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Abstract: In this paper, fast numerical methods for solving the real quasi-symmetric Toeplitz linear
system are studied in two stages. First, based on an order-reduction algorithm and the factorization
of Toeplitz matrix inversion, a sequence of linear systems with a constant symmetric Toeplitz matrix
are solved. Second, two new fast algorithms are employed to solve the real quasi-symmetric Toeplitz
linear system. Furthermore, we show a fast algorithm for quasi-symmetric Toeplitz matrix-vector mul-
tiplication. In addition, the stability analysis of the splitting symmetric Toeplitz inversion is discussed.
In mathematical or engineering problems, the proposed algorithms are extraordinarily effective for
solving a sequence of linear systems with a constant symmetric Toeplitz matrix. Fast matrix-vector
multiplication and a quasi-symmetric Toeplitz linear solver are proven to be suitable for image encryp-
tion and decryption.

Keywords: image; encryption; decryption; decomposition; matrix inversion; quasi-symmetric
Toeplitz matrix

1. Introduction

There have been extensive studies and applications of Toeplitz and quasi-Toeplitz matrices recently.
Toeplitz or quasi-Toeplitz matrices are adopted as a core tool in the quantum magnetic field [1], gener-
ation of random bits [2], quantum key distribution [3–5], the evaluation of the short-time rate of change
in the trend of CO2 data [6], the deconvolution of hemodynamic responses [7] and the scattering and
radiation on thin wire models [8]. Some studies have utilized Toeplitz or quasi-Toeplitz matrices to
solve the ordinary and partial differential equations [9, 10], also applying them to solve the fractional
differential equations [11–16].
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A large number of linear systems with Toeplitz coefficient matrices need to be solved. Recently, Liu
et al. developed fast solvers for Toeplitz linear systems [17–19]. The inversion of the Toeplitz matrix
is represented as a combination of circulant and skew-circulant matrices in [20,21] so that the solution
can be gained directly by using the fast Fourier transform (FFT) and the inverse FFT (IFFT). Here, we
turn to express the Toeplitz inversion by using the sum products of the skew-imaginary circulant [22]
and skew-circulant matrices, where the skew-imaginary circulant matrix is an ω-circulant matrix with
ω = −i, i =

√
−1.

Regarding the design of fast algorithms for a quasi-Toeplitz linear system, the authors of [23] pre-
sented new efficient algorithms to solve the CUPL-Toeplitz linear system [24–26] by first splitting the
CUPL-Toeplitz matrix into a Toeplitz matrix and a low-rank matrix. In [27], Zhang et al. studied order-
reduction algorithms to further reduce the computation complexity. The tridiagonal quasi-Toeplitz
linear system is solved in [28].

We are concerned with a class of quasi-symmetric Toeplitz linear systems. The authors of [18]
showed the trigonometric transformation splitting method to solve the real symmetric Toeplitz linear
system. Different from the iterative method, we adopt the direct method based on the symmetric
Toeplitz inversion representation, which is simplified due to the symmetry. We also show the numerical
stability of the splitting symmetric Toeplitz inversion inspired by previous studies [26, 29, 30].

In this paper, we study an n × n real symmetric Toeplitz matrix with perturbations in the first and
last columns P = (p j,k)n

j,k=1 ∈ R
n×n:

p j,k =


ς1 + t1, j = 2 and k = 1,
ς2 + t1, j = n − 1 and k = n,

t| j−k|, otherwise.

(1.1)

Obviously,

P = A + αeT
1 + βeT

n , (1.2)

where α = [0, ς1, 0, . . . , 0]T , e1 = [1, 0, . . . , 0]T is the first unit vector, β = [0, . . . , 0, ς2, 0]T , en =

[0, . . . , 0, 1]T is the last unit vector and A = (t| j−k|)n
j,k=1 is a nonsingular symmetric Toeplitz matrix.

An outline of this paper is as follows. Section 2 solves a sequence of linear systems with the same
symmetric Toeplitz coefficient matrix. Section 3 presents the solvers for the quasi-symmetric Toeplitz
linear system. A discussion of the quasi-symmetric Toeplitz matrix-vector multiplication is presented
in Section 4. In Section 5, the stability analysis of the splitting inverse of the symmetric Toeplitz matrix
is shown. Different numerical examples are given in Section 6. In Section 7, images are encrypted and
decrypted by using the proposed quasi-symmetric Toeplitz matrix. Finally, we express our conclusions
in Section 8.

2. Solving symmetric Toeplitz linear systems with the same coefficient matrix

The starting point of the algorithms derived in this paper is the following inversion formula of
Toeplitz matrices:
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Lemma 1. [31, p. 738] Let A = (t j−k)n
j,k=1 ∈ R

n×n be a Toeplitz matrix. If the vectors x =

[x1, x2, . . . , xn]T , x1 , 0 and y = [y1, y2, . . . , yn])T are the solutions of the linear systems

Ax = e1 and Ay = en. (2.1)

Then A is invertible and

A−1 = −
1

x1(i + 1)
(S I1S 1 − S I2S 2), (2.2)

where S I1 and S I2 are skew-imaginary circulant matrices [22] holding the first columns as x =

[x1, x2, . . . , xn]T and ỹ = [iyn, y1, y2, . . . , yn−1]T respectively; S 1 and S 2 are skew-circulant matrices
with the first columns ŷ = [−yn, y1, y2, . . . , yn−1]T and x = [x1, x2, . . . , xn]T respectively.

Note that we are concerned with a symmetric Toeplitz matrix A; then, the special structure means
that the solutions x and y in Eq (2.1) satisfy y = Jx, where the matrix J is an anti-identity matrix of
order n.

If Ax = e1 has the solution x = [x1, x2, . . . , xn]T and x1 , 0, then the symmetric Toeplitz matrix A is
invertible and Eq (2.2) can be rewritten as

A−1 =
1

x1(i + 1)
(S IS T + iS ∗I S ), (2.3)

where S I and S have the same first column x = [x1, x2, . . . , xn]T and the symbol S ∗I denotes the conju-
gate transpose of S I .

Performing the diagonalization scheme on the skew-imaginary circulant matrix, that is, S I =

Ω∗nF∗nΛS I FnΩn, we can obtain

A−1 =
1

x1(i + 1)
Ω∗nF∗n(ΛS I FnΩnS T + iΛ∗S I

FnΩnS ), (2.4)

where Fn = (F j,k)n
j,k=1, F j,k = 1

√
ne

2πi( j−1)(k−1)
n , 1 ≤ j, k ≤ n, Ωn = diag(1, e

−3iπ
2n , . . . , e

−3i(n−1)π
2n ) and ΛS I is a

diagonal matrix containing the eigenvalues of S I .
Equation (2.4) shows a new decomposition of the symmetric Toeplitz inversion. By taking full

account of the structural characteristics of the symmetric matrix, we solve only one system Ax = e1

instead of two linear systems.
In the case of solving a sequence of linear systems with the same coefficient matrix, it is effective to

solve Ax = e1 first and then use the new decomposition of the inverse of the symmetric Toeplitz matrix
for calculation. Therefore, Algorithm 1 is proposed for the computation of x and the eigenvalues of
S I . By applying Eq (2.4), an order-reduction algorithm [27] and FFT and IFFT operations, Algorithm
2 realizes the product of A−1 and v in the real number fields.

Algorithm 1: Compute x and ΛS I

Step 1: Solve Ax = e1 by using any symmetric Toeplitz linear solver
Step 2: S I and S have the same first column: x = [x1, x2, . . . , xn]T

Step 3: The entries of ΛS I are computed from
√

nFnΩnx by applying an FFT
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Algorithm 2: An algorithm for z = A−1v in the real number field
Step 1: Calculate the vectors vS T = S T v and vS = S v by using Algorithm 1 in [27]
Step 2: Calculate ṽ = ΛS I FnΩnvS T + iΛ∗S I

FnΩnvS by applying the FFT
Step 3: Calculate z = 1

x1(i+1)Ω
∗
nF∗nṽ by applying Eq (2.4) and IFFT

In the proposed algorithms, the diagonal matrix can be represented by a vector containing the diag-
onal entries; then, the multiplication of the diagonal matrix and the vector is implemented by using a
dot product, thus reducing the storage and computational complexity.

To solve a sequence of linear systems with a constant symmetric Toeplitz coefficient matrix, Algo-
rithm 1 only needs to be computed once. The first step in Algorithm 1 is to solve the symmetric Toeplitz
linear system Ax = e1. Any symmetric Toeplitz linear solver can be used, such as the generalized min-
imal residual (GMRES) method, simplified quasi-minimal residual method, conjugate gradient (CG)
method, etc. Since A is set as a symmetric positive definite matrix in our numerical experiments in this
paper, we choose a the preconditioned CG (PCG) method with the Strang circulant preconditioner [32]
to solve it. The workload of Algorithm 1 is considered to be O(n log2 n).

One FFT or IFFT needs 5n log2 n + O(n) real arithmetic operations [33, p. 75], and one run of
Algorithm 1 in [27] needs 15n

2 log2 n + O(n). Algorithm 2 mainly consists of two FFTs, one IFFT and
two runs of Algorithm 1 in [27]. In the first step of Algorithm 2, it can save two FFTs with the length
n
2 when calculating S T v and S v simultaneously. Finally, we regard the workload of Algorithm 2 as
25n log2 n + O(n). The application of the order-reduction algorithm reduces the entire computational
complexity.

A sequence of Toeplitz linear systems with the same coefficient matrix is solved in [20, 21, 34].
The method of using the splitting Toeplitz matrix inversion greatly saves the computational time. This
reminds us that in a mathematical or engineering problem, we may be faced with thousands of linear
systems with the same symmetric Toeplitz matrix. By applying Algorithm 2, it will be more efficient
to solve these symmetric Toeplitz linear systems.

3. Quasi-symmetric Toeplitz linear solvers

In this section, we solve a real quasi-symmetric Toeplitz linear system

Pa = b, (3.1)

where a = [a1, a2, . . . , an]T is an unknown vector and b = [b1, b2, . . . , bn]T is known. The coefficient
matrix has a decomposition shown in Eq (1.2). We substitute Eq (1.2) into Eq (3.1) and multiply both
sides of the equation by A−1 from the left; given that In is an identity matrix, we have

(In + A−1αeT
1 + A−1βeT

n )a = A−1b. (3.2)

Let A−1α = µ, A−1β = ν and A−1b = η, where µ = [µ1, µ2, . . . , µn]T , ν = [ν1, ν2, . . . , νn]T and
η = [η1, η2, . . . , ηn]T . The solution of Eq (3.2) can be

a = (In + µeT
1 + νeT

n )−1η. (3.3)
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Therefore, solving Pa = b is the same as calculating Eq (3.3). Based on the Sherman-Morrison-
Woodbury (SMW) formula [35], (In + µeT

1 + νeT
n )−1 can be represented as

(In + µeT
1 + νeT

n )−1 = In −C, (3.4)

where C = (c j,k)n
j,k=1 and

c j,k =


(1+νn)µ j−µnν j

(1+µ1)(1+νn)−µnν1
, k = 1,

(1+µ1)ν j−ν1µ j

(1+µ1)(1+νn)−µnν1
, k = n,

0, otherwise.

(3.5)

According to Eqs (3.3)–(3.5), we have

a = (In −C)η = (η j − c j,1η1 − c j,nηn)n
j=1. (3.6)

To solve the linear system Pa = b, we must solve the symmetric Toeplitz systems Aµ = α, Aν = β

and Aη = b at first. By using Algorithms 1 and 2 and Eqs (3.5) and (3.6), we obtain the following:

Algorithm 3: An algorithm to solve the real quasi-symmetric Toeplitz system Pa = b
Step 1: Run Algorithm 1
Step 2: Calculate µ = A−1α, ν = A−1β and η = A−1b by using Algorithm 2
Step 3: Calculate c j,k by using Eq (3.5)
Step 4: Calculate a by using Eq (3.6)

Similarly, if we multiply Eq (1.2) by A−1 from the right, we can get P = (In + αeT
1 A−1 + βeT

n A−1)A
and substitute it into Eq (3.1); then,

(In + αeT
1 A−1 + βeT

n A−1)Aa = b. (3.7)

Denote eT
1 A−1 = ρT , eT

n A−1 = σT and Aa = ψ, where ρ = [ρ1, ρ2, . . . , ρn]T , σ = [σ1, σ2, . . . , σn]T

and ψ = [ψ1, ψ2, . . . , ψn]T . Then, Eq (3.7) can be rewritten as

ψ = (In + αρT + βσT )−1b. (3.8)

The SMW formula is applied to Eq (3.8); we can write

(In + αρT + βσT )−1 = In − D, (3.9)

where D = (d j,k)n
j,k=1 and

d j,k =


(1+σn−1ς2)ς1ρk−ρn−1ς1ς2σk

(1+ρ2ς1)(1+σn−1ς2)−σ2ρn−1ς1ς2
, j = 2,

(1+ρ2ς1)ς2σk−σ2ς1ς2ρk
(1+ρ2ς1)(1+σn−1ς2)−σ2ρn−1ς1ς2

, j = n − 1,

0, otherwise.

(3.10)

From Eqs (3.8)–(3.10), we can get
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ψ = (In − D)b = b − [0,
n∑

k=1

d2,kbk, 0, . . . , 0,
n∑

k=1

dn−1,kbk, 0]T . (3.11)

Since A is a symmetric Toeplitz matrix, if eT
1 A−1 = ρT and eT

n A−1 = σT , then Aρ = e1 and Aσ = en.
According to Eqs (3.10) and (3.11) and the proposed algorithms in Section 2, we propose another
algorithm for solving Pa = b.

Algorithm 4: An algorithm to solve the real quasi-symmetric Toeplitz system Pa = b
Step 1: Run Algorithm 1; x equals to ρ because Aρ = e1

Step 2: Calculate σ = A−1en according to Algorithm 2
Step 3: Calculate ψ by using Eqs (3.10) and (3.11)
Step 4: Calculate a = A−1ψ according to Algorithm 2

From the above analysis, it is quite evident that the main work of Algorithms 3 and 4 is solving three
symmetric Toeplitz linear systems. Moreover, we can omit one calculation of Aρ = e1 in Algorithm 4.

A greater number of symmetric Toeplitz linear systems will need to be solved if there are more
perturbations in the coefficient matrix of the quasi-symmetric Toeplitz linear system. It is therefore
meaningful to decompose the inverse of the symmetric Toeplitz matrix, as it will save computational
time, especially in the case of high-order systems.

4. Fast algorithm for the product of the quasi-symmetric Toeplitz matrix and vector

In terms of quasi-symmetric Toeplitz matrix-vector multiplication, the symmetric Toeplitz matrix A
can be seen as the sum of the circulant and skew-circulant matrices [36], that is,

Pv = (A + αeT
1 + βeT

n )v = (C + S + αe1
T + βeT

n )v, (4.1)

where v = (v1, v2, . . . , vn) is the vector and the circulant matrix C and the skew-circulant matrix S are
all symmetric.

The first columns of circulant and skew-circulant matrices need to be computed in the splitting step.
Considering the symmetry of n-th order A, the first columns of C and S can be obtained by applying the
first n

2 +1 (n is even) or n+1
2 (n is odd) elements instead of n elements, which can reduce the computation

complexity.
Based on the diagonalization scheme of the circulant matrix, C has the spectral decomposition

C = F∗n∆CFn, where Fn = (F j,k)n
j,k=1, F j,k = 1

√
ne

2πi( j−1)(k−1)
n , 1 ≤ j, k ≤ n, and ∆C is a diagonal matrix

containing the eigenvalues of C. In [27], an order-reduction algorithm for the multiplication of the real
skew-circulant matrix and vector is proposed. So the product of the quasi-symmetric Toeplitz matrix
and vector can be expressed as

Pv = F∗n∆CFnv + S v + αv1 + βvn, (4.2)
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By applying Eq (4.2), the order-reduction algorithm for real skew-circulant matrix-vector multipli-
cation, the FFT and IFFT operations, we give Algorithm 5 for Pv in the real number field as follows.

Algorithm 5: An algorithm for Pv based on the order-reduction algorithm in the real number
field

Step 1: Split the n × n symmetric A into the symmetric C and symmetric S , where ck and sk are
the first columns of C and S , respectively
Step 2: The entries of ∆C are computed from

√
nFnck by applying an FFT

Step 3: Calculate z1 = F∗n∆CFnv by applying an FFT, IFFT
Step 4: Calculate z2 = S v by applying Algorithm 1 in [27]
Step 5: Calculate Pv = z1 + z2 + αv1 + βvn

Because the complexity of one FFT or IFFT is 5n log2 n + O(n) [33, p. 75], Algorithm 1 in [27]
needs 15n

2 log2 n + O(n) real arithmetic operations. The complexity of Algorithm 5 is 45n
2 log2 n + O(n),

and it consists of one order-reduction algorithm, two FFTs and one IFFT.

5. Stability analysis

We find that the inverse factorization of the symmetric Toeplitz matrix is critical for the solution
of quasi-symmetric Toeplitz linear equations. The following is the error analysis of Eq (2.3) in terms
of the 1-norm, ∞-norm and 2-norm, respectively. Assume that x̂ = [x̂1, x̂2, . . . , x̂n]T is the numerical
solution of Ax = e1. If x̂1 , 0, we denote

Â−1 =
1

x̂1(i + 1)
(Ŝ I Ŝ T + iŜ I

∗
Ŝ ) (5.1)

as a perturbation of A−1, where the forms of Ŝ I and Ŝ are the same as those in Eq (2.3) and have
corresponding perturbations.

Theorem 1. Let ε > 0; if x1 , 0 and x̂1 , 0, suppose that the relative error of 1
x1

is ε̂ = |1/x1−1/x̂1 |

|1/x1 |
and

‖x̂ − x‖1
‖x‖1

≤ ε; (5.2)

we get

‖A−1 − Â−1‖1 ≤ |

√
2

x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖21 (5.3)

and
‖A−1 − Â−1‖1

‖A−1‖1
≤ |

√
2

x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖1. (5.4)

Proof. From the representation of A−1 and Â−1 and Eqs (2.3) and (5.1), we can get

‖A−1 − Â−1‖1 = ‖
1

x1(i + 1)
(S IS T + iS ∗I S ) −

1
x̂1(i + 1)

(Ŝ I Ŝ T + iŜ ∗I Ŝ )‖1

=
1
√

2
‖

1
x1

S IS T +
i
x1

S ∗I S −
1
x̂1

Ŝ I Ŝ T −
i
x̂1

Ŝ ∗I Ŝ ‖1

≤
1
√

2
‖(

1
x1

S I)S T − (
1
x̂1

Ŝ I)Ŝ T ‖1 +
1
√

2
‖S ∗I (

1
x1

S ) − Ŝ ∗I (
1
x̂1

Ŝ )‖1.

(5.5)
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On the one hand, we can get

‖(
1
x1

S I)S T − (
1
x̂1

Ŝ I)Ŝ T ‖1 = ‖(
1
x1

S I)S T − (
1
x1

S I)Ŝ T + (
1
x1

S I)Ŝ T − (
1
x̂1

Ŝ I)Ŝ T ‖1

= ‖(
1
x1

S I)(S T − Ŝ T ) + (
1
x1

S I −
1
x̂1

Ŝ I)Ŝ T ‖1

≤ |
1
x1
| · ‖S I‖1 · ‖S T − Ŝ T ‖1 + ‖

1
x1

S I −
1
x̂1

Ŝ I‖1 · ‖Ŝ T ‖1.

(5.6)

According to the structural characteristics of S I and S and Eq (5.11), we note that

‖S I‖1 = ‖x‖1, ∆‖S T − Ŝ T ‖1 = ‖x − x̂‖1 ≤ ε‖x‖1, ∆‖Ŝ T ‖1 = ‖x̂‖1 ≤ (1 + ε)‖x‖1. (5.7)

ε̂ = |1/x1−1/x̂1 |

|1/x1 |
is the relative error; then,

‖
1
x1

S I −
1
x̂1

Ŝ I‖1 = ‖
1
x1

x −
1
x̂1

x̂‖1

= |
1
x1
| · ‖x − x̂ + (1 −

x1

x̂1
)x̂‖1

≤ |
1
x1
|(‖x − x̂‖1 + ε̂‖x̂‖1)

≤ |
1
x1
|[ε + (1 + ε)ε̂] · ‖x‖1.

(5.8)

Combining Eqs (5.6)–(5.8), we thus obtain

‖(
1
x1

S I)S T − (
1
x̂1

Ŝ I)Ŝ T ‖1 ≤ |
1
x1
| · ‖x‖21 · ε + |

1
x1
|[ε + (1 + ε)ε̂](1 + ε) · ‖x‖21

= |
1
x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖21.

(5.9)

Similarly, on the other hand,

‖S ∗I (
1
x1

S ) − Ŝ ∗I (
1
x̂1

Ŝ )‖1 ≤ |
1
x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖21. (5.10)

Based on Eqs (5.5), (5.9) and (5.10), we can write

‖A−1 − Â−1‖1 ≤ |

√
2

x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖21.

By Ax = e1, it is proven that ‖x‖1 ≤ ‖A−1‖1, so

‖A−1 − Â−1‖1

‖A−1‖1
≤ |

√
2

x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖1.
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Theorem 2. Let ε > 0; if x1 , 0, x̂1 , 0 and

‖x̂ − x‖1
‖x‖1

≤ ε, (5.11)

then

‖A−1 − Â−1‖∞ ≤ |

√
2

x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}]‖x‖21 (5.12)

and
‖A−1 − Â−1‖∞

‖A−1‖∞
≤ |

√
2

x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖1, (5.13)

where ε̂ = |1/x1−1/x̂1 |

|1/x1 |
is the relative error of 1

x1
.

Proof. Similar to Theorem 1, this proof is based on the same conditions:

‖x‖1 ≤ ‖A−1‖∞, ‖S I‖∞ = ‖x‖1, ‖Ŝ T ‖∞ = ‖x̂‖1 ≤ (1 + ε)‖x‖1,

‖S T − Ŝ T ‖∞ = ‖x − x̂‖1 ≤ ε‖x‖1

and
‖

1
x1

S I −
1
x̂1

Ŝ I‖∞ = ‖
1
x1

x −
1
x̂1

x̂‖1 ≤ |
1
x1
|[ε + (1 + ε)ε̂] · ‖x‖1.

Theorem 3. Under the assumptions and concepts of the previous two theorems, the upper bound of
the 2-norm is said to be

‖A−1 − Â−1‖2 ≤ |

√
2

x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖21 (5.14)

and
‖A−1 − Â−1‖2

‖A−1‖2
≤ |

√
2n

x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖1. (5.15)

Proof. As we all know, ‖A−1− Â−1‖22 ≤ ‖A
−1− Â−1‖1 · ‖A−1− Â−1‖∞; from Eqs (5.3) and (5.12), we have

‖A−1 − Â−1‖2 ≤ |

√
2

x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖21.

Recall that
‖x‖1 ≤

√
n‖x‖2 =

√
n‖A−1e1‖2 ≤

√
n‖A−1‖2‖e1‖2 =

√
n‖A−1‖2. (5.16)

From Eqs (5.14) and (5.16), we can get

‖A−1 − Â−1‖2

‖A−1‖2
≤ |

√
2n

x1
|{ε + [ε + (1 + ε)ε̂](1 + ε)}‖x‖1.

We show the stability analysis of inverse factorization of the symmetric Toeplitz matrix in this
section. The absolute and relative perturbation upper bounds are shown in Eqs (5.3) and (5.4), (5.12)
and (5.13), (5.14) and (5.15), as far as Ax = e1 is solvable.
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6. Numerical simulations

In this section, we give some examples for the comparison of different algorithms. The first two
examples present a comparison of different quasi-symmetric Toeplitz linear solvers. Examples 3 and 4
are devoted to the fast algorithm for the quasi-symmetric Toeplitz matrix-vector multiplication.

These experiments were done by using MATLAB (R2022a) on a laptop with the following specifi-
cations: 16 GB RAM, AMD Ryzen 7 5800H CPU 3.20 GHz. In the following tables, the calculation
time is in seconds, “n” denotes the matrix order and “—” indicates that it is out of MATLAB’s memory.

Example 1. An n × n quasi-symmetric Toeplitz linear system Pa = b is considered in this example.
According to Eq (1.2), the first column of A is (ti)n

i=1 = 1
i , and ς1 and ς2 are random values in the range

of (0, 1). Assume that aexact = [1, 1, ..., 1]T is the exact solution, so the vector b is b = Paexact.

Table 1. Error and CPU time for Example 1 by different methods.

n
Back-slash AlgHuang I Algorithm 3 AlgHuang II Algorithm 4

Error Time Error Time Error Time Error Time Error Time
212 1.6531e-13 0.3730 9.7445e-05 0.0055 6.0940e-07 0.0042 7.1225e-05 0.0053 5.6413e-07 0.0042
213 3.6759e-13 2.1042 6.7327e-06 0.0110 2.4744e-06 0.0077 8.6325e-06 0.0105 1.7807e-06 0.0072
214 6.9422e-13 14.6981 1.0160e-05 0.0193 4.5065e-06 0.0149 1.2015e-05 0.0187 6.9125e-06 0.0145
215 — — 1.7506e-05 0.0543 9.6450e-06 0.0374 1.7114e-05 0.0526 1.3520e-05 0.0368
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

223 — — 3.3928e-04 22.3273 2.3274e-05 17.2194 6.6408e-04 20.4695 2.5144e-05 12.1401
224 — — 5.0053e-04 40.9616 2.4198e-05 30.3279 4.4434e-04 38.0793 3.3228e-05 23.7662

A comparison of the error and time required to solve a quasi-symmetric Toeplitz linear system
is presented in Table 1. The derived two algorithms for solving Pa = b are shown in the table as
Algorithms 3 and 4. Based on Algorithm 3, AlgHuang I replaces Steps 1 and 2 with Huang’s algorithm
[20, 21] for solving three symmetric Toeplitz systems. Similarly, AlgHuang II was executed based on
Algorithm 4. The back-slash method means solving Pa = b directly by using the back-slash operator
in MATLAB. “Error” was set to be ‖a−aexact

aexact
‖∞, and the stopping criterion for those algorithms, besides

Back-slash, was set to be 1 × 10−7.
Algorithms 3 and 4 have significate superiority over the other methods. They can solve high-order

quasi-symmetric Toeplitz linear systems. However, Back-slash cannot work when the matrix order is
above 214. The proposed Algorithms 3 and 4 have the shortest computational time. They perform better
than AlgHuang I and AlgHuang II in high-order linear systems due to the application of the order-reduction
algorithm.

Example 2. Consider another quasi-symmetric Toeplitz linear system Pa = b, the first column of A
and that ς1 and ς2 in Eq (1.2) are generated from an open interval (0, 1). The sum of the elements in
the first column was added to the diagonal entries of A to keep A as a diagonally dominant matrix. The
exact solution of the system was set to be aexact = [1, 1, ..., 1]T .

Table 2 shows a comparison of different methods for solving Pa = b for Example 2. AlgPGMRES

refers to solving the linear system by using the GMRES method with the preconditioner. Since P is
a nonsymmetric matrix, the GMRES method can be utilized to solve Pa = b. In order to accelerate
the convergence rate, the Strang circulant preconditioner [32] of the symmetric Toeplitz matrix A was
established.

Electronic Research Archive Volume 31, Issue 4, 1966–1981.



1976

Table 2. Error and CPU time for Example 2 by different methods.

n
Back-slash AlgPGMRES Algorithm 3 Algorithm 4

Error Time Error Time Error Time Error Time
212 2.2649e-14 0.3658 2.7463e-07 0.0015 8.2994e-09 0.0051 4.2296e-09 0.0051
213 3.1530e-14 2.8237 6.8151e-08 0.0026 1.1341e-09 0.0088 6.1199e-10 0.0083
214 4.7296e-14 20.7760 2.0729e-08 0.0043 4.9841e-08 0.0150 9.4785e-08 0.0136
215 — — 1.1276e-08 0.0091 1.2811e-08 0.0316 1.2697e-08 0.0301
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

223 — — 1.7832e-08 2.7828 3.2381e-08 12.1427 3.8938e-08 7.1750
224 — — 7.2746e-09 5.9250 1.0605e-08 24.9603 2.4069e-08 14.3739

According to theoretical analysis, the complexity of Algorithm 4 is lower than that of Algorithm
3. The results show that Algorithm 3 takes more time than Algorithm 4, which is consistent with the
theoretical analysis. AlgPGMRES performs better than the other methods. However, compared with the
algorithm for solving symmetric systems, the convergence analysis of the GMRES algorithm is very
difficult, and there is no clear conclusion at present.

Example 3. Consider the multiplication of Pv. The vector v is Gaussian distributed. The quasi-
symmetric Toeplitz matrix P is decomposed as Eq (1.2), where the first column of A is (ti)n

i=1 = 1
i and

ς1 and ς2 are random values in the range (0, 1).

Table 3. Computational time for Pv in Example 3.

n Pv-direct Pv-splitting Algorithm 5
212 0.0052 5.9079e-04 6.0490e-04
213 0.0231 9.5132e-04 9.3785e-04
214 0.0924 0.0020 0.0017
215 — 0.0034 0.0032
...

...
...

...

222 — 0.5931 0.5177
223 — 1.2814 1.1760
224 — 2.4970 2.2437

In Table 3, Pv-direct denotes calculation of the quasi-symmetric Toeplitz matrix-vector multiplica-
tion via MATLAB. Pv-splitting refers to splitting P according to Eq (4.1) first, and then utilizing the
diagonalization scheme of the circulant matrix and skew-circulant matrix for fast calculation. Algo-
rithm 5 is the proposed quasi-symmetric Toeplitz matrix-vector multiplication. Obviously, Algorithm
5 consumed the least amount of time.

Example 4. Consider the multiplication of Pv, the first column of A, ς1 and ς2 in Eq (1.2), and that the
vector v are random values in the range (0, 1). The sum of the elements in the first column was added
to the diagonal entries of A.

Table 4 shows another example for the quasi-symmetric Toeplitz matrix-vector multiplication. As
the matrix order increases, the efficiency of Algorithm 5 becomes increases. Our proposed algorithm
is suitable for high-order matrix-vector multiplication. However, the Pv-direct method not only takes
the longest time, but it also cannot work when the matrix order is above 214.
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Table 4. Computational time for Pv in Example 4.

n Pv-direct Pv-splitting Algorithm 5
212 0.0040 5.7744e-04 5.6916e-04
213 0.0191 9.7499e-04 9.3755e-04
214 0.0624 0.0018 0.0017
215 — 0.0034 0.0031
...

...
...

...

222 — 0.5712 0.5041
223 — 1.2831 1.1746
224 — 2.5153 2.2225

7. Applications

In the past decades, image encryption and decryption have been widely researched in the area of
information security. The results show that the proposed algorithms can be used to encrypt and decrypt
images.

Example 1. Based on Eq (1.2), we consider a quasi-symmetric Toeplitz matrix P, where the entries in
the first column of A and ς1 and ς2 are random values in the range (0, 1). To keep P as a diagonally
dominant matrix, we added a parameter to the diagonal entries of P. Images were encrypted and
decrypted by left-multiplying by P2 and P−2, respectively.

Original Image Encrypted Image Decrypted Image

Figure 1. 256 × 256 grayscale image for Example 1.

Figures 1– 3 present the effects of image encryption and decryption. The famous figure “Lenna”
is taken as an example. Let the original image matrix be X = [x1, x2, . . . , x256]; the encrypted image
matrix can be obtained by matrix-vector multiplication via Algorithm 5, that is, Y = [y1, y2, . . . , y256] =

P(P[x1, x2, . . . , x256]). The decrypted image matrix can be computed by X̂ = [x̂1, x̂2, . . . , x̂256] =

P−1(P−1[y1, y2, . . . , y256]). Algorithm 4 was performed for image decryption because of its lower com-
plexity than Algorithm 3.
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Original Image Encrypted Image Decrypted Image

Figure 2. 512 × 512 grayscale image for Example 1.

Original Image Encrypted Image Decrypted Image

Figure 3. 1024 × 1024 grayscale image for Example 1.

In the process of image encryption and decryption, it is necessary to do multiple matrix-vector
multiplications with the same quasi-symmetric Toeplitz matrix and solve linear systems with the same
coefficient matrix. Some calculations can be done only once, like Steps 1 and 2 of Algorithm 5 in
image encryption, as well as Steps 1 and 2 of Algorithm 4 in image decryption. So, the computational
time will be saved.

It is obvious that our proposed algorithms can realize efficient encryption and decryption for differ-
ent pixel-sized images.

8. Conclusions

Algorithms for solving a class of real quasi-symmetric Toeplitz linear systems are shown in this
paper. We have proposed methods for solving a sequence of linear systems with the constant sym-
metric Toeplitz matrix based on the decomposition of Toeplitz matrix inversion. By splitting the co-
efficient matrix into a symmetric Toeplitz matrix plus two low-rank matrices and combining it with
the SMW formula, two fast algorithms with O(n log2 n) complexity have been given to solve the real
quasi-symmetric Toeplitz linear system. Quasi-symmetric Toeplitz matrix-vector multiplication in the
real number field has been presented. Structural perturbation analysis of the inverse factorization of
symmetric Toeplitz was also analyzed. Numerical simulations and applications have shown that the
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proposed algorithms are accurate and efficient.
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