicles, aiming to mitigate the stress concentration 
and excessive local deformation while reducing the frame’s weight by more than 15.0%. Torstenfelt 
and Klarbring [17] developed a structural optimization method for a single product which was 
extended for the optimization of a family of products to allow size, shape, and topology optimization 
to be accomplished simultaneously. Wang et al. [18] applied topology optimization in the 
optimization design of the traction battery enclosure; they combined both the weighted compliance 
and the mean frequency to a single objective while constraining the volume to lightweight during 
the optimization process. Cho et al. [19] applied CFRP-AL honeycomb sandwich composites to the 
under-frame and roof structures; the size optimization method was subsequently applied to derive a 
lightweight composite hybrid carbody design. Lu et al. [20] proposed a comprehensive solution for 
bus frame design to bridge multi-material topology optimization and cross-sectional size 
optimization; they used SIMP to transform the multi-material selection problem into a pure topology 
optimization problem. Bai et al. [21] proposed a novel bridging method and applied it to a real 
automobile body example to transform the topological results into a lightweight, thin-walled frame 
structure that satisfies the stiffness and manufacturing requirements. Ma et al. [22] solved a 
lightweight design problem by utilizing the methods of topology and thickness optimization to 
redesign a new turnover frame. Sun et al. [23] proposed a multi-objective multi-material topology 
optimization method to determine the layout of welding lines for tailor-welded blank structures. The 
static stiffness and dynamic frequency criteria were addressed for multiple load cases by using 
compromise programming and mean frequency. Zhang et al. [24] applied topology optimization and 
size optimization to the front-end structures of the body-in-white to simultaneously improve the 
static stiffness and crashworthiness. Munk and Miller [25] mentioned that constraining the strength 
of components through topology optimization could substantially improve component load capacity 
and fatigue life. 

In this paper, a complete optimization and verification process is proposed; it offers practical ideas 
and value in the early stage of product development. In the optimization stage of the process, topology 
and size optimization are used to obtain new connecting brackets with multiple performance 
constraints. In Section 2, the vehicle endurance road test and fatigue analysis that were applied to the 
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original bracket are discussed; we show that the bracket was damaged more severely during off-
roading, so loading boundary conditions were extracted based on the dynamic load spectrum for the 
subsequent optimization. The SIMP method is demonstrated, and the design sensitivity is calculated 
in Section 3, while the size optimization is presented based on the topology optimization results. The 
optimal structure is validated in Section 4, and conclusions are drawn in Section 5. The flowchart is 
shown in Figure 2. 

 

Figure 2. Flowchart of optimization design. 

2. Finite element model of the connecting bracket  

2.1. Finite element model 

The symmetrical structures named connecting brackets are the major connecting parts of the 
chassis of the three-axle cargo truck; they are fixed to the frame by multiple bolts and secure the 
gearbox housing. The original finite element model was discretized with tetrahedral elements and the 
element size was set to 10 mm, the material parameters of which are shown in Table 1. As shown in 
Figure 3, the triangles illustrate that the nodes have zero degrees of freedom. The loading positions are 
the suspension hardpoints with the number on the connecting bracket. In the figure, the suspension 
system application locations include coil spring loading points 1 and 6, Y-shaped upper and lower 
control arm loading points 2–5 and 7–10 and loading points of the wheel side tie rods 11 and 12.  
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(a) Bracket with gearbox housing    (b) Bracket with control arm 

Figure 3. Original finite element model. 

Table 1. Material properties. 

Symbol Parameter for metal material Value 𝐸  Young’s modulus 216,000 MPa 𝜎  Yield strength 1189 MPa 𝜎  Tensile strength 1308 MPa 
  Poisson’s ratio 0.3 𝜌  Density 7900 kg/m3 

2.2. Endurance test and fatigue analysis procedure 

The connecting brackets are the main chassis connection components; their stiffness, strength 
and fatigue life have a significant impact on the safety of the whole vehicle. Therefore, a vehicle 
endurance road test was applied to a three-axle truck with the original connecting bracket. 
Furthermore, the fatigue life of the original connecting bracket finite element model was predicted, 
and the accuracy of the fatigue life analysis results was verified through the experimental results of 
bracket damage locations. 

The fatigue life is commonly calculated by considering the alternating and mean stresses, which 
can be generated by the superposition of the unit static load stress field and load spectrum in quasi-
static fatigue analysis. The effective loading cycles are extracted by utilizing a suitable cycle counting 
method, such as the uniaxial rainflow cycle counting method and the multiaxial cycle counting method 
respectively proposed by Lee et al. [26] and Wang and Brown [27]. Two fatigue analysis methods are 
commonly applied in variable amplitude multiaxial loading. One is the equivalent stress or strain 
method, and the other is the critical plane method. The fatigue damage parameters are defined based 
on the cumulative equivalent stress or strain values from a multiaxial rainflow reversal counting 
method in the equivalent stress or strain method [26]. Jeong et al. [28] employed an equivalent stress 
method based on the multiaxial cycle counting method and Basquin relation to consider the transient 
stress history in a multiaxial stress state. In this paper, the stress response of the original structure at 
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the loading points under unit loads of six degrees of freedom (unit forces and unit moments in three 
directions X, Y and Z) was analyzed by using the finite element method. The stress response spectra 
at hardpoint positions were acquired by combining the loading spectra acquired from the endurance 
road test and unit loads results. The load spectra are the curves of forces and moments versus time in 
the X, Y and Z directions. The relationship between cyclic stress amplitude and average stress was 
corrected by applying the Goodman curve via the multiaxial cycle counting method. Furthermore, the 
cumulative damage value D was obtained by adopting the fatigue damage accumulation theory based 
on Miner’s rule [28] under the off-road load spectrum. After applying the off-road load spectrum, the 
fatigue damage cloud under the effect of a cycle load spectrum was constructed as presented in 
Figure 4. In the figure, the fatigue damage becomes significantly extreme in the corner positions. The 
fatigue cumulative damage value D converted to target distance is as follows: 𝐷 = 𝐷 =          (1) 

where D0 is the maximum value of fatigue damage under a single cycle in Figure 4 and s0 represents 
the mileage corresponding to a cycle load spectrum, which was 3.7 km in this study; st is the target 
mileage, and it was set to be 6000 km; N represents the fatigue life corresponding to a single-cycle 
load level. 

The cumulative damage value D of brackets reached 1.938, 2.822 and 7.049 × 10-3, respectively, 
indicating a high probability of fatigue damage to the bracket. The cumulative damage D should be 
lower than 1. During the road test for the original connecting bracket, the results showed significant 
cracks below the bolt holes of the bracket-frame connection, as shown in Figure 4(a). Furthermore, 
the part below the connecting bolt hole of the bracket and the frame had been broken, as shown in 
Figure 4(b). Thus, the test results of finite element analysis verified the fatigue damage.  

 

(a) Bracket in 1st axle 

Continued on next page 
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(b) Bracket in 1st axle     (c) Bracket in 3rd axle 

Figure 4. Fatigue damage under the effect of a single-cycle load spectrum. 

The endurance road test results and fatigue life analysis showed that the original design of the 
connecting bracket structure did not meet the engineering requirements, and that the bracket fatigue 
was damaged. Therefore, it is necessary to design novel connecting brackets with higher strength, 
higher stiffness and a lighter weight to guarantee structural performance under harsh driving road 
conditions. The optimization process should first define the topological space that envelops the bracket 
structure. The new topology model is thus given in Figure 5; it has a larger design area below, and the 
lower end of the bracket is connected to the lower Y-shaped control arm. Also, the new structure 
increases the design space at the bottom of the gearbox housing to form an integral bridge box 
connecting bracket. 

 

(a) First axle      (b) Second axle 

Continued on next page 
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(c) Third axle 

Figure 5. Topology model of the connecting bracket. 

2.3. Loading boundary conditions 

Haftka et al. [29] mentioned that equivalent static loads were calculated by multiplying some 
dynamic factors by dynamic loads in engineering applications. The structure was optimized based on 
these loading conditions. The direction of the equivalent static load is generally the same as the 
direction of the dynamic load, and the dynamic factors should be determined according to the dynamic 
effects, such as the peak of the curve in the time domain and the duration of the peak. The dynamic 
loads in this study were obtained from the vehicle endurance road test, independent of the design 
variables. The converted load sets were applied as external loads according to the engineering 
experience, and this changed a dynamic loading into the multiple static loading conditions shown in 
Table 2, while also considering the actual situation to add the torsion condition. Under each working 
condition, force and moment in the non-coordinate axis direction were applied at each loading point, 
with load magnitudes ranging from 103−107. 

This study considers that the vehicle is affected by loads of the above five working conditions 
under off-road conditions. The maximum acceleration of the vehicle under different working 
conditions was determined by analyzing the road spectra derived from the road test and engineering 
experience. Then, by multiplying by the safety factor, the limit loads under different working 
conditions were finally obtained for analysis and optimization. For example, in the case of the bumping 
working condition in Table 2, the vertical acceleration value of 3.5 g was first determined and 
multiplied by a safety factor of 1; then, we obtained an FZ of 3.5Z0. Z0 is the support force of the 
ground on the wheel under static and stable conditions. FX, FY and FZ are the forces in X, Y, and Z 
directions under the vehicle coordinate system. From the safety perspective, the effect of the equivalent 
static loads on the bracket must be equal to or greater than the effect of the dynamic load on the bracket 
at any critical moment. The static loads were applied to the original bracket finite element model for 
stress analysis to validate this boundary condition. The analysis results are shown in Figure 6. The 
stress concentration damage location is consistent with the fatigue cumulative damage analysis and 
test results.  
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(a) Bracket in 1st axle     (b) Bracket in 2nd axle 

 

(c) Bracket in 3rd axle 

Figure 6. Stress amplitude distribution. 

Table 2. Vehicle limit working conditions. 

Working 
condition FX FY FZ Description 

Bumping 0 0 3.5Z0 Vertical acceleration: 3.5 g, safety factor: 1 

Driving 0.7 × 
2.5Z0 

0 2.5Z0 
Vertical impact acceleration: 2.5 g, longitudinal 
acceleration: 0.7 g 

Acceleratio
n steering 

0.4 × 
2.0Z0 

0.3 × 
2.0Z0 

(1 + 2.0 × 
0.3) × Z0 

lateral acceleration: 0.3 g, driving resistance: 0.4 g, 
vertical impact acceleration: 1 g, safety factor: 2 

Compound 1 g 0.4 × 
2.5 g 2.5 g - 

Torsion - - - The front suspension is applied; 6° of torsion angle to 
test the cockpit 
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To optimize the structure to achieve better performance, the connecting bracket should meet the 
following requirements. 

1) To ensure the safety and durability of the product, the fatigue life analysis of novel connecting 
brackets should be conducted and verified by a vehicle endurance road test. 

2) The connecting bracket should have high overall stiffness, and the deformation of loading 
points under optimized conditions should not be greater than the empirical displacement value of the 
original casting under harsh extreme loading conditions. According to the different working conditions, 
the maximum deformation at loading points does not exceed a 0.9−3 mm range. 

3) Considering the dynamic performance of the structure and, according to the peak response 
curve of the endurance road test, the first-order constraint mode of the optimized connecting bracket 
should not be less than 150 Hz. 

4) The connecting bracket should maintain enough strength to avoid fatigue failure. A simple 
empirical formula should be used to calculate the fatigue strength: σ1 = 0.27(σs + σb), where σ1 is the 
fatigue strength, σs is the yield strength, and σb is the maximum tensile strength [30]. The support was 
made of special steel, as listed in Table 1. Therefore, the value of σ1 was 650 MPa in this study. 

3. Optimization  

3.1. Topology optimization 

3.1.1. Methodology 

The material interpolation model plays a significant role in topology optimization, which is the 
basis for most subsequent optimization methods. The SIMP method is based on isotropic materials and 
artificially assumes some correspondence between the density of the element and the physical 
properties of the material [31]. The relative density of each element is used as the design variable x. 
Each element has a unique design variable in the interval [0, 1], which makes the procedure simple to 
implement and computationally efficient. Based on the definition of the SIMP method, the constitutive 
material matrix of element i can be expressed as follows: 𝜌 = 𝑥 𝜌𝐄 = 𝐄 + 𝑥 (𝐄 − 𝐄 )       (2) 

where xi is the relative density of element i and 𝜌  is the actual structural material; 𝜌  denotes the 
corresponding material density of relative density. E0 is the constitutive matrix of the artificial 
material that is required to avoid singularity; E represents the constitutive matrix of the real physical 
quantity of the material. Here, xi is regarded as a topological variable and p is the penalization 
parameter, which serves to penalize the intermediate density values when the values of the design 
variables are between (0, 1) so that the intermediate density values gradually converge to the 0/1 ends, 
enabling the topological optimization model of continuous variables to approximate the original {0, 1} 
discrete variable optimization model. 

According to the principle of minimum potential energy, the stiffness matrix can be calculated 
as follows: 𝐊 = ∑ 𝐁 𝚬 𝐁 𝑑𝑣        (3) 
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where K is the global stiffness matrix and 𝐁  is the strain-displacement matrix of element i, as defined 
by derivatives of the element shape functions; 𝑣  is the volume of element i. 
Similarly, the mass matrix can be obtained as follows: 𝐌 = ∑ 𝜌 𝐍 𝐍𝑑𝑣         (4) 

where N is the element shape function matrix. 
However, numerical instabilities tend to occur in the topology optimization of continuum 

structures, resulting in common problems such as mesh-dependence and checkerboard patterns in 
classical density-based topology optimization [32]. To obtain an optimal structure with clear 
boundaries, the topological sensitivity is filtered with a density-based filtering technique. For the 
optimization objective and the constrained sensitivity, the new topological sensitivity can be calculated 
as follows: = (𝑥 ) ∑ ∑ 𝜔 𝑥        (5) 

where 𝜕𝑓/𝜕𝑥   is the topological sensitivity of the response function f with respect to the design 
variable xi in element i; 𝜔  is a weighted function, which can be calculated as 𝜔 = 𝑟 − 𝑑𝑖𝑠𝑡(𝑖, 𝑘)        (6) 

where 𝑟  is the filter radius and 𝑑𝑖𝑠𝑡(𝑖, 𝑘) denotes the distance between the central coordinates of 
element i and element k. 

3.1.2. Mathematical formulation of optimization 

In the definition of the optimization problem, the objective is to minimize the structural volume 
while constraining structural strength, stiffness and low-order frequency under the five working 
conditions in order to meet the lightweight requirement. The initial values for all of the topological 
variables were set to 0.5. Accordingly, the design problem can be formulated as follows: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧find: 𝐱 = [𝑥 , 𝑥 , 𝑥 , … , 𝑥 ]

Minimize: Volume Fraction(𝑥) = ∑𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐊𝐔 = 𝐅 , 𝑙 = 1,2,3 … 5
                   (𝐊 − 𝜔 𝐌)𝛗 = 𝟎
                   𝜎 , ≤ 𝜎 , 𝑖 = 1,2,3, … 𝑛; 𝑙 = 1,2,3 … 5
                   d ≤ 𝑑 , 𝑗 = 1,2,3, … 12
                   𝜔 ≥ 𝜔
                   𝑥 ∈ [0,1]

    (7) 

where V0 is the total volume of the topology space, 𝜎 ,  is the von Mises stress of the element i under 

the lth working condition, 𝑑   is the displacement amplitude of the jth loading point under the lth 

working condition and 𝜔  is the kth constrained mode of the structure. 
The MMA [33] is employed here to find the optimal solution to the defined optimization problem. 
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The convergence criterion of the MMA is that the maximum difference of the design variables in the 
last two consecutive iterations is less than the given tolerance, denoted as follows: ‖𝑥 − 𝑥 ‖ ≤ 𝜍         (8) 

where 𝑥   denotes the vector of design variables at the    iteration and 𝜍  (= 0.005 here) is the 

prescribed convergence tolerance. 

3.1.3. Sensitivity analysis 

Sensitivity analysis is an essential part of the gradient-based topological optimization method 
since it is required to provide gradient information to the mathematical programming algorithm to 
solve the optimal solution. 

For modal sensitivity [34], 𝜔  denotes the eigenvalue of the kth-order constrained mode of the 
structure, and the equation of motion is as follows: (𝐊 − 𝜔 𝐌)𝛗 = 𝟎        (9) 

where M represents the overall mass matrix and 𝛗𝐤 is the corresponding vibrational mode of the kth-
order mode. Equation (9) is differentiated with respect to the design variables xi, as follows: (𝐊 − 𝜔 𝐌) 𝛗 + 𝐊 − 𝜔 𝐌 𝛗 − 𝐌𝛗 = 𝟎    (10) 

Multiply 𝛗  and orthogonalize M on the left side to obtain the modal sensitivity: = 𝛗 𝐊 − 𝜔 𝐌 𝛗       (11) 

For displacement sensitivity [35,36], full differentiation of the equation 𝐊𝐔 = 𝐅 is required: 

𝐊 𝐔 + 𝐊 𝐔 − 𝐅 = 𝟎𝐔 = −𝐊 𝐊 𝐔        (12) 

A virtual unit load is introduced here, and only the component corresponding to the jth node in 
this load vector is 1, while the rest of the components are 0. The following deduction can be performed: 𝑈 = 𝐅 𝐔= 𝐅 𝐔 = −𝐔 𝐊 𝐔, 𝑤ℎ𝑖𝑙𝑒 𝐊𝐔 = 𝐅      (13) 

For the displacement 𝐮 = (𝑢 , 𝑢 , 𝑢 ) in the non-coordinate axis direction, 𝑢 , 𝑢  and 𝑢 are 
the components of the displacement 𝐮  on the X, Y and Z axes, respectively. The sensitivity of the 

displacement amplitude 𝐮 = 𝑢 + 𝑢 + 𝑢  is derived as follows: 
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                        (14) 

For the stress sensitivity [37−39], the following interpolation scheme can be performed for the 
elemental stress to avoid the singular solution problem that occurs during stress optimization: 𝛔 = 𝑥 𝐄 𝐁 𝐮         (15) 

where 𝐁   is the strain-displacement matrix of element i at the integral point and q is the stress 
interpolation penalty parameter; q is equal to 0.5 here. 

To evaluate the global maximum stress, the P-Norm function is used here to describe the stress 
of the structure, thus circumventing the constraints on the stress of each element. The global maximum 
von Mises stress can be written as follows: 

⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎧�̄� = ∑ �̄�𝑤ℎ𝑖𝑙𝑒:�̄� = √ 𝜎 − 𝜎 + 𝜎 − 𝜎 + (𝜎 − 𝜎 ) + 6 𝜏 + 𝜏 + 𝜏= (𝛔 𝐓𝛔 )𝛔 = 𝜎 , 𝜎 , 𝜎 , 𝜏 , 𝜏 , 𝜏

𝐓 =
⎣⎢⎢
⎢⎢⎡ 1 −0.5 −0.5−0.5 1 −0.5−0.5 −0.5 1 3 3 3 ⎦⎥⎥

⎥⎥⎤
  (16) 

where 𝛔  is the stress vector of element i and T is the coefficient matrix. 
The global maximum stress �̄�  and the derivative of the von Mises stress of element i with 

respect to the kth design variable can be obtained from the adjoint method as follows: 

⎩⎪⎨
⎪⎧ ̄ = �̄� ∑ �̄� ̄ , 𝑘 = 1,2, … 𝑛̄ = �̄� 𝛔

�̄� = (𝛔 𝐓𝛔 ) 2𝛔 𝐓 = �̄� 𝛔 𝐓     (17) 

Equation (15) is brought into the above equation for calculation. As both the constitutive matrix 
and strain matrix of the real element are independent of the design variables, the partial derivative of 
the elemental stress vectors concerning the design variable can be obtained as follows: 
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𝝈 𝐄 𝐁 𝐮 𝐄 𝐁 𝐮
           𝐄 𝐁 𝐮 𝐄 𝐁 𝐋 𝐮

                      𝐄 𝐁 𝐮 𝐄 𝐁 𝐋 𝐊 𝐊 𝐮
      (18) 

For the first term on the right-hand side of the above equation, the term is 0 when i ≠ k. For the 
second term on the right-hand side, the nodal displacement of element i is integrated into the global 
displacement by introducing 𝐮 = 𝐋 𝐮. The stress sensitivity is collapsed to obtain the following: 

̄ ̄ (∑ ̄ 𝛔 𝐓𝐄 𝐁 𝐮 )               ̄ (∑ ̄ 𝛔 𝐓𝐄 𝐁 𝐋 𝐊 𝐊 𝐮)     (19) 

Introduction of virtual displacement vectors u* using the adjoint method so that Eq (20) holds. 𝐊𝐮∗ = ∑ �̄� 𝑥 (𝐄 𝐁 𝐋 ) 𝐓𝛔       (20) 

Finally, by substituting Eq (15) into Eq (20), the stress sensitivity is finally obtained as follows: ̄ = �̄� �̄� − �̄� 𝐮∗ 𝐊 𝐮      (21) 

From the above equations, the sensitivity analysis is based on the solution of the derivatives of 
the stiffness matrix and the mass matrix with respect to the variable x. The expressions are as follows: 

𝐊 = ∑ 𝐁 𝐄 (𝑥 )𝐁 d𝑣 = 𝑝 ∑ 𝐁 𝑥 (𝐄 − 𝐄 )𝐁 d𝑣𝐌 = (∑ 𝜌 𝐍 𝐍𝑑𝑣 ) = ∑ 𝜌 𝐍 𝐍𝑑𝑣   (22) 

3.1.4. Topology results and post-processing 

The topology optimizations of the connecting brackets for the three-axle cargo truck converged 
after 94, 120 and 45 iterations, respectively. The iterative curves for the objective function of the 
connecting brackets during the optimization are given in Figure 7, demonstrating the optimized 
changes in the volume fraction of the materials. In the iterative process, the volume fraction of the 
three connecting brackets first decreased sharply under the condition that the optimization constraints 
are guaranteed to be effective; it then fluctuated slightly during the iterative process before finally 
reaching a steady state. Compared with the topological space, the total volume changed dramatically, 
and there is a clear trend of material distribution under extreme load conditions. After optimization, 
the stiffness, strength, and first-order constrained mode of the brackets were improved. 



2033 

Electronic Research Archive  Volume 31, Issue 4, 2019−2047. 

 

Figure 7. Iterative curves for the objective function. 

  

(a) Isometric view of bracket in 1st axle   (b) Planform view of bracket in 1st axle 

  

(c) Isometric view of bracket in 2nd axle   (d) Planform view of bracket in 2nd axle 
Continued on next page 
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(e) Isometric view of bracket in 3rd axle   (f) Planform view of bracket in 3rd axle 

Figure 8. Topology optimization results for three-axle cargo truck bracket. 

The topology optimization results are shown in Figure 8. The deformation, stress and mode clouds 
of the optimized topology results are given in Appendix. 

However, the optimization results are often not directly manufacturable. As a conceptual model, 
the topology optimization results are used as a reference to create new connecting brackets. The 
topology results shown in Figure 8 were converted into a geometric model and imported into the 
integrated CAD/CAE/CAM software for the next processing step. The non-topology areas are the 
mounting surface and the loading point, respectively. As shown in Figure 9, the plates of the 
mounting surface in contact with the frame were modified in shape according to the connecting bolts’ 
layout. The connecting surface with the gearbox housing was designed according to the housing size 
and the bolt positions. The positions of the loading point had been determined, from which the 
positions of the plates were obtained rigidly connected to it. The material at these locations was 
eliminated to avoid interference between the bracket and the coil spring, and to leave room for 
moving the Y-shaped upper and lower control arms and the wheel half-axle. Taking Figure 8(a) as 
an example, the material was expanded at the locations of the coil spring loading points in the 
topology area. The material extended from the coil spring to the lower control arm to form a force 
transmission path so that multiple ear-shaped side plates could be designed; thus, the bracket body 
plate was designed. Then, transverse and longitudinal reinforcement plates were set according to the 
locations where the material remained in the topology result. Considering the manufacturing 
difficulties, the reinforcement plates were also appropriately adjusted during the design process. 
Figure 8(b) gives the general shape of the bottom design space, from which the rectangular plate 
member was designed. We added reinforcement plates to the plate, and the material was subtracted 
appropriately according to the topology result of material thickness. The new connecting bracket is 
a combined structure welded by multiple steel plates, and the connecting bracket mainly uses shell 
elements to divide the mesh. The bolted connections between the components were simulated by 
solid elements. The boundary condition of the improved model was set to six degrees of freedom at 
the connecting bracket and frame bolt connection, as shown in Figure 9. 
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(a) FE model of bracket in 1st axle   (b) FE model of bracket in 2nd axle 

 

(c) FE model of bracket in 3rd axle 

Figure 9. Finite element (FE) models for size optimization. 

3.2. Size optimization process 

In the subsequent detailed design, the size optimization method is used to make the structure of 
the modified connecting bracket sheet metal parts more reasonable. The size optimization finite 
element model increases the design space of the lower end of the brackets to connect the brackets to 
the lower Y-shaped control arm. In addition, considering the mounting load on the main gearbox 
housing, the bottom design space was increased. As shown in Figure 10, the three connecting brackets 
consisted of 22, 17 and 16 plate members, whose thicknesses were employed as design variables for 
size optimization. Each plate member was designed to have a corresponding thickness interval. The 
initial thickness variables of all plates were set to 12 mm. 
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(a) Design variables of bracket in 1st axle 

 

(b) Design variables of bracket in 2nd axle 

 

(c) Design variables of bracket in 3rd axle 

Figure 10. Design variables for size optimization. 
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Along with considering the influence of the static load of each working condition on the 
connecting bracket, the power spectral density (PSD) curve for the random vibration signal generated 
during the endurance road test was applied as the load spectrum for the connecting bracket. The root-
mean-square (RMS) stress of the bracket was constrained to further ensure the structure’s durability 
and prevent fatigue damage [40]. Off-roading was taken as the working condition extracted for 
autocorrelation; then, a Fourier transform was carried out according to the Wiener-Sinchin theorem to 
obtain the PSD loading curve, as shown in Figure 11. 

 

(a) Loading curve in 1st axle     (b) Loading curve in 2nd axle 

 

(c) Loading curve in 3rd axle 

Figure 11. Examples of PSD loading curves for the hard point of the left coil spring. 

Based on the previous performance constraint, the size optimization limits the RMS stress of the 
bracket to no more than 100 MPa. The size optimization problem for the improved structure of the 
connecting brackets can be formulated as follows: 
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⎩⎪⎪
⎨⎪
⎪⎧find: 𝐱 = [𝑥 ,x ,x , … ,x ]

Minimize: V(𝑥)𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝜎 , ≤ 𝜎 , 𝑖 = 1,2, … 17; 𝑙 = 1,2,3 … 5
                  𝜎 , ≤ 𝜎 , 𝑖 = 1,2, … 17
                  d ≤ 𝑑 , 𝑗 = 1,2,3, … 12
                  𝜔 ≥ 𝜔
                  𝑥 ∈ 𝑖𝑛𝑡( [6,20])

    (23) 

The iterative curves for the objective function are illustrated in Figure 12. Compared with the 
total mass of the original connecting bracket, the mass of the optimal connecting bracket was reduced 
by 15.2%, as listed in Table 3, while the performance of the bracket was improved. The critical 
parameters of the optimal connecting bracket are listed in Table 4. 

 

Figure 12. Iterative curves for the objective function. 

Table 3. Comparison of bracket optimization results (107 mm3). 

Axle Volume of original bracket Volume of optimized bracket 
1 4.254 3.431 
2 4.2 3.337 
3 3.675 3.514 

Table 4. Size optimization results (mm). 

Axles Variable index Min  Max  Optimization result 

1 
x1~3, x11~13 6 20 8 
x4 6 20 14 
x5~6 6 20 18 

Continued on next page
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Axles Variable index Min  Max  Optimization result 

1 

x7~9, x17~18, x20~21 6 20 6 
x10, x16 6 15 15 
x14~15 6 20 12 
x19 6 15 9 
x22 6 20 10 

2 

x1, x10, x12 6 20 8 
x2 6 20 13 
x3~4, x6, x8, x11, x14~16 6 20 6 
x5, x7 6 20 11 
x9, x13 6 15 15 

x13 6 15 6 

3 

x1 6 20 16 

x2, x16 6 20 12 

x3, x14 6 20 10 

x4, x6~8 6 20 7 

x5 6 20 15 

x9, x15 6 15 15 

x10~12 6 20 20 

x13 6 15 8 

4. Validation of optimal design 

A fatigue life analysis of the structure was performed, and endurance road tests were applied to a 
three-axle cargo vehicle equipped with the new connecting bracket, verifying the safety of the optimal 
connection bracket. After applying the off-road load spectrum, the fatigue damage under the effect of 
a single-cycle load spectrum was derived as shown in Figure 13. Based on Eq (1), the fatigue damage 
values for a 6000-km distance were calculated; the results are shown in Table 5. Compared with the 
fatigue damage results for the original bracket, the maximum single damage for off-road excitation 
was reduced by about 10-10 times. The converted damage values for the three bridges under off-road 
conditions were all less than 1. This indicates no potential fatigue damage risk for the bridge box 
attachment bracket under fatigue loading. 

The brackets were also verified through manufacturing and testing, and the fatigue results 
obtained from the endurance road test were compared with the original brackets’ fatigue test results. 
As shown in Figure 14, the optimal bracket installed in the three-axle cargo truck was in excellent 
condition without fatigue damage. This result meets the safety requirements. 
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(a) Bracket in 1st axle    (b) Bracket in 2nd axle 

 

(c) Bracket in 3rd axle 

Figure 13. Fatigue damage under the effect of a single cycle load spectrum. 

 

(a) Bracket in 1st axle 

Continued on next page 
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(b) Bracket in 2nd axle 

 

(c) Bracket in 3rd axle 

Figure 14. Prototypes of connecting bracket after testing. 

Table 5. Comparison of cumulative damage values D. 

Axle Cumulative damage value (D) of 
the original bracket 

Cumulative damage values (D) of the 
optimized bracket 

1 1.938 1.197 × 10-11 
2 2.822 6.363 × 10-6 
3 7.049 × 10-3 1.704 × 10-11 

5. Conclusions 

1) In this paper, a complete optimization design verification process has been proposed to provide 
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practical ideas and utility value for developing multi-performance suspensions in the pre-product 
development phase. First, a vehicle endurance road test was applied to a three-axle cargo truck with 
its original connection brackets; the corresponding finite element analysis was conducted to verify the 
results. Topology optimization and size optimization have been proposed as two necessary 
optimization steps. In the topology optimization process, multiple constraint performance measures, 
such as the displacement at the loading point for each working condition, global von Mises stress and 
first-order constrained mode, are considered. A novel layout of the connecting bracket was obtained 
by using the SIMP method. A size optimization method has been presented to optimize the connecting 
bracket further and obtain the optimal plate thickness. An optimal structure with a 15.2% weight 
reduction was obtained while maintaining better stiffness and durability. Finally, the optimal design 
for the fatigue analysis and road tests was implemented. The experimental results were in good 
agreement with the simulation results. 

2) A novel structure of the connecting brackets has been proposed to solve the problem of fatigue 
failure of the original bracket. The connecting bracket is one of the essential connecting parts of the 
cargo truck, and it bears the tremendous and complex load of road excitation during the working 
process. The optimized connecting brackets have higher strength, higher stiffness and better durability. 
At the same time, the structure meets the weight limits of relevant standards, reducing material 
consumption. 

6. Data availability 

The data that support the findings of this study are available from Beiben Trucks Group Co., Ltd., 
but restrictions apply regarding the availability of these data, which were used under license for the 
current study and are thus not publicly available. 
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(a) Displacement    (b) Elemental stress 
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(c) Constraint mode 

Figure A1. FE analysis of topology optimization results for the first axle. 

 

(a) Displacement       (b) Elemental stress 

 

(c) Constraint mode 

Figure A2. FE analysis of topology optimization results for the second axle. 
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(a) Displacement   (b) Elemental stress 

 

(c) Constraint mode 

Figure A3. FE analysis of topology optimization results for the third axle. 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


