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Abstract: Visual Question Answering (VQA) with external knowledge requires external knowledge
and visual content to answer questions about images. The defect of existing VQA solutions is that they
need to identify task-related information in the obtained pictures, questions, and knowledge graphs. It
is necessary to properly fuse and embed the information between different modes identified, to reduce
the noise and difficulty in cross-modality reasoning of VQA models. However, this process of ratio-
nally integrating information between different modes and joint reasoning to find relevant evidence
to correctly predict the answer to the question still deserves further study. This paper proposes a bi-
modal Graph Neural Network model combining pre-trained Language Models and Knowledge Graphs
(BIGNN-LM-KG). Researchers built the concepts graph by the images and questions concepts sepa-
rately. In constructing the concept graph, we used the combined reasoning advantages of LM+KG.
Specifically, use KG to jointly infer the images and question entity concepts to build a concept graph.
Use LM to calculate the correlation score to screen the nodes and paths of the concept graph. Then,
we form a visual graph from the visual and spatial features of the filtered image entities. We use the
improved GNN to learn the representation of the two graphs and to predict the most likely answer by
fusing the information of two different modality graphs using a modality fusion GNN. On the common
dataset of VQA, the model we proposed obtains good experiment results. It also verifies the validity
of each component in the model and the interpretability of the model.
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1. Introduction

VQA is an attractive research direction [1], which aims to analyze multimodal content from images
and questions. VQA model has grounded, reasoning, and translation capabilities and can answer ques-
tions in natural language based on images. In recent works [2–8], VQA problems, which refer only
to visible image content and only use local computational resources to solve VQA tasks, have been
very successful. As shown in Figure 1, considering the problem, the model needs to visually locate
the “fruit” and relate the knowledge that “banana is sweet and healthy”. Thus, collecting evidence
and additional information related to the problem from different models is critical to achieving broad
VQA; on the other hand, after information gathering is complete, the VQA system must combine the
information obtained to infer and obtain the answer to the question.

Figure 1. The example of VQA task.

Existing work [9, 10] solves the problem by trans the questions to keywords and retrieving sup-
porting entities only through keyword matching to get the answers. However, the proposed method is
vulnerable to attack when the problem does not accurately mention visual concepts (such as synonyms
and homographs). The information referred to is not captured in the graph of the facts (for example,
the visual concept “yellow” in Figure 1 may omission will cause errors). This method can efficiently
reduce the amount of computation compared to the traditional semantic similarity-based reasoning
method. In order to solve these problems, [11] introduced visual information to the actual graph and
used the implicit knowledge graph to infer the answer based on problem-based reasoning.

On the other hand, although implicit knowledge LMs have a broad range of knowledge coverage,
they could improve in terms of experience with structured reasoning [12]. In contrast, KGs are more
suited to structured reasoning [13,14]. They can obtain interpretable predictions by providing paths for
reasoning [15] but can lack coverage and be noisy [16,17]. Thus, the LM+KG module, combining the
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complementary benefits of LMs and KGs, the LM+KG modal may improve the reasoning performance
of the VQA algorithm and the prediction accuracy of the answers to the data set.

Figure 2. The framework of model BIGNN-LM-KG.

This article introduces a model that co-learns from vision, language, and KG embedding and cap-
tures specific interactions in images and problem concepts. Our method BIGNN-LM-KG flow in
Figure 2. First, we will extract the conceptual information in the pictures and questions and use pre-
trained LM to encode the extracted in the problems and image entity concepts. We use two graph types
to construct the problems and images given by VQA tasks. We use the Kagnet [18] to filter nodes and
edges effectively in the constructed graph. We specially constructed the concept graph of the existing
concepts using KG reasoning. At the same time, we use entity features and location information to
construct a visual graph for the information contained in the images. Then, the concepts and visual
graphs are sent into the improved GNN to learn the representation. The representation learned by these
two kinds of graphs uses a modal fuse GNN for knowledge integration between modalities. Finally, the
integration results are fed to the classifier to predicate the answer. In this article, our main contributions
include the following aspects:

• For integrating the two information modalities, the difference between conceptual and visual in-
formation makes integrating the two information modalities. Here we propose a GNN neural
network based on modal perception to extract evidence related to question answers from two
different modalities. Notably, this paper uses the modality fusion GNN to filter out the concept
information with the highest degree of relevance based on the modal information gained from the
fusion and then perform the reasoning of the answer based on this.
• For it is difficult to deduce valid information if the VQA system constructs a conceptual diagram

directly from conceptual information extracted from pictures and problem text to predict the an-
swer. Therefore, we use LM + KG’s joint inference advantage to construct the graph and add
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node correlation scores to the conceptual graph to generalize the weight of KG information. So
that makes the constructed conceptual diagram contains information that is more relevant to the
answer to the question.

The organizational structure of this paper is as follows: The first section mainly introduces the
research background and purpose of VQA and briefly analyzes the main problems faced by VQA at
present. The second section reviews the classical models in the VQA field and introduces the devel-
opment of Graph Neural Networks (GNN), LM, and KG commonly used in VQA. The third section
briefly introduces the VQA model BIGNN-LM-KG proposed in this paper and introduces the con-
struction of different modality graphs and their fusion methods. The fourth section verifies the effect
of the model in the VQA dataset, conducts an ablation study on various parts of the model to verify the
help of different parts of the model for the whole, and demonstrates the interpretability of the model.
The fifth section discusses the advantages and disadvantages of the proposed model. The last section
summarizes the article and prospects the further research in the VQA field.

2. Related work

2.1. Knowledge-based VQA

The CNN-RNN architecture using global visual features to represent images is a typical solution of
VQA [18]. In the following years, researchers have introduced attention mechanisms [19,20] and rela-
tional reasoning mechanisms [21–23] to improve VQA accuracy continuously. However, this process
has ignored one of the most critical points. When answering VQA questions, people will involun-
tarily combine external knowledge and visual information, but it is not easy for the VQA algorithm.
Therefore, [24] proposed a new VQA dataset named FVQA. The questions in this dataset introduce
supporting fact associations; the VQA model must reason about various facts when answering ques-
tions.

The work based on FVQA usually requires selecting an entity from the facts as the answer. The
method in [10] can infer the predicted answer according to the information extracted from the knowl-
edge base and pictures. However, its approach relies predominantly on predefined templates. So it has
stringent requirements on the format and type of questions. At the same time, this method is only used
to extract entities from image information without contacting the content entities of the questions when
making inferences in the prediction of answers. In [25], proposed adding visual relationship judgment
between different objects and a problem-oriented attention mechanism, but there were great difficulties
in relationship judgment during the experiment. In [26], proposed multi-scale relational reasoning to
conduct multimodal VQA and designed a regional attention scheme to help extract information and
regions of interest related to the problem, which achieved good results in VQA data sets without exter-
nal knowledge. This paper extracts conceptual information from the picture and the question text and
combines external knowledge. Moreover, use LM+KG joint reasoning to construct the concept graph,
obtain evidence related to the prediction problem, and predict the problem’s solution by studying the
multi-layer GNN network structure.
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2.2. Graph neural networks

In recent years, GNN has been developing rapidly [27]. Although isomorphic graphs have many
applications, in reality, most of the graphs are heterogeneous. The primary graph convolution network
(GCN) [28] only uses the neighborhood information of the graph for message transmission and cannot
distinguish all relationship types. Relation-aware Graph Convolution Network (RGCN) [29] popular-
izes GNN by coding each side with different relations separately to fit the multi-relational graph, then
dealing with the knowledge base is different relations between entities. Heterogeneous Graph Atten-
tion Networks (HAN) [30] and Heterogeneous Graph Attention Networks for Semi-supervised Short
Text Classification (HGAT) [31] developed a heterogeneous graph focus network with a two-layer fo-
cus mechanism. These methods are all used to model different nodes and edges in the unified graph. In
the research work of this paper, we build a heterogeneous graph containing different modal informa-
tion to realize the fusion and reasoning of the information contained in VQA. After the representation
learning through the intra-modal convolution of the GNN network, we also use the modality fusion
GNN to conduct cross-modal convolution reasoning of the learned representation to obtain the final
answer prediction.

2.3. LM+KG

The large-scale knowledge base has become an essential external knowledge representation re-
source by organizing the world’s facts into structured databases. A set of object triples (also called
facts) of the subject-predicate is formed in a typical knowledge base. This type of knowledge base is
often called a Knowledge Graph (KG) [32] due to its graphical representation. The entity is the node,
and the relationship is the edge of the linked node. In a triple, two entities are specified as being related
by a specific relation, such as < Biden, America, president >.

Despite the remarkable success of pre-trained large language models LMs in many QA tasks
[33, 34], there is a paucity of work on their integration with KG and image representation in VQA
tasks. A new language representation method, the BERT-based token embedding method, is proposed
by [35]; however, this model is also a query-based approach. The algorithm first takes an entity name
as a node and inserts a corresponding KG triplet on it to obtain a new node; The node then injects
entities into the query to solve the problem.

Generally, knowledge can be implicitly encoded in pre-trained LM on unstructured texts or ex-
plicitly expressed in structured KG. All these two methods are widely used in the field of natural
language processing. Moreover, recent research has also been devoted to the combination of LMs and
KG [36, 37]; the methods of these articles retrieve subgraphs on KG by obtaining subject entities, that
is, KG entities and their multi-hop neighbors mentioned in the given information. However, this in-
troduces many entity nodes unrelated to the given information semantics. These nodes introduce not
only different subject entities but also multiple hops. In this paper, we use LM+KG to jointly infer the
concept information extracted from the VQA task to build the concept graph. Specifically, we use KG
to match the relationship subgraph between the entity concepts extracted. LM will encode the nodes
and edges in the subgraph to form a concept graph.
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3. Methods

For the prediction of VQA task answer A with external knowledge, in addition to the question Q
and image I provided by itself, we also need a knowledge base containing facts in the form of triples,
namely < c1, r, c2 >, where c1 and c2 are entity concepts extracted from images and questions. R
represents the relationship between c1 and c2. On this basis, this paper proposes a VQA problem-
solving framework based on external knowledge. This framework can select the objects that best meet
the user’s needs from multiple supporting entities, classify these objects, and then give corresponding
c1 or c2 prediction answers according to the characteristics of different categories.

First, we need to extract the conceptual information from the picture and question text and then
use KG to match the relationship subgraph between the entity concepts extracted. LM will encode
the nodes and edges in the subgraph to form a concept graph. At the same time, the spatial and
visual information in the image will be composed to form a visual graph. On this basis, we propose
a reasoning method based on a bimodal fusion GNN. It selects the knowledge associated with the
question from each layer of the graph through the convolution of the inner modality graph from a
single mode. Performs iterative reasoning from two modes adaptively through the convolution of modal
fusion graph and obtains the answer with the highest probability through joint analysis of entities. The
picture shows the detailed structure of our model.

3.1. Identify the concept of task inclusion

A simple method of concept recognition is to precisely match the entity concept in the sentence
with the existing nodes in the KG. For example, in the question “Which sweet food is healthier than
chocolate?” the exact matching results QC will be fitting, chocolate, f ood, healthier, sweet. We will
use some rules in Kagnet [10] to improve this direct method, such as soft matching via lemmatization
and stop word filtering. According to the concept identification results of the question text, we will
name the remaining K concepts QCi.

Given the image Img, we use the Bottom-Up Attention Model [38] to identify the entity concep-
tual objects in a group of images. FC = [FC1, FC2, ..., FC36], where each object FCi includes the
visual feature vector CVi (dv = 2048), spatial eigenvector CBi (db = 4) and associated entity label ICi.
Specifically, CBI =

[
xi; yi; di; hi

]
, where (xi, yi) represents the coordinates of the upper left corner, and

hi and di represent the height and width of the bounding box, respectively. For each entity concept ICi

in the picture. The concept group IC comprises Ici, and the concept group result QC is extracted from
the question text through the Kagenet method. Use the pre-trained LM text vector model to vector-
ize the IC and QC and calculate the Word Mover Distance for the vectorized two vector groups. The
calculation process is as follows:

min
T>0

n∑
i, j=1

Ti, j · d(i, j) (3.1)

n∑
j=1

Ti, j = QCi i ∈ (1, ..., k) (3.2)
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n∑
j=1

Ti, j = IC j j ∈ (1, ..., k) (3.3)

where T ∈ Rn+n,Ti, j > 0 indicates the word QCi in vector group QC transfer to another vector group
IC Word ICi distance weight. The d (i, j) is the distance of the word between QCi and ICi.

After the image concept group is filtered, only the first k distance image concepts ICi between the
text vector QC have been retained. Each object’s visual and spatial characteristics correspond to each
concept.

3.2. Graph construction

3.2.1. Entity concept graph

A practical method to effectively match different concepts of question-answer pairs in QA questions
is proposed in Kagnet [18]. This paper also adopts this method for each question concept QCi ∈ QC
and image entity concept ICi ∈ IC. We can effectively find the path between concepts shorter than
k-hop [15]. In order to use the knowledge obtained from LM and KG to infer the given entity concept,
this paper uses the pre-trained LM to obtain the entity concept expression in the question and image.
And then adds an edge between the concept pairs in QC or IC to retrieve that there is a joint concept
subgraph GConcept in KG. This subgraph contains two knowledge sources: questions and pictures.

Further, to preserve the connection between the question text and the nodes of the joint concept
subgraph, this paper uses the research method of QAGNN [39] to introduce a new question text node
Qz on the joint concept subgraph. The node Qz is obtained by LM reasoning the question text. Qz and
the subject entities on GConcept are connected.

Each node in GConcept belongs to the following four types: the context node QT , the node in QC,
the node in IC, and other nodes introduced from KG. Many nodes on the KG subgraph GConcept, that
is, nodes retrieved from the KG heuristic, can interfere with the prediction of the current question
answer. As can see from the retrieved KG subgraph GConcept in Figure 3, the k-hop neighbor in QC
may contain some nodes that are not beneficial to the reasoning process, such as the node “holiday”
and “riverbank” deviate from the theme; “People” and “local” are ordinary. These irrelevant nodes
will cause overfitting or unnecessary noise to reasoning, especially when there are many QC and IC
nodes. Taking ConceptNet [40] as an example, even if only 3-hop neighbors are considered, GConcept

will become a KG subgraph with an average of more than 400 nodes.
To reduce the GConcept number of nodes and paths. This paper uses a node correlation score. In

this method, the correlation score of each node Cn on the KG subgraph GConcept is calculated through
the pre-trained LM, and the basis for scoring is the question text Q provided by the task. For GConcept,
each node Cn connects the entity concept text text(Cn) with the question text text(Q) to calculate the
correlation score Cs:

Cs = LMhead(LMenc([text(Cn)]; text(Q))) (3.4)

where LMhead ◦ LMenc represents the possibility of the text(Cn) of the entity concept calculated by
LM, the correlation score Cs is the importance of each node Cn in GConcept. It is relative to the given
question Q helps GConcept prunes the path and delete the node.
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Specifically, for subgraph GConcept after path pruning and node deletion, the embedding tu of node u
and the embedding ruv of the relationship between node u and node v are defined as follows:

tu = W1tu + W2 (3.5)

ru,v = MLP(W3(eu,v, tu, tv)) (3.6)

where W1,W2, ...,W23 are learning parameters, tu,tv is the representation vector of the text of node
u, v, euv is the representation vector of the relationship type between u and v nodes.

3.2.2. Image visual graph

After screening the image concept group, we retain the first k image concept labels IC related to
question Q and the visual and spatial characteristics of each object entity corresponding to each concept
label. Based on the existing visual and spatial features, we use the concept label ICi corresponding
entity object feature ICF features as the graph node. While the spatial feature vector Fbi =

[
xi; yi; di; hi

]
.

After the following encoding, it is used as the edge si, j of the graph:

si, j =

[
x j − xi

di
,

y j − yi

hi
,

d j

di
,

h j

hi
,

d j · hi

di · hi

]
(3.7)

The visual graph and concepts graph construction overview will show in Figure 3.

Figure 3. The visual graph and concepts graph construction overview.
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3.3. GNN construction

Because the concept and visual graphs contain specific knowledge of various modalities related
to the question, this paper makes some improvements. It is based on GAN [41] according to the
characteristics of the visual graph and the concept graph so that it can independently filter out the
evidence of significance from these two graphs to predict the answer to the question.

3.3.1. Concept graph GNN

This paper establishes a GNN architecture implementing the graph GConcept of reasoning based on
the graph attention framework GAT [30] for the concept graph module. The update of node representa-
tion in this model comes from the message passing between adjacent nodes on the graph. Specifically,
for an n-layer GNN, in each layer, GNN will update the representation U (n)

p ∈ R
D of each node p in the

following way:

U (n+1)
p = RELU

W4

 n∑
u∈Np∪{v}

αu,v + mu,v


 + W5U (n)

p (3.8)

whereNp represents the neighborhood of node p, mu,v represents the message in the layer passed from
node u to neighbor node v, αu,v indicates the attention weight when the message mu,v is passed from u
to v. Moreover, mu,v will be calculated according to the following calculation process.

Relationship-aware messages. The message passing from two nodes of the multi-graph GConcept

needs to include the relationship between the two nodes. Therefore, in order to facilitate the calculation
of message passing, the message from node u to node v is:

mu,v = W6U (n)
p + W7

[
tu, ru,v

]
(3.9)

For the vectorization of the correlation score of node p, we will use the following formula to deter-
mine:

Csp = MLP(W8Csp) (3.10)

For the D dimension attention weight between node u and node v:

qu = W9[U (n)
u , [tu,Csu]] (3.11)

ku,v = W10U (n)
v + W11[tv,Csv, ru,v] (3.12)

αu,v =
exp( qu

T+ku,v
√

D
)∑

v′∈Np∪{u} exp( quT+ku,v
√

D
)

(3.13)
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3.3.2. Visual graph GNN

For a GNN of n layers in the visual graph, the GNN will update the representation of each node p
of the visual graph in the following way for each layer:

Û (n)
p = RELU

(
W12

(
mp, αp, Û (n+1)

p

))
(3.14)

For each node in the visual graph and each edge between two nodes, we calculate the attention
weight of node u and the attention weight of the edge su,v between node u and node v through its
associated question text Q:

αu = so f tmax
(
W13

T tanh (W14Fu + W15q)
)

(3.15)

βu,v = so f tmax
(
W16

T tanh
(
W17Fv

′ + W18q′
))

(3.16)

where q represents the quetion Q embedding vector obtained from LM,Fu represents the entity features
of node u , Fv

′ = W19[Fv, su,v], q′ = W20[Fv, q], and[·, ·] represent concatenation operation.
Based on the above Eqs (14)–(16), the message passing from node u to node v is:

mu,v =
∑

u∈Np∪{v}

βu,vFv
′

(3.17)

3.3.3. Bimodal graph fusion GNN

The answer to the VQA model usually comes from the entities on two modality graphs. This paper
uses the bimodal fusion GNN to collect the complementary information on the visual graph and fuse
it with the concept graph. Finally, after the fusion, the judgment is made to infer all entities to form a
global decision on the answers.

γu,v = so f tmax
(
W21

T tanh
(
W22Û (n)

u + W23

[
U (n)

v , q
]))

(3.18)

where γu,v represents the attention weight between the concept and visual graphs. So, the message
passing of Bimodal graph fusion GNN is:

mu,v
V−C =

∑
u∈Np∪{v}

γu,vÛ (n)
v (3.19)

Through the bimodal fusion GNN, we try to integrate valuable information from concepts and visual
graphs. The fusion information will be iterated continuously to obtain the final entity representation of
the VQA task answer. Then we input these entity representation and question representation vectors
into the binary classifier and select the entity with the highest probability of answering from the entities
for output.

4. Experiments and results

This section will describe the experimental environment, the datasets used, and the evaluation met-
rics used to evaluate the models we present.
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4.1. Implementation details

We set the size of the GNN module (D = 300) and the number of layers (L = 3), and the dropout
rate of each layer is 0.3. When we train the model, we use the Adam optimizer, which has 30 epochs,
the batch size is 32, and the learning rate for the module is 3e-4.

4.2. Public datasets

We used two VQA datasets, FVQA and Visual7W+KB, to verify the effect of the model. We use
the more classic CP knowledge graph as a supplement for external knowledge.

ConceptNet. Knowledge graph ConceptNet, a general domain knowledge graph, serves as our
structured knowledge source graph [40]. There are 799,273 nodes and 2,487,810 edges in this knowl-
edge graph. The node embedding is initialized by the entity embedding written in Kagnet. The entity
is embedded on the ConceptNet to apply the pre-trained LMs to all triples. Then the set representation
of each entity is obtained.

FVQA. FVQA dataset [10] includes a knowledge base of 2190 pictures, 5286 questions, and
193449 facts. The images in the dataset are randomly collected from the MSCOCO [42], and the
original 80k-40k training and verification segmentation is used as the training and test segmentation.
The fact is constructed by extracting top-level visual concepts from image data sets and querying them
on WebChild, ConceptNet, DBPedia, and other KGs.

Visual7W+KB. Visual7W dataset [43] is based on a subset of images selected from the visual
genome [44], which includes multiple questions and answers in the form of multiple choices. In
addition, Visual7W [45] created a set of knowledge-based test questions by filling in a question-and-
answer mode (KB dataset) composed of visual content and external knowledge. Name Visual7W+KB
uses ConceptNet to manage issues but does not provide a knowledge base for specific tasks.

4.3. Experimental results

The model proposed in this paper is compared with the existing model On the FVQA dataset and
the Visual7W+KB dataset. Furthermore, the results are shown in Tables 1 and 2.

Table 1. Experimental result on FVQA dataset.

Method
Overall Accuracy
Top-1 Top-3

LSTM-Question+Image+Pre-VQA 24.98 40.4
Hie-Question+Image+Pre-VQA 43.14 59.44
FVQA (top-3-QQgraphing) 56.91 64.65
FVQA (Ensemble) 58.76 -
Straight to the Facts (STTF) 62.2 75.6
Out of the Box (OB) 69.35 80.25
BIGNN-LM-KG(ours) 71.27 83.59
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Table 2. Experimental result on Visual7W+KB dataset.

Method
Overall Accuracy
Top-1 Top-3

KDMN-NoKnowledge 45.1 -
KDMN-NoMemory 51.9 -
KDMN 57.9 -
KDMN-Ensemble 60.9 -
Out of the Box (OB) 57.32 71.61
BIGNN-LM-KG(ours) 67.59 79.84

It can be seen that compared with the best model OB in the FVQA dataset, the model in this paper
improves the Top-1 accuracy by 1.92% and improves the Top-3 accuracy by 3.34%. The model in this
paper, in the Visual7W+KB dataset, has improved 10.27% in Top-1 accuracy and improved 8.23% in
Top-3 accuracy compared with the best model OB. Model OB is similar to the research idea of our
model, and it also uses a GNN to evaluate all entities. However, it introduces entities equally without
selection or screening. The model in this paper has been significantly improved by using LM+KG to
construct the concept graph and introducing the GNN of the modality fusion.

4.4. Ablation study

In this section, we present the results of ablation experiments to verify the contributions of various
components in the model. As for the LM+KG modal, it can be seen from Table 3 that for a complete
model, if the model deletes the LM+KG part, it only uses the question concept and image entity
concept to construct graphs without any joint reasoning among knowledge. It is easy to find that after
comparing with the complete model, the TOP-1 accuracy without the LM+KG part model structure
will decrease by 3.1%. It shows that the problem concept, image entity concept extraction, and related
part processing can provide some basis for the model inference for VQA tasks.

Table 3. Ablation study result on Visual7W+KB dataset.

Method
Overall Accuracy
Top-1 Top-3

w/o LM+KG modal 64.49 74.62
w/o Modality fusion GNN 67.42 78.46
BIGNN-LM-KG((full model)) 67.59 79.84

For the part of modality fusion GNN, the role of the visual graph in the VQA task has been verified
many times. Therefore, compared with the complete model, we only delete the modality fusion GNN
used in the model for the fusion and selection of the concept graph and visual graph. As seen from the
table, the answer accuracy of the model has decreased by 1.9% in TOP-1. It shows that the knowledge
representation for different modalities must be fused to use cross modalities knowledge effectively.
However, concept graphs have a more significant impact on the accuracy of answers. The lack of

Electronic Research Archive Volume 31, Issue 4, 1948–1965.



1960

reasoning knowledge models can not better predict answers.

Figure 4. This figure shows the influence of the number of selected image entity concepts
on the accuracy of the model.

For selecting visual concepts in images, we studied the influence of the number of graphic entity
concepts K on visual question answering. In Figure 4, the increase of K in the early stage improved the
accuracy of the answer until K = 8. However, after K = 12, the processing performance of the model
began to decline, and the accuracy of the model’s prediction response began to decline. The reason
may be that the more entity concepts selected, the more paths and nodes in the concept graph, and the
more nodes and longer relationship paths, the greater the noise.

Figure 5. Visualization results of partial weights in the BIGNN-LM-KG model.
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5. Discussion

Attention weight and correlation score can better explain our model in the visual reasoning process.
Through the example in Figure 5, we can have the following insights:

1) BIGNN-LM-KG can reveal the importance of different modalities of information to the problem.
It can be seen from Figure 5 that BIGNN-LM-KG can give rational correlation scores and atten-
tion weights for all the information given by VQA tasks. From the threshold values given by these
models, it can be found that concept graphs can provide more essential hints than visual graphs.
It is not only that the concept graph contains entity concepts such as questions, images, and KG.
However, external knowledge is more attention to when building FVQA datasets.

2) Using the model for bimodality fusion, GNN can better promote the information interaction be-
tween modalities. The model not only gives the attention weight value or correlation score related
to the problem for the nodes between single graphs. However, it also provides attention to the
weight value between the nodes with a high correlation between the two charts, which can di-
rectly explain the mutual influence of information between different modes, indicating that it is
necessary to fuse modalities.

3) Despite the provision of good correlation scores and attention weights for each node in the con-
cept graph, Figure 5 clearly shows that for similar conceptual entities, the correlation scores and
attention weights between the nodes are relatively similar. The VQA may get a relatively close
but still incorrect answer when it answers questions.

6. Conclusions

This paper proposes BIGNN-LM-KG, a VQA task model for introducing external knowledge. It
focuses on the joint reasoning of the question text concept and the selective picture entity concept.

We propose the KG joint reasoning based on the question text concept and the selective picture
entity concept. We linked the picture, question text, and KG information source through the concept
graph, embedded the concept, and generated correlation scores through LM. On this basis, the visual
image is constructed from the filtered entity space and visual features in the image. The two graphs’
representation is updated through GNN. The different modalities in the concept graph and visual graph
are combined by the modal fuse GNN network so that the research model can more efficiently use the
information between different modes to solve the same task jointly.

The model BIGNN-LM-KG we have built has achieved ideal results on various data sets, which
is obviously superior to the frontier method. At the same time, we have also conducted interpretable
experiments on the benchmark data set to verify the model’s interpretability.

For future research, we will further improve the use and reasoning of visual information in images to
ensure that various information provided by VQA tasks can be fully used, thus helping to improve the
accuracy of answers. At the same time, the current research work is relatively simple for information
fusion between modalities. In the next step, we will propose more practical and convenient methods
for modality fusion.
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