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Abstract: As the most studied sensory system, the visual system plays an important role in our
understanding of brain functions. Biological researchers have divided the nerve cells in the retina
into dozens of visual channels carrying various characteristics based on visual features. Although
orientation-selective cells have been identified in the retinas of various animals, the specific neural
circuits of such cells have been controversial. In this study, a new simple and efficient orientation
detection model based on the perceptron is proposed to restore the neural circuitry of orientation-
selective cells in the retina. The performance of this model is experimentally compared with that
of the convolutional neural network for image orientation recognition, and the results verify that the
proposed model offers very good orientation detection. The proposed perceptron-based orientation
detection model provides a new perspective to explain the neural circuits of orientation-selective cells.
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1. Introduction

The visual system is a component of the nervous system, which, as one of the most basic human sen-
sory systems, gives humans the ability to visualize and perceive [1]. More than one-third of the human
cerebral cortex is related to the visual system, and for humans, the vast majority of external information
is obtained through vision. Thus, the visual system contributes to human cognition, decision-making,
emotional behavior and other behaviors [2]. The complete visual system consists of the eye (especially
the retina), the optic nerve, the optic cross, the visual tract, the lateral geniculate body, the visual cortex
and the visual association cortex [3]. These structures are divided into the anterior and posterior visual
pathways from the lateral geniculate body. The eye, as the first station in the anterior visual pathway,
is responsible for the initial processing of visual information [4]. Light is refracted by the eye and then
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projected onto the retina. Photoreceptor cells in the retina convert light signals into electrical signals,
transmit them to bipolar cells and ganglion cells and finally transmit action potential signals to the
brain via the optic nerve [5]. Amacrine cells and horizontal cells are involved in lateral information
transmission in the retina, thus forming various complex visual receptive fields, which are usually sen-
sitive to certain specific features of visual information, such as color, size, distance and orientation [6].
Hence, visual information is usually initially processed in the retina into channels carrying various
specific features [7]. Retinal cells that carry similar visual information features are classified under
the same visual channel. To date, more than 30 visual channels have been verified by genetics and
anatomy [8]. In the present study, we concentrate on the visual channels associated with orientation
features.

Orientation-selective cells were first identified in the pigeon retina by Maturana and Frenk in
1963 [9], and Levick demonstrated similar orientation selectivity in the rabbit retina in 1967 [10]. Sub-
sequent research was reported on the orientation selectivity of retinal cells in cats [11–14], turtles [15],
mice [16–18], goldfish [19, 20] and zebrafish [21, 22]. The congruence between the functional roles
of amacrine cells and retinal ganglion cells in orientation selection circuits was established by Paride
Antinucci in 2013 [23]. The study of the cell-adhesion molecule Tenm3 further demonstrated that AC
is a critical component of orientation selection in retinal ganglion cells [24]. In a study of rabbit retinal
cells, researchers found that orientation-selective amacrine cells (OSACs) have radially symmetrical
dendrites, and the receptive field of OSACs can be approximated as a circle [25, 26]. A common fea-
ture evident in these vertebrate visual models is that an orientation-selective amacrine cell becomes
an essential element in the visual circuitry for tuning neurons, and it is always present in the initial
reception and transmission of visual information. In these models, the orientation tuning function ex-
hibited by the amacrine cells tends to be determined more by their own morphological features than
by the inhibition of the superficial cells. That is, the dendritic orientation of the amacrine cell itself
determines the implementation of orientation-selective functions in initial visual information process-
ing to a greater extent. OSACs are sensitive to orientation information stimuli that are consistent with
the direction of dendrite growth and insensitive to orientation information stimuli that are inconsistent
with the direction of dendrite growth; hence, OSACs have two types of expressions for orientation
information stimuli: ON response and OFF response [27]. In essence, OSACs are activated only by
stimuli from a specific orientation and do not respond to stimuli from other orientations.

There is great potential value in employing the biological properties and mechanisms of OSACs
in the field of engineering. Accordingly, in this study, a perceptron-based orientation detection model
(PODM) is proposed, and the effectiveness of the model for the orientation detection of objects in im-
ages is experimentally verified. As a single neuron is sensitive only to stimuli in a specific orientation,
four neurons are inserted into the mechanism to detect information in four orientations. These neurons
receive information in the receptive field and are activated by the corresponding information, in the
same manner as OSACs receive information from photoreceptor cells and are sensitive to informa-
tion in a specific orientation. This indicates that the PODM is highly compatible with the biological
properties of the cell. The global orientation selection is dependent on the aggregation of neuronal
activation in all receptive fields. To ensure the validity of the mechanism’s orientation detection, the
object features (e.g., color, location and shape) in the experimental dataset are randomly generated.
The experimental results confirm that the PODM is always efficient in detecting the orientation of
objects, regardless of changes in features such as the color, position and shape of the objects. Based
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on the experimental results, it is likely that more angles of orientation recognition can be achieved by
adding more neurons to the model or by interacting information between a limited number of neurons.
This may inspire new ideas to unravel the mysteries of the functioning of the visual system.

2. Mechanism

The perceptron was invented by Frank Rosenblatt in 1957 [28]. As a type of artificial neural net-
work (ANN), it was designed from its inception to mimic the working mechanism of nerve cells. The
state of a nerve cell depends on the strength of the information received from other nerve cells. When
the strength of the information exceeds a certain threshold, the nerve cell is activated and generates
action potentials, which are then transmitted to other neurons via synapses [29]. Corresponding un-
derlying concepts in the perceptron include weight ω corresponding to synapses, bias b corresponding
to thresholds and activation functions corresponding to cell bodies. The equation of the perceptron is
shown below:

f (x) =
{

1 i fω · x + b > 0
0 else

, (2.1)

where x is the input received by the current neuron. OSACs usually receive input from multiple pho-
toreceptors to determine the orientation of the object comprehensively, rather than relying on a single
photoreceptor [30]. In this work, the neuron is set to receive the grayscale values of two adjacent
points to determine whether the neuron corresponding to the orientation where these two points are
located is activated or not. When the grayscale values of the two adjacent points are equal, the object
is considered to be in the orientation corresponding to the two points, and the corresponding neuron
is activated. Considering that the human eye has a limited grayscale recognition rate, and the colors
of real objects are not exactly the same, a threshold needs to be added to the mechanism to determine
whether the grayscale values are the same (approximately) [31]. Since human individuals differ, the
ability of the human eye to recognize the minimum grayscale difference varies. For our model, the
threshold value, as a user-set parameter, is both a switch for the model to work properly and a fault tol-
erance for the model detection. The smaller that the threshold is set, the better the model will recognize
the smallest grayscale difference, and the more it will be affected by the background color change; the
larger that the threshold is set, the weaker the model will be at recognizing the smallest grayscale, and
it is likely to lose the detection ability. So, we need to give the threshold a suitable value to give the
model a certain error tolerance. During our experiment, we found that the model can maintain a more
ideal working state when the threshold is set to 3, and thus we define the threshold as 3. When the
difference between two points is less than or equal to the threshold value, the two points are considered
to have the same (approximate) grayscale value, and the neurons of the corresponding orientation are
activated; otherwise, the two points are regarded as having different grayscale values, and the neurons
of the corresponding orientation are not activated. In the receptive field of neuronal cells, the central
point is selected as the reference point, the grayscale values of eight adjacent points are compared with
the reference point, and the neuronal cells of the corresponding orientation are activated if the differ-
ence in grayscale values is less than the threshold. Based on the aforementioned basic principles, we
propose an equation to adapt our mechanism as shown below:

Response =
{

ON i f |x∗ − xi| < threshold
OFF else

, (2.2)
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where x∗ represents the grayscale value of the central reference point of the perceptual field, and the xi

represents the grayscale value of the points adjacent to the reference point.
In this study, four neurons are set up in the mechanism to detect the four orientations of 0°, 45°,

90° and 135°, as shown in Figure 1. We define the photoreceptor cell in the center of the receptive
field as the reference point with coordinates (i, j), and Xi, j represents the signal received from the
photoreceptor cell by the amacrine cell. In such a receptive field, the horizontally oriented neuron (0
degrees) is activated when the signal received from the photoreceptor cell located at (i, j+1) or (i, j-1)
is close to the signal at the reference point. A vertically oriented neuron (90 degrees) is activated when
Xi+1, j or Xi−1, j is close to Xi, j. The neuron corresponding to 135 degrees is activated when the Xi+1, j+1 or
Xi−1, j−1 is similar to Xi, j. The neuron corresponding to 45 degrees is activated when Xi−1, j+1 or Xi+1, j−1

is approaching Xi, j.
Neuronal cells based on this mechanism would be able to be activated by an object as small as 1*2

pixels. A simple demonstration is given in Figure 2. In the retina, photoreceptor cells receive light
signals that are converted into electrical signals and then transmit information to cells in the posterior
layer in turn. Two of the photoreceptor cells receive light signals, which are reflected in the current
receptive field as the central point with the same signal as its horizontal neighbor, and activate the
neuron in the amacrine cell layer in the corresponding horizontal orientation (0°).

When processing a complete image, it is necessary for the neurons to globally detect the image
to detect the orientation of objects in the image. Therefore, the sliding window scanning mechanism
from the convolutional neural network (CNN) [32] is utilized in this study. That is, the perceptual field
slides sequentially from the beginning of the image to the next position in a fixed step, scanning over
the whole image line by line to read the information of the whole image as an input to the model. The
neurons corresponding to the four orientations are activated during the scanning process, the frequen-
cies of activation are recorded and summarized at the same time, and the orientation detection results
of the model are output after substitution into the activation function calculation. The equation of the
activation function is shown below:

f (x) =
eXi∑n
i=1 Xi

(2.3)

where Xi represents the activation frequencies, and n equals 4, meaning that a total of four orientation-
selective neurons are employed here. It is worth noting that the output here is the probability of
selecting each orientation, and the sum of the probabilities of the four orientations being selected is 1.
The final detection result of the model is taken from the one with the highest probability among the
four orientations, i.e., the orientation with the highest activation frequency is considered to be the final
detection result of the model. A simplified diagram of the model is shown in Figure 3. An example
of the specific sliding window scanning mechanism is shown in Figure 4. Figure 4(a) shows an object
which is sized at 1*3 and in the orientation of 135°, placed on an image with a gradient grayscale
background. Figure 4(b) shows the whole process of receiving this image by the model. A receptive
field of size 3*3 slides across the entire image from left to right line by line. In each receptive field,
the neurons in the corresponding orientation are activated and recorded separately (activation is shown
in highlighted blue). Figure 4(c) summarizes the result of the scan, and the direction with the highest
number of neuron activations is considered to be the orientation of the object. It can be seen that the
global detection result obtained by the four neurons matches the actual orientation of the object. Unlike
the sliding window scanning in the CNN, the proposed neuron needs minimal information interaction
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to read the features of the whole picture completely, and thus using a 3*3 receptive field to scan the
whole picture will cause unnecessary waste of computational resources. Therefore, the size of the
receptive field is collapsed from 3*3 to 2*3, and the activation level of neurons in the corresponding
orientation is weighted accordingly, as shown in Figure 5. The experimental results verify that this
improvement saves approximately one-third of the computational resources while ensuring detection
accuracy.

Figure 1. Illustration of the four orientation detection neurons.

Figure 2. A demonstration of the receptive field.
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Figure 3. A simplified diagram of the model.

Figure 4. Diagram of the sliding mechanism.
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Figure 5. The new version of the four orientation detection neurons and their collapsed
receptive fields.

3. Experiments and analysis

A series of experiments were conducted to evaluate the effectiveness of the suggested model. In the
first subsection, the composition of the experimental dataset and the method it generates are described.
In the second subsection, the mechanism proposed above is utilized to detect the orientation of each
object in the dataset to validate the feasibility of the mechanism. In the third subsection, the PODM is
compared with CNN to verify the robustness of the mechanism by detecting simulated realistic images
and the detection accuracy when subjected to the same level of interference. The fourth subsection then
compares the performances of the mechanism when different sizes of perceptual fields are applied.

3.1. Dataset

All datasets were randomly generated and according to the following guidelines: Each dataset
contains 2500 images, each image has a resolution of 100*100 pixels, the background color of the
image is a randomly generated grayscale color, an object is placed on each image, and the orientation
and color of the object are randomly generated. Figure 6 displays a partial sample of the dataset. The
experiments are classified only according to the size of the object pixel values to check the accuracy and
reliability of the model when dealing with objects of different sizes. Further experiments are applied
to examine the ability of the proposed mechanism to cope with different backgrounds by replacing the
filled form of the image background.
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(a) Monochromatic Grayscale (b) Gradient Grayscale

Figure 6. Sample display of the dataset.

3.2. Experiments

3.2.1. Monochromatic grayscale image

It is well known that a complete image is a combination of grayscale maps of multiple color chan-
nels. In this set of experiments, the validity of the proposed mechanism is verified in the monochro-
matic grayscale images. In this dataset, the background of the image and the color of the object in the
image are each randomly generated monochromatic grayscale colors. The sizes of the objects in the
images are divided into four categories: 50, 100, 500 and 1000 pixel values. The percentage of the
object occupying the image ranges from 0.5 to 10%, which allows the tolerance of the proposed mech-
anism to object size to be fully investigated. Some samples from the monochrome grayscale image
dataset are shown in Figure 6. It can be seen that the background of the image is a randomly generated
monochrome grayscale, and the position of the object in the image, as well as its color, is random, while
the aspect ratio (shape) of the object also has different variations. Figure 7 shows the detection result of
the mechanism for one of the images in which the object has a size of approximately 500 pixels and an
orientation of 135°. The activation intensity of neurons in the 135° orientation reaches 924, which is
significantly higher than the activation intensity in the other three directions. The mechanism detection
results point to 135°, which is consistent with the actual orientation of the object. It indicates that the
proposed mechanism successfully detects the orientation of the object in that image. Table 1 presents
the results obtained by the mechanism in this dataset. The mechanism had an accurate detection of
the orientation of each object with a success rate of 100%, which demonstrates that the mechanism is
always able to efficiently detect the orientation of the object in the images, regardless of the object’s
size, orientation, shape or color. Thus, the results indicate the mechanism has a stable recognition rate
and good robustness in detecting the orientation of objects in monochrome grayscale images. Also,
since monochrome grayscale images of multiple channels can be superimposed to form color images,
the mechanism is likely also capable of detecting the orientation of objects in color images.
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Table 1. Results of the PODM with monochromatic grayscale images.

Object Size Angle 0° 45° 90° 135° Total

50
Number of images 646 608 627 619 2500
Predicted number 646 608 627 619 2500
Accuracy rate 100% 100% 100% 100% 100%

100
Number of images 641 589 644 626 2500
Predicted number 641 589 644 626 2500
Accuracy rate 100% 100% 100% 100% 100%

500
Number of images 634 646 585 635 2500
Predicted number 634 646 585 635 2500
Accuracy rate 100% 100% 100% 100% 100%

1000
Number of images 600 623 643 634 2500
Predicted number 600 623 643 634 2500
Accuracy rate 100% 100% 100% 100% 100%

Figure 7. Example of a monochromatic grayscale image.

3.2.2. Gradient grayscale image

The effectiveness of the mechanism in monochromatic grayscale images was verified in the previous
set of experiments. However, ambient light in the real world often appears as gradient colors because
the intensity of light is usually affected by many factors, such as temperature, humidity, light source
proximity and irradiation angle. Therefore, in this set of experiments, the background of the images
is replaced with a gradient grayscale color. It should be noted that to restore the background under
various lighting conditions to the extent possible, the gradient direction of the grayscale background is
random, and the grayscale value of the background is also random. An example is given in Figure 8.
The background of this sample image is a grayscale color that fades to white (grayscale values become
larger) from the upper left to the lower right, and there is an object of approximately 100 pixels in size
and 45° orientation in the image. The detection result on the right side of the image shows that the
activation intensity of neurons in the 45° direction reaches 336, which is stronger than the activation
in other directions. Thus, the detection result of the mechanism is 45°, which matches with the actual
orientation of the object. The results of this set of experiments are shown in Table 2, and it is clearly
observed that the detection accuracy remains at 100% in all orientations. This indicates that even if the
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background is changed to a random gradient grayscale color, the proposed mechanism still recognizes
the object independent of the background grayscale, object size, location, etc. It further supports the
robustness and feasibility of the mechanism.

Table 2. Results of the PODM with gradient grayscale images.

Object Size Angle 0° 45° 90° 135° Total

50
Number of images 580 647 653 620 2500
Predicted number 580 647 653 620 2500
Accuracy rate 100% 100% 100% 100% 100%

100
Number of images 611 635 648 606 2500
Predicted number 611 635 648 606 2500
Accuracy rate 100% 100% 100% 100% 100%

500
Number of images 602 602 670 626 2500
Predicted numbers 602 602 670 626 2500
Accuracy rate 100% 100% 100% 100% 100%

1000
Number of images 642 616 591 651 2500
Predicted number 642 616 591 651 2500
Accuracy rate 100% 100% 100% 100% 100%

Figure 8. An example of an image with a gradient grayscale background.

3.3. Comparative experiments with CNN

Considering the excellent performance of CNNs in image processing, it is informative to compare
the performance of the PODM with the CNN. The images for this set of experiments are still set
to have gradient grayscale backgrounds, while, to increase the difficulty, different levels of salt-and-
pepper noise are added to all of the images to test noise resistance. Salt-and-pepper noise, also known
as impulse noise, is often observed in images. It is a random appearance of white or black dots, either
as black pixels in bright areas or white pixels in dark areas (or both). The cause of such noise in an
image is usually a sudden and strong disturbance of the transmitted signal. A partial failure of the
sensor produces black dots (pepper) on the image, whereas an oversaturation of the sensor produces
white dots (salt) [33]. Since the size of the largest object in the dataset in this study is about 1000
pixels, which occupies only 10% of the image size, a noise value is added in the range of 1–10%
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of the image size so that the maximum noise value is controlled to be no more than the size of the
object. Two example sets of images with added noise are presented in Figure 10. The original image
without noise is placed on the left, while the examples on the right present the actual image when the
added noise is incremented from 1 to 10%. The added pepper noise is evenly and randomly distributed
over the image, while the ratio of pepper noise to salt noise is 1:1. Figure 10(a) shows a horizontally
placed object of size 50 pixels. When excessive noise is added, the shape of the object becomes greatly
disturbed, offering a severe test for the detection mechanism. Figure 10(b) shows an object with an
orientation of 135° and a size of 1000 pixels. Both sets of images are added with equal noise values,
and it is obvious to the naked eye that the shapes of large objects are easier to distinguish compared
with small objects. The detection results made by PODM for the orientation of the objects on these
images are also similar to the perception of human eye observation, which to some extent indicates
that PODM is built in accordance with the logic of human eye work.

The CNN is a feedforward neural network that includes convolutional computation and has a deep
structure [34]. The “neocognitron” neural network proposed by Fukushima in 1980 is considered to be
the inspiration for the CNN [35]. Alex formally proposed the first CNN called “time delay network”
in 1987, which is mainly applied to the field of sound recognition [36]. In 1988, Wei Zhang proposed
the first two-dimensional CNN [37]. Recently, the application area of CNNs has been extended to
include portrait recognition [38] and gesture recognition [39]. An input layer, hidden layers and an
output layer are the three components of a CNN. The hidden layer usually contains n convolutional and
pooling layers and a fully connected layer. CNN usually consumes a large number of computational
resources in the training process, and the more convolutional layers there are, the more computational
resources are required. Therefore, to ensure the fairness of the experimental comparison, we allocate
the computational resources of both methods using the time required to implement both methods on the
same platform as a uniform metric (with an error of no more than 10%). In this experiment, only two
convolutional layers are set, the size of the convolutional kernel is 3*3, the step size is 1, and the ratio of
training set to test set is 7:3. A simplified diagram of the CNN for the present experiment is displayed
in Figure 9. With such acceptable computational resource consumption, each set of experiments runs
30 times, and the results derived from the experiments will eventually be tested by hypothesis testing to
verify whether the results are significantly different, as shown in Tables 3–6. These tables give the mean
and standard deviation (SD) differences of the detection accuracies obtained from the two methods
running 30 times each in the four sets of control experiments when adding different levels of noise to
the images. Higher accuracy rates are bolded in the table. It is clear that PODM outperforms CNN in
most instances at accurately detecting the orientation of an object. The detection accuracies of PODM
and CNN are only comparable in images with large objects and high noise values. We employed a
P-test to examine whether the accuracies of the two methods are fundamentally different. The P-test
is a statistical method that is applied to examine the validity of a generally accepted hypothesis about
the aggregate. The smaller the p-value is, the more evidence there is that the null hypothesis should be
rejected, and the alternative hypothesis is more plausible [40]. In this set of experiments, the p-value
is less than 0.05, which implies that there is a significant difference between the detection results of
PODM and CNN. In other words, the detection results of PODM are significantly better than those
of CNN. As can be seen from the results in the tables, all of the p-values are less than 0.05, which
means there is a significant difference between the results obtained by the two methods. This indicates
the PODM is always capable of achieving better detection results than those obtained by the CNN
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regardless of object size.
The results are also shown in the form of a line graph in Figure 11 for a more in-depth visual analysis

of the differences between the two methods. It is obvious that the CNN responds more obviously to
the effect of noise, and the obtained results are usually accompanied by certain volatility. This also
indicates that the PODM has better noise tolerance than the CNN. Furthermore, in the recognition
of small objects, especially when the noise value is larger than that of small objects, the recognition
accuracy of the CNN decreases sharply, whereas the proposed PODM maintains acceptable accuracy.
The results of this set of experiments reveal that the PODM has many advantages over the CNN, such
as higher accuracy in detecting the orientation of objects (especially for small objects), better noise
tolerance, less sensitivity to the influence of external factors and better robustness.

Figure 9. A simplified diagram of the CNN.

(a) object size = 50 (b) object size = 1000

Figure 10. Two example sets of images with added noise.
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Figure 11. Comparison results.

Table 3. Comparison of results with object size of 50 pixels.

Noise
PODM CNN
Mean(%) ± SD Mean(%) ± SD

1% 99.99 ± 0.0149 67.83 ± 0.1596
2% 99.40 ± 0.1228 52.71 ± 0.1674
3% 97.16 ± 0.3379 45.52 ± 0.1447
4% 92.95 ± 0.4359 41.59 ± 0.1298
5% 87.69 ± 0.7140 41.61 ± 0.1813
6% 81.84 ± 0.5256 35.97 ± 0.1021
7% 76.59 ± 0.7738 33.96 ± 0.1017
8% 70.99 ± 0.7243 31.58 ± 0.1052
9% 66.31 ± 0.8904 30.90 ± 0.0748
10% 62.28 ± 0.7972 32.30 ± 0.0889
P-value - 8.64E-07
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Table 4. Comparison of results with object size of 100 pixels.

Noise
PODM CNN
Mean(%) ± SD Mean(%) ± SD

1% 99.98 ± 0.0267 93.03 ± 0.0236
2% 99.54 ± 0.1267 90.87 ± 0.0399
3% 98.60 ± 0.2016 85.30 ± 0.1019
4% 96.99 ± 0.2789 84.34 ± 0.1290
5% 95.34 ± 0.3437 79.01 ± 0.1528
6% 93.11 ± 0.4067 77.87 ± 0.1796
7% 90.43 ± 0.4366 78.39 ± 0.1530
8% 87.91 ± 0.6577 76.80 ± 0.1522
9% 84.91 ± 0.5372 72.51 ± 0.1787
10% 82.16 ± 0.7730 75.30 ± 0.1598
P-value - 9.53E-04

Table 5. Comparison of results with object size of 500 pixels.

Noise
PODM CNN
Mean(%) ± SD Mean(%) ± SD

1% 100.00 ± 0.0100 97.58 ± 0.0067
2% 99.94 ± 0.0503 97.17 ± 0.0068
3% 99.69 ± 0.1204 96.93 ± 0.0072
4% 99.34 ± 0.1709 95.96 ± 0.0121
5% 98.91 ± 0.1891 96.08 ± 0.0092
6% 98.42 ± 0.2377 95.80 ± 0.0078
7% 97.81 ± 0.3068 95.25 ± 0.0084
8% 97.19 ± 0.3345 95.26 ± 0.0063
9% 96.52 ± 0.2720 94.83 ± 0.0100
10% 95.74 ± 0.3695 94.67 ± 0.0077
P-value - 5.13E-04
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Table 6. Comparison of results with object size of 1000 pixels.

Noise
PODM CNN
Mean(%) ± SD Mean(%) ± SD

1% 99.99 ± 0.0072 96.71 ± 0.0065
2% 99.81 ± 2.8279 96.49 ± 0.0055
3% 99.43 ± 0.7075 96.29 ± 0.0070
4% 98.85 ± 0.1964 96.13 ± 0.0064
5% 98.16 ± 0.1602 95.85 ± 0.0101
6% 97.41 ± 0.2816 95.66 ± 0.0058
7% 96.71 ± 0.3358 95.90 ± 0.0075
8% 95.70 ± 0.3497 95.43 ± 0.0115
9% 94.91 ± 0.3863 95.93 ± 0.0087
10% 93.77 ± 0.3876 95.58 ± 0.0096
P-value - 4.76E-02

3.4. Comparative experiments with different receptive fields

In this subsection, a comparison between the original PODM with a 3*3 receptive field and the
evolved PODM with a 2*3 receptive field is performed. Gradient grayscale images make up this
dataset for the comparative experiment. The size of the detected objects in the images is still divided
into four categories, and the images are also added with different levels of noise. The results are
shown in Tables 7–10. As can be seen from these tables, the detection accuracies achieved by both
models with the same noise impact are very close, regardless of how the size of the object varies.
The p-values obtained from the statistical hypothesis tests are all greater than 0.05, which indicates
there is no difference in the final results between the two mechanisms with different receptive fields.
Unlike the differences between the objects compared in the previous section, neither mechanism in
this group imposes a high computational load on the computer, so the length of time taken is the only
criterion for comparing the two mechanisms. The time recorded at the bottom of the table clearly shows
that the mechanism with a perceptual field of 3*3 takes a significantly longer time. Furthermore, the
reduced perceptual field of the mechanism does not reduce the accuracy of recognition. In other words,
the improved PODM reduces the reuse rate of information while still maintaining the efficiency and
robustness of orientation detection. This indicates that it is necessary and beneficial for the model to
change the shape of the receptive field from 3*3 to 2*3.
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Table 7. Comparison of results with object size of 50 pixels.

Receptive field 2*3 3*3
Noise Mean(%) ± SD Mean(%) ± SD
1% 99.98 ± 0.0246 100.00 ± 0.0147
2% 99.17 ± 0.1496 99.36 ± 0.1210
3% 96.42 ± 0.3577 96.96 ± 0.3363
4% 92.11 ± 0.6329 92.80 ± 0.4348
5% 86.64 ± 0.5642 88.00 ± 0.7038
6% 80.74 ± 0.9089 81.68 ± 0.5230
7% 75.04 ± 0.8508 77.48 ± 0.7652
8% 70.24 ± 0.8117 71.56 ± 0.7256
9% 65.31 ± 0.8048 66.24 ± 0.8806
10% 61.68 ± 0.9211 62.28 ± 0.7914
P-value - 8.84E-01
Time cost 2193.02 s 3378.61 s

Table 8. Comparison of results with object size of 100 pixels.

Receptive field 2*3 3*3
Noise Mean(%) ± SD Mean(%) ± SD
1% 99.95 ± 0.0377 99.96 ± 0.0266
2% 99.39 ± 0.1232 99.72 ± 0.1251
3% 98.23 ± 0.2248 98.68 ± 0.1983
4% 96.71 ± 0.3103 97.00 ± 0.2752
5% 94.97 ± 0.3515 95.08 ± 0.3446
6% 92.70 ± 0.4397 92.88 ± 0.4001
7% 90.19 ± 0.4157 90.44 ± 0.4311
8% 87.31 ± 0.6059 87.44 ± 0.6692
9% 84.57 ± 0.5317 84.36 ± 0.5287
10% 81.49 ± 0.7801 82.12 ± 0.7805
P-value - 9.40E-01
Time cost 2195.05 s 3312.37 s
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Table 9. Comparison of results with object size of 500 pixels.

Receptive field 2*3 3*3
Noise Mean(%) ± SD Mean(%) ± SD
1% 99.99 ± 0.0149 100.00 ± 0.0098
2% 99.91 ± 0.0572 99.84 ± 0.0507
3% 99.65 ± 0.1274 99.72 ± 0.1222
4% 99.27 ± 0.1609 99.40 ± 0.1699
5% 98.78 ± 0.2088 98.84 ± 0.1891
6% 98.32 ± 0.2011 98.20 ± 0.2344
7% 97.63 ± 0.1843 97.64 ± 0.3094
8% 97.04 ± 0.2397 97.56 ± 0.3291
9% 96.41 ± 0.3563 96.56 ± 0.2679
10% 95.69 ± 0.3067 95.72 ± 0.3724
P-value - 9.06E-01
Time cost 2214.19 s 3379.97 s

Table 10. Comparison of results with object size of 1000 pixels.

Receptive field 2*3 3*3
Noise Mean(%) ± SD Mean(%) ± SD
1% 99.99 ± 0.0181 100.00 ± 0.0071
2% 99.81 ± 0.0696 99.84 ± 2.7832
3% 99.43 ± 0.1429 99.56 ± 0.6968
4% 98.85 ± 0.1799 99.00 ± 0.1933
5% 98.16 ± 0.2300 98.24 ± 0.1582
6% 97.41 ± 0.3432 97.32 ± 0.2833
7% 96.71 ± 0.3401 96.36 ± 0.3413
8% 95.70 ± 0.3142 95.60 ± 0.3461
9% 94.91 ± 0.3150 95.08 ± 0.3803
10% 93.77 ± 0.3777 94.00 ± 0.3815
P-value - 9.84E-01
Time cost 2335.16 s 3583.72 s

3.5. Dealing with real-world problems

A set of experiments on the orientation detection of natural objects is added in this section to further
validate the confidence level of the PODM. This dataset contains 50 images of size 100*100 with
objects such as pens of various colors, contrails of airplanes, elongated stars, elongated drops of water,
etc. The orientation of these objects in the images also varies, and there are various light disturbances
in the background of the images because of the shooting angle. This imposes some demands on the
ability of the PODM to detect the orientation. Meanwhile, to further evaluate the performance of
the model, we conducted a downsampling operation on all the images in this dataset, and the size of
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the images after the operation became 50*50. The image downsampling operation usually reduces the
image quality while decreasing the image size, so it can perfectly reproduce the actual quality reduction
process of the image delivery. Some of the examples are shown in Figure 12, and the detection results
on both the original images and downsampled images are displayed in Table 11. It can be seen that
the PODM still achieves 100% correctness in dealing with these practical problems, which proves that
the proposed model is also effective in dealing with practical problems and that the stability of getting
correct results can be trusted.

Figure 12. Examples of real-world problems.

Table 11. Results of the PODM dealing with real-world problems.

Angle 0° 45° 90° 135° Total
Original images 16 10 13 11 50
Predicted number 16 10 13 11 50
Accuracy rate 100% 100% 100% 100% 100%
Downsampled images 16 10 13 11 50
Predicted number 16 10 13 11 50
Accuracy rate 100% 100% 100% 100% 100%

4. Conclusions

The motivation of this study was to propose a perceptron-based orientation detection mechanism
(PODM) inspired by the working mechanism of amacrine cells and to verify the effectiveness of the
mechanism through a series of experiments. As color images are usually superimposed by multiple
channels of grayscale images, it is reasonable to believe that the successful orientation detection of the
classical monochrome grayscale image means the mechanism will also be effective for object orien-
tation detection in color images. Images with gradient grayscale backgrounds can restore the state of
actual objects to some extent, and the successful detection of object orientation in such images verifies
that the mechanism is also competent for actual object orientation recognition. To further corroborate
the effectiveness of the mechanism, it is compared with CNN, the state-of-the-art method in image
recognition processing. Different levels of noise are added to the dataset to compare the accuracy of
both methods for object orientation recognition under the same interference conditions. The results
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also confirm that the PODM is superior to the CNN in terms of accuracy, noise tolerance and robust-
ness. Because each feature of the object in the dataset is randomly generated, it can be concluded that
the orientation detection of the object by the PODM is always efficient and consistent, regardless of
the color, size or shape of the object. The detection results of PODM for noise-affected images closely
resemble the perception of the human eye, and we are confident that this model can account for the
functioning of the human visual system. In other words, it can give biologists a fresh perspective when
conducting research on the visual system.
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