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1. Introduction

The development of regularly arranged body parts has attracted the attention of a huge num-
ber of experimental biologists and theoreticians alike, and one of the crucial issues is getting to
know the underlying mechanism in the formation of epidermal appendages such as feathers and
hairs. Many theoretical models, including mathematical models of coupled reaction-diffusion
equations, have been used to describe the formation of animal pigmentation patterns and distri-
bution.

In [1], Sick et al. proposed a system of reaction-diffusion equations to model the influence
of the Wnt signaling pathway in primary hair follicle initiation in mice. It is suggested that
Wnt and Dkk have a primary influence on the spacing patterns of hair follicles in mice. The
interactions between Wnt and Dkk are modeled by using a modified Gierer-Meinhardt reaction-
diffusion (activator-inhibitor) model. The Wnt-Dkk interaction is modeled by the following
2-component reaction-diffusion equations:



∂u
∂t
− d1∆u =

ρ1u2

(γ + v)(1 + ku2)
− µu, x ∈ Ω, t > 0,

∂v
∂t
− d2∆v =

ρ2u2

(γ + v)(1 + ku2)
− λv, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

(1.1)

where Ω is an open bounded domain in RN , N ≥ 1, with the smooth boundary ∂Ω; u = u(x, t)
and v = v(x, t) stand for the concentrations of the activator Wnt and the inhibitor Dkk at time
t and position x ∈ Ω, respectively; d1 > 0 and d2 > 0 are the diffusion rates of the activator
Wnt and the inhibitor Dkk, respectively; γ and k are non-negative saturation parameters. The
constants ρ1 and ρ2 scale the production rates of the activator Wnt and the inhibitor Dkk, re-
spectively; The negative terms denote that both chemicals decay linearly with constants µ and
λ; u0, v0 ∈ C2(Ω) ∩ C0(Ω) and the Neumann boundary conditions indicate that there is no flux
of the chemical substances of u and v on the boundary.

System (1.1) is a modification of the homogeneous Gierer-Meinhardt model of the follow-
ing form: 

∂u
∂t
− d1∆u =

up

vq + σ1(x) − u, x ∈ Ω, t > 0,
∂v
∂t
− d2∆v =

ur

vs + σ2(x) − v, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

(1.2)

where u = u(x, t) and v = v(x, t) stand for the concentrations of the activator and the inhibitor
at time t and position x ∈ Ω, respectively. The non-negative functions σ1(x) and σ2(x) are
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background source terms for the activator and the inhibitor, respectively. The exponents p, q, r
and s are non-negative.

In [2], global existence of the solutions of System (1.1) is considered by calculating the uni-
form bounds. Analysis of the conditions for the emergence of spatially heterogeneous solutions
is performed by using a limiting form of the original reaction-diffusion system. The conditions
for pattern formation given in [1] are improved by including those subregions in the parameter
space where far-from-equilibrium heterogeneous solutions occur.

To simplify the analysis of the Turing mechanism, in [1], a modification of System (1.1) is
considered. In [1], the parameter γ is chosen so that γ ≈ 0. Then, they obtained the following
reaction-diffusion equations:

∂u
∂t
− d1∆u =

ρ1u2

v(1 + ku2)
− µu, x ∈ Ω, t > 0,

∂v
∂t
− d2∆v =

ρ2u2

v(1 + ku2)
− λv, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω.

(1.3)

As argued in [2], System (1.3) captures the dynamics of (1.1) quite well, and, due to the
smaller number of parameters, the conditions for emergence of Turing patterns are easier to
analyze.

In [3], Rashkov considered the Turing instability of the positive constant equilibrium solu-
tion, as well as the existence and stability of both the regular and the discontinuous non-constant
stationary solutions of System (1.3). Veerman and Doelman [4] showed that all of the positive
non-constant regular equilibrium solutions (in the one-dimensional spatial domain) are unsta-
ble. The results are quite different from the corresponding singularly perturbed system, which
has stable non-constant spike solutions.

We would also like to mention that a similar but different model used to describe the
hair follicle bulb was proposed by Mooney and Nagorcka [5–7]. In particular, Nagorcka and
Mooney [7] described a theoretical mechanism for cell differentiation based on the substances
X and Y , which constitute a reaction-diffusion system, and the substance Z, which diffuses ra-
dially outward from the dermal papilla through the bulb. The model describes the reaction and
diffusion of morphogens X and Y , and it is defined by

∂u
∂t
− d1∆u = −au +

bvp

1 + vp , x ∈ Ω, t > 0,
∂v
∂t
− d2∆v = −cu +

e(vp + r)
1 + vp , x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

(1.4)
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where u and v can be seen as reduced or dimensionless concentrations of morphogens of X and
Y , respectively, with positive parameters a, b, c, e and r and diffusion coefficients d1 and d2. The
rates a, b, c and e have units of time−1, and r and p(> 1) are dimensionless quantities. The terms
−au+bvp/(1+vp) and −cu+e(vp+ r)/(1+vp) represent the net rates of the productions u and v,
respectively, where the reaction-diffusion system constitutes an activator-inhibitor pair with the
morphogens X the inhibitor and Y the activator. For System (1.4), Yi et al. [8] provided some
global analyses of the model that were dependent upon some parametric thresholds/constraints.
They found that, when one of the dimensionless parameters is less than one, the unique positive
equilibrium is globally asymptotically stable. On the contrary, when this threshold is greater
than one, the existence of both steady-state and Hopf bifurcations can be observed under further
parametric constraints. In [9], Yang and Ju considered the Turing instability of the spatially
homogeneous periodic solutions of System (1.4).

In this paper, we are mainly concerned with the dynamics of both the reaction-diffusion
equations (1.3) and its corresponding ODE system. The highlights of the paper are as follows:

1. Consider the dynamics of the ODEs. By using the decay rate λ of the inhibitor v as the
main bifurcation parameter, we are able to show the existence of Hopf bifurcating periodic
solutions. That is, when the decay rate λ crosses the critical value λ0, the densities of the
activator u and the inhibitor v will undergo temporal oscillations. Moreover, we are able
to prove that, once the Hopf bifurcating periodic solutions occur, they must be unstable.
This is one of the novel points of this paper.

2. Consider the dynamics of the PDEs. Three kinds of results are obtained. First, under
suitable conditions on the decay rate λ of the inhibitor v and the diffusion rates (d1 and
d2), (uλ, vλ) will always be stable in the reaction-diffusion equations. In this case, the
dynamics of the PDEs can be accurately determined by the dynamics of the ODEs. This is
the so-called lumped parameter phenomenon [10]. Second, we are able to derive precise
conditions on λ, as well as the diffusion rates (d1 and d2) such that Turing instability
(see [11]) of (uλ, vλ) occurs. In this case, Turing patterns (spotted or striped patterns) of
the reaction-diffusion system can be observed. Finally, under suitable conditions, non-
constant Hopf bifurcating periodic solutions (both spatially homogeneous and spatially
non-homogeneous) and non-constant, positive, steady-state bifurcating solutions can be
obtained. These results are new and cannot be found in the existing literature. This is the
other novel point of this paper.

The structure of this paper is as follows. In Section 2, we mainly study the dynamic be-
havior of the corresponding ordinary differential equation system of System (1.3), including
the existence, stability and instability of the positive steady-state solution and the existence,
stability of the Hopf bifurcating periodic solution. In Section 3, we mainly study the dynamic
behavior of the reaction-diffusion system presented as System (1.3), including the existence,
stability and instability of the positive steady-state solution and the existence of Hopf bifurcat-
ing periodic solutions and non-constant, positive, steady-state bifurcating periodic solutions. In
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the Appendix section, we list some of our proofs conducted in Section 3.

2. Dynamics of the ODE system

The corresponding ODE system of System (1.3) takes the following form:

du
dt
=

ρ1u2

v(1 + ku2)
− µu,

dv
dt
=

ρ2u2

v(1 + ku2)
− λv. (2.1)

System (2.1) has a unique positive equilibrium solution (uλ, vλ), where

uλ :=

 
1
k

Å
ρ2

1λ

ρ2µ2 − 1
ã
, vλ :=

ρ2µ

ρ1λ
uλ, (2.2)

where it is assumed that λ > ρ2µ
2/ρ2

1.

In what follows, we shall always assume that λ > ρ2µ
2/ρ2

1 so that (uλ, vλ) is the positive
equilibrium solution of (2.1). We shall fix ρ1, ρ2 and k and choose λ and µ as two main bifurca-
tion parameters.

We have the following results on the stability and instability of (uλ, vλ):

Theorem 2.1. Let λ >
ρ2µ

2

ρ2
1

so that (uλ, vλ) is the unique positive equilibrium solution of (2.1).

Define

λ0 :=

(»
ρ2

1 + 16ρ2µ − ρ1
)
µ

4ρ1
. (2.3)

Then, 0 < λ0 <
2ρ2µ

2

ρ2
1

. In particular, the following results hold true:

1. Suppose that µ ≥
ρ2

1

2ρ2
or, equivalently that λ0 ≤

ρ2µ
2

ρ2
1

holds. Then, for all λ ∈Å
ρ2µ

2

ρ2
1

,+∞

ã
, (uλ, vλ) is locally asymptotically stable with respect to System (2.1);

2. Suppose that µ <
ρ2

1

2ρ2
or, equivalently that 0 <

ρ2µ
2

ρ2
1

< λ0

Å
<

2ρ2µ
2

ρ2
1

ã
holds. Then, the

following conclusions hold:

(a) for any λ ∈
Å
ρ2µ

2

ρ2
1

, λ0

ã
, (uλ, vλ) is unstable;

(b) for any λ ∈
(
λ0,+∞

)
, (uλ, vλ) is locally asymptotically stable with respect to System

(2.1).
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(c) At λ = λ0, System (2.1) undergoes a Hopf bifurcation at λ = λ0. That is, there
exists an s∗ > 0 such that, for s ∈ (0, s∗), there exists (λ(s),Z(s), u(·, s), v(·, s)) so
that (u(·, s), v(·, s)) is a periodic solution of (2.1) with the minimum period Z(s) →
2π/
√

D(λ0) and (λ(s), u(·, s), v(·, s)) → (λ0, uλ0 , vλ0) as s → 0. Moreover, the bifurca-
tion is subcritical (i.e., the bifurcating periodic solution is unstable) and forward.

Proof. It is trivial to check that 0 < λ0 <
2ρ2µ

2

ρ2
1

under the assumption of λ >
ρ2µ

2

ρ2
1

.

The linearized operator of System (2.1) evaluated at (uλ, vλ) is given by

J(λ) :=

á
(−ρ2

1λ + 2ρ2µ
2)µ

ρ2
1λ

−
ρ1

ρ2
λ

2ρ2
2µ

3

ρ3
1λ

−2λ

ë
, (2.4)

where we use the fact that λ = ρ2µ
2(1 + ku2

λ)/ρ
2
1.

The eigenvalue problem of J(λ) is governed by γ2 − T (λ)γ + D(λ) = 0, where

T (λ) :=
−2ρ2

1λ
2 − ρ2

1µλ + 2ρ2µ
3

ρ2
1λ

,D(λ) :=
2µ(ρ2

1λ − ρ2µ
2)

ρ2
1

. (2.5)

Clearly, D(λ) > 0 holds for all λ >
ρ2µ

2

ρ2
1

. In particular, T (λ) < 0 for all λ > λ0, T (λ) > 0

for all 0 < λ < λ0 and T (λ0) = 0. Since T
Å

2ρ2µ
2

ρ2
1

ã
< 0, we have that λ0 <

2ρ2µ
2

ρ2
1

.

Part 1. Clearly, λ0 ≤
ρ2µ

2

ρ2
1

is equivalent to µ ≥
ρ2

1

2ρ2
. Since λ0 ≤

ρ2µ
2

ρ2
1

< λ, we have that

T (λ) < 0 for all λ >
ρ2µ

2

ρ2
1

. Since D(λ) > 0 holds for all λ >
ρ2µ

2

ρ2
1

, we complete the proof.

Part 2. Case (a). Since
ρ2µ

2

ρ2
1

< λ < λ0, we have that T (λ) > 0. Thus, (uλ, vλ) is unstable;

Case (b) is similar to Part 1.

We now prove Case (c). At λ = λ0, we have that T (λ0) = 0 and D(λ0) > 0. Then, the
eigenvalue problem has a pair of purely imaginary eigenvalues γ = ±i

√
D(λ0). Let β(λ)± iω(λ)

be the eigenvalues of the eigenvalue problem satisfying β(λ0) = 0 and ω(λ0) =
√

D(λ0). Then,
we have

β′(λ0) =
1
2

T ′(λ0) = −
Å

1 +
ρ2

1 + 8ρ2µ + ρ1

»
ρ2

1 + 16ρ2µ

8ρ2µ

ã
< 0, (2.6)
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which shows that the transversality condition holds. Thus, at λ = λ0, System (2.1) undergoes a
Hopf bifurcation at λ = λ0. That is, there exists an s∗ > 0 such that, for s ∈ (0, s∗), there exists
(λ(s),Z(s), u(·, s), v(·, s)) so that (u(·, s), v(·, s)) is a periodic solution of (2.1) with the minimum
period Z(s)→ 2π/

√
D(λ0) and (λ(s), u(·, s), v(·, s))→ (λ0, uλ0 , vλ0) as s→ 0.

Next, we shall study the bifurcation direction and the stability of the bifurcating periodic
solutions. Rewrite (2.1) in the following form:Å

u′

v′

ã
=

á
(−ρ2

1λ + 2ρ2µ
2)µ

ρ2
1λ

−
ρ1

ρ2
λ

2ρ2
2µ

3

ρ3
1λ

−2λ

ëÅ
u
v

ã
+

Å
F1(λ, u, v)
G1(λ, u, v)

ã
, (2.7)

where

F1(λ, u, v) :=

√
kρ2»

ρ2
1λ − ρ2µ2

Å
ρ2µ

4(−3ρ2
1λ + 4ρ2µ

2)
ρ4

1λ
2

u2 −
2µ3

ρ1
uv +

ρ2
1λ

2

ρ2
2

v2
ã

+
k

ρ2
1λ − ρ2µ2

Å4ρ2
2µ

5(ρ4
1λ

2 − 3ρ2
1ρ2µ

2λ + 2ρ2
2µ

4)

ρ6
1λ

3
u3 + 2µ3λuv2

ã
+

k
ρ2

1λ − ρ2µ2

Å
ρ2µ

4(3ρ2
1λ − 4ρ2µ

2)

ρ3
1λ

u2v −
ρ3

1λ
3

ρ2
2

v3
ã
+ O(|u|4, |u|3|v|),

G1(λ, u, v) :=

√
k»

ρ2(ρ2
1λ − ρ2µ2)

Å
ρ3

2µ
4(−3ρ2

1λ + 4ρ2µ
2)

ρ5
1λ

2
u2 −

2ρ2
2µ

3

ρ2
1

uv + ρ1λ
2v2
ã

+
k

ρ2
1λ − ρ2µ2

Å4ρ3
2µ

5(ρ4
1λ

2 − 3ρ2
1ρ2µ

2λ + 2ρ2
2µ

4)

ρ7
1λ

3
u3 +

2ρ2µ
3λ

ρ1
uv2
ã

+
k

ρ2
1λ − ρ2µ2

Å
ρ2

2µ
4(3ρ2

1λ − 4ρ2µ
2)

ρ4
1λ

u2v −
ρ2

1λ
3

ρ2
v3
ã
+ O(|u|4, |u|3|v|),

where all of the partial derivatives are evaluated at (λ, uλ, vλ).

For λ close to λ0, we define a real 2-by-2 matrix

Y :=

Ñ
1 0

β(λ) − J11(λ)
J12(λ)

−
ω(λ)
J12(λ)

é
,

where

J11(λ) :=
(−ρ2

1λ + 2ρ2µ
2)µ

ρ2
1λ

, J12(λ) := −
ρ1

ρ2
λ,

and, for λ close to λ0,

β(λ) =
1
2

T (λ), ω(λ) =
1
2

√
4D(λ) − T 2(λ).
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Clearly, the matrix Y is well defined since J12(λ0) = −
ρ1

ρ2
λ0 < 0 implies that, for λ close to

λ0, J12(λ) , 0.

By using the linear transformation (u, v)T = Y(x, y)T , we can reduce (2.7) to the following
system: Å

x′

y′

ã
=

Å
β(λ) −ω(λ)
ω(λ) β(λ)

ãÅ
x
y

ã
+

Å
F(λ, x, y)
G(λ, x, y)

ã
, (2.8)

where

F(λ, x, y) :=F1

Å
λ, x,
−ρ2(ρ2

1λβ(λ) + ρ2
1µλ − 2ρ2µ

3)

ρ3
1λ

2
x +

ρ2ω(λ)
ρ1λ

y
ã
,

G(λ, x, y) :=
ρ2

1λβ(λ) + ρ2
1µλ − 2ρ2µ

3

ρ2
1λω(λ)

F(λ, x, y)

+
ρ1λ

ρ2ω(λ)
G1

Å
λ, x,
−ρ2(ρ2

1λβ(λ) + ρ2
1µλ − 2ρ2µ

3)

ρ3
1λ

2
x +

ρ2ω(λ)
ρ1λ

y
ã
.

With the Taylor expansion of F(λ, u, v), we have

F(x, y) = a20x2 + a11xy + a02y2 + a30x3 + a21x2y + a12xy2 + a03y3 + O(|x|4, |x|3|y|), (2.9)

where

a11 :=

√
kρ2(2λ − µ)ω(λ)»
ρ2

1λ − ρ2µ2
, a02 :=

√
kρ2ω

2(λ)»
ρ2

1λ − ρ2µ2
,

a20 :=

√
kρ2

(
ρ4

1λ
2(2λ − µ)2 − 12ρ2µ

4(ρ2
1λ − ρ2µ

2)
)

4ρ4
1λ

2
»
ρ2

1λ − ρ2µ2
,

a12 :=
kρ2(−6ρ2

1λ
2 + 3ρ2

1µλ − 2ρ2µ
3)ω2(λ)

2ρ2
1λ(ρ2

1λ − ρ2µ2)
, a03 := −

kρ2ω
3(λ)

ρ2
1λ − ρ2µ2

,

a21 := −
kρ2c1ω(λ)

ρ2
1(ρ2

1λ − ρ2µ2)
−

kρ2µ
2c2ω(λ)

4ρ4
1λ

2(ρ2
1λ − ρ2µ2)

.

a30 := −
kρ2c3λ

4ρ2
1(ρ2

1λ − ρ2µ2)
+

kρ2µ
3c4

8ρ4
1λ(ρ2

1λ − ρ2µ2)
+

kρ2
2µ

5c5

4ρ6
1λ

3(ρ2
1λ − ρ2µ2)

,

(2.10)

where

c1 :=3ρ2
1λ

2 − 3ρ2
1µλ + 2ρ2µ

3,

c2 :=3ρ4
1λ

2 − 16ρ2
1ρ2µ

2λ + 12ρ2
2µ

4,

c3 :=4ρ2
1λ

2 − 6ρ2
1µλ + 3ρ2

1µ
2 + 4ρ2µ

3,

c4 :=32ρ2
1ρ2µλ + ρ

4
1λ − 24ρ2

2µ
3,

c5 :=9ρ4
1λ

2 − 30ρ2
1ρ2µ

2λ + 20ρ2
2µ

4.

Electronic Research Archive Volume 31, Issue 4, 1922–1947.



1930

With the Taylor expansion of G(λ, x, y), we have

G(x, y) = b20x2 + b11xy + b02y2 + b30x3 + b21x2y + b12xy2 + b03y3 + O(|x|4, |x|3|y|), (2.11)

where

bi j :=
ρ2

1λβ(λ) + ρ2
1µλ − 2ρ2µ

3

ρ2
1λω(λ)

ai j +
ρ1λ

ρ2ω(λ)
ei j, i, j = 0, 1, 2 · · · , (2.12)

with

e11 :=

√
kρ2ρ2(2λ − µ)ω(λ)

ρ1

»
ρ2

1λ − ρ2µ2
, e02 :=

√
kρ2ρ2ω

2(λ)

ρ1

»
ρ2

1λ − ρ2µ2
, e20 := −

√
kρ2 f1

4ρ5
1λ

2
»
ρ2

1λ − ρ2µ2
,

e12 := −
kρ2

2(6ρ2
1λ

2 − 3ρ2
1µλ + 2ρ2µ

3)ω2(λ)

2ρ3
1λ(ρ2

1λ − ρ2µ2)
, e03 := −

kρ2
2ω

3(λ)
ρ1(ρ2

1λ − ρ2µ2)
,

e21 := −
kρ2

2 f2ω(λ)

4ρ5
1λ

2(ρ2
1λ − ρ2µ2)

, e30 := −
kρ2

2 f3

8ρ5
1λ

2(ρ2
1λ − ρ2µ2)

−
kρ3

2µ
3 f4

4ρ7
1λ

3(ρ2
1λ − ρ2µ2)

,

where

f1 :=ρ4
1ρ2λ

2(2λ − µ)2 − 12ρ2
2µ

4(ρ2
1λ − ρ2µ

2),
f2 :=3ρ4

1λ
2(2λ − µ)2 + 8ρ2

1ρ2µ
3λ(λ − 2µ) + 12ρ2

2µ
6,

f3 :=ρ4
1λ

2(2λ − µ)3 + 12ρ2
2µ

6(2λ + 5µ),
f4 :=ρ4

1λ
2(2λ + µ)(2λ − 9µ) − 20ρ2

2µ
6.

Indeed, we have

b11 :=

√
kρ2µ(2λ − µ)(ρ2

1λ − 2ρ2µ
2)

2ρ2
1λ
»
ρ2

1λ − ρ2µ2
, b02 :=

√
kρ2µω(λ)(ρ2

1λ − 2ρ2µ
2)

2ρ2
1λ
»
ρ2

1λ − ρ2µ2
,

b20 :=

√
kρ2µ(ρ2

1λ − 2ρ2µ
2)h1

8ρ6
1λ

3
»
ρ2

1λ − ρ2µ2ω(λ)
, b12 := −

kρ2µh2ω(λ)
4ρ4

1λ
2(ρ2

1λ − ρ2µ2)
,

b03 := −
kρ2µ(ρ2

1λ − 2ρ2µ
2)ω2(λ)

2ρ2
1λ(ρ2

1λ − ρ2µ2)
, b21 := −

kρ2µh3

8ρ2
1λ(ρ2

1λ − ρ2µ2)
+

kρ3
2µ

6h4

2ρ6
1λ

3(ρ2
1λ − ρ2µ2)

,

b30 := −
kρ2µh5

16ρ2
1λ(ρ2

1λ − ρ2µ2)ω(λ)
+

kρ3
2µ

6h6

2ρ4
1λ

2(ρ2
1λ − ρ2µ2)ω(λ)

+
kρ4

2µ
9h7

ρ8
1λ

4(ρ2
1λ − ρ2µ2)ω(λ)

,

(2.13)
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where

h1 :=ρ4
1λ

2(2λ − µ)2 − 12ρ2µ
4(ρ2

1λ − ρ2µ
2),

h2 :=3ρ4
1λ

2(2λ − µ) − 4ρ2
1ρ2µ

2λ(3λ − 2µ) − 4ρ2
2µ

5,

h3 :=3ρ2
1λ(2λ − µ)2 − 2ρ2µ

2(12λ2 + 16µλ + 11µ2),
h4 :=ρ2

1λ(4λ − 11µ) + 6ρ2µ
3,

h5 :=ρ2
1λ(2λ − µ)3 − 4ρ2µ

2(4λ3 − 8µλ2 + 11µ2λ + 4µ3),
h6 :=2λ2 − 11µλ − 12µ2,

h7 :=ρ2
1λ(3λ + 10µ) − 5ρ2µ

3.

Following page 90 of [12], we define

c1(λ0) :=
i

2ω(λ0)

Å
g20g11 − 2|g11|

2 −
1
3
|g02|

2
ã
+

g21

2
, (2.14)

where

g11 :=
1
4
(
Fxx + Fyy + i

(
Gxx +Gyy

))
,

g02 :=
1
4
(
Fxx − Fyy − 2Gxy + i

(
Gxx −Gyy + 2Fxy

))
,

g20 :=
1
4
(
Fxx − Fyy + 2Gxy + i

(
Gxx −Gyy − 2Fxy

))
,

g21 :=
1
8
(
Fxxx + Fxyy +Gxxy +Gyyy + i

(
Gxxx +Gxyy − Fxxy − Fyyy

))
,

(2.15)

where all quantities are to be evaluated at (λ0, uλ0 , vλ0).

Substituting (2.15) into (2.14), we have

Re(c1(λ0)) = k(2λ0 + µ)2(µ − λ0)/(8µ2).

In Part 2, we assume that µ <
ρ2

1

2ρ2
. Thus, we have that µ <

3ρ2
1

2ρ2
, which is equivalent to

λ0 < µ. Thus, we have Re(c1(λ0)) > 0. Together with (2.6), and in consideration of [13], it
follows that the bifurcation is subcritical (i.e., the bifurcating periodic solution is unstable) and
the bifurcation direction is forward.

Remark 2.2. Biological meaning: Remember that µ and λ are the decay rates of the activator
u and the inhibitor v, respectively. Choosing λ as the main bifurcation parameter (by fixing µ)
means that we want to know how the dynamics of System (2.1) changes as the decay rate of
v changes. Indeed, one can also choose µ as the main bifurcation parameter by fixing λ. (We
did not consider this case in the paper, but we expect that System (2.1) can also exhibit similar
results.) Our results indicate that, as the decay rate of v changes, System (2.1) might have
periodic solutions. That is, the density functions of u and v may undergo temporal oscillations
with the evolution of time.
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3. Dynamics of the diffusive system

For convenience, we copy System (1.3) here:

∂u
∂t
− d1∆u =

ρ1u2

v(1 + ku2)
− µu, x ∈ Ω, t > 0,

∂v
∂t
− d2∆v =

ρ2u2

v(1 + ku2)
− λv, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω.

(3.1)

We shall study the dynamics of System (3.1). Without loss of generality, we assume that
Ω = (0, ℓπ), with ℓ > 0.

3.1. Stability, instability and Turing instability of (uλ, vλ)

In this subsection, we shall consider the stability and Turing instability of the unique posi-
tive constant equilibrium solution (uλ, vλ) with respect to the reaction-diffusion system presented
as System (3.1).

We have the following results on the stability and Turing instability of (uλ, vλ).

Theorem 3.1. Let µ ≥
ρ2

1

2ρ2
or, equivalently, 0 < λ0 ≤

ρ2µ
2

ρ2
1

hold. Then, the following conclu-

sions hold true:

1. For any λ ∈
Å

2ρ2µ
2

ρ2
1

,+∞

ã
, (uλ, vλ) is locally asymptotically stable with respect to the

diffusive system given by System (3.1); in this case, the Turing instability of (uλ, vλ) cannot
feasibly occur;

2. For any λ ∈
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
,

(a) if, in addition, d1 ≥
(2ρ2µ

2 − ρ2
1λ)µℓ2

ρ2
1λ

holds, then (uλ, vλ) is locally asymptotically

stable with respect to the diffusive system given by System (3.1); in this case, the
Turing instability of (uλ, vλ) cannot feasibly occur;

(b) if, in addition, d1 <
(2ρ2µ

2 − ρ2
1λ)µℓ2

ρ2
1λ

holds, then we define nd1 , with 1 ≤ nd1 < +∞,

to be the largest positive integer such that, for any integer n ∈ [1, nd1],

d1 <
(2ρ2µ

2 − ρ2
1λ)µℓ2

ρ2
1λn2

.
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Define d̂2 := min
1≤n≤nd1

d(n)
2 , where

d2 = d(n)
2 := −

2λℓ2
Å
µ(ρ2

1λ − ρ2µ
2) + d1ρ

2
1λ

n2

ℓ2

ã
n2

Å
µ(ρ2

1λ − 2ρ2µ2) + d1ρ
2
1λ

n2

ℓ2

ã .
Then, for any d2 < d̂2, (uλ, vλ) is locally asymptotically stable with respect to the
diffusive system given by System (3.1). If d2 > d̂2 holds, then (uλ, vλ) undergoes
Turing instability in the reaction-diffusion system given by System (3.1).

Proof. The proof is moved to the Appendix.

Similarly, we have the following results:

Theorem 3.2. Let µ <
ρ2

1

2ρ2
or, equivalently,

ρ2µ
2

ρ2
1

< λ0 <
2ρ2µ

2

ρ2
1

hold. Then, the following

conclusions hold true:

1. For any λ ∈
Å

2ρ2µ
2

ρ2
1

,+∞

ã
, (uλ, vλ) is locally asymptotically stable with respect to the

diffusive system given by System (3.1); in this case, the Turing instability of (uλ, vλ) cannot
feasibly occur;

2. For any λ ∈
Å
λ0,

2ρ2µ
2

ρ2
1

ã
,

(a) if, in addition, d1 ≥
(2ρ2µ

2 − ρ2
1λ)µℓ2

ρ2
1λ

holds, then (uλ, vλ) is locally asymptotically

stable with respect to the diffusive system given by System (3.1).

(b) if, in addition, d1 <
(2ρ2µ

2 − ρ2
1λ)µℓ2

ρ2
1λ

holds, then, for any d2 < d̂2, (uλ, vλ) is locally

asymptotically stable with respect to the diffusive system given by System (3.1). If d2 >

d̂2 holds, then (uλ, vλ) undergoes Turing instability in the reaction-diffusion system
given by System (3.1).

3. For any λ ∈
Å
ρ2µ

2

ρ2
1

, λ0

ã
, (uλ, vλ) is unstable with respect to the reaction-diffusion system

given by System (3.1); in this case, the Turing instability of (uλ, vλ) cannot feasibly occur.

Remark 3.3. 1. If one of the following cases holds, i.e., (1) of Theorem 3.1, 2(a) of Theorem
3.1, (1) of Theorem 3.2 or 2(a) of Theorem 3.2, then (uλ, vλ) is locally asymptotically
stable with respect to the reaction-diffusion system given by System (3.1). In this case, the
Turing instability of (uλ, vλ) will never occur. This means that, when the decay rate of v
and the diffusion rates are chosen in certain ranges, Turing patterns are unlikely to occur;
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2. If one of the following cases holds, i.e., 2(b) of Theorem 3.1 or 2(b) of Theorem 3.2, then
(uλ, vλ) will undergo Turing instability in the reaction-diffusion system given by System
(3.1). This means that, when the decay rate of v and the diffusion rates are chosen in
certain ranges, Turing patterns can be expected.

3.2. Hopf bifurcation analysis: Spatially non-homogeneous periodic solutions

In this subsection, we shall consider the occurrence of spatially non-homogeneous periodic
solutions bifurcating from Hopf bifurcations.

When λ0 ≤
ρ2µ

2

ρ2
1

, we have that T (λ) ≤ 0 (and, hence, Tn(λ) ≤ 0, Tn(λ) is defined in (A.1))

for λ >
ρ2µ

2

ρ2
1

. Thus, to expect the spatially non-homogeneous periodic solution bifurcating

from Hopf bifurcations, we need to concentrate on the case when T (λ) ≥ 0, or, equivalently,

λ0 >
ρ2µ

2

ρ2
1

Å
or equivalently µ <

ρ2
1

2ρ2

ã
and λ ∈

Å
ρ2µ

2

ρ2
1

, λ0

ò
. (3.2)

In this case, under (3.2), (uλ, vλ) is unstable with respect to the reaction-diffusion system
given by System (3.1).

Following [14], we shall identify the Hopf bifurcation values, denoted by λH, which satisfy
the following: there exists n ∈ N0 such that

Tn(λH) = 0,Dn(λH) > 0, and T j(λH) , 0,D j(λH) , 0 for j , n; (3.3)

and, for the unique pair of complex eigenvalues near the imaginary axis α(λ) ± iω(λ),

α′(λH) , 0. (3.4)

Since λ0 >
ρ2µ

2

ρ2
1

and λ ∈
Å
ρ2µ

2

ρ2
1

, λ0

ò
, we have that T (λ) ≥ 0. One can check that T ′(λ) is

decreasing in (
ρ2µ

2

ρ2
1

, λ0), given that T (λ0) = 0 and lim
λ→0+

T (λ) = +∞. Define

T∗ = T
Å
ρ2µ

2

ρ2
1

ã
=
µ(ρ2

1 − 2ρ2µ)
ρ2

1

> T (λ0) = 0 and ℓn = n

 
d1 + d2

T∗
,with n ∈ N0\{0}. (3.5)

Then, for any ℓ > ℓ1, there exists an n ∈ N0\{0} such that ℓn < ℓ < ℓn+1. Then, for any

1 ≤ j ≤ n, T (λ) =
(d1 + d2) j2

ℓ2 has a unique root, denoted by λH
j , satisfying

ρ2µ
2

ρ2
1

< λH
n < · · · < λH

j < · · · < λ
H
1 < λ0, (3.6)
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and if n , m, λH
n , λ

H
m .

It remains necessary to derive precise conditions so that, for all λ ∈
Å
ρ2µ

2

ρ2
1

, λ0

ã
, Dn(λ) > 0

for all n ∈ N0. In fact, since

Dn(λ) =
2µ(ρ2

1λ − ρ2µ
2)

ρ2
1

+

Ç
(ρ2

1λ − 2ρ2µ
2)µ

ρ2
1λ

d2 + 2d1λ

å
n2

ℓ2 +
d1d2n4

ℓ4 ,

we can regard Dn(λ) as the quadratic function of n2/ℓ2. Define

F (x) = d1d2x2 +

Ç
(ρ2

1λ − 2ρ2µ
2)µ

ρ2
1λ

d2 + 2d1λ

å
x +

2µ(ρ2
1λ − ρ2µ

2)
ρ2

1

.

Then, we have that Dn(λ) = F (n2/ℓ2). The discriminant of F (x) is given by

∆F :=
µ2d2

2

ρ4
1λ

2
(ρ2

1λ − 2ρ2µ
2)2 + 4d1λ(d1λ − d2µ). (3.7)

By (3.7), to let ∆F < 0, we need first to assume that d1λ − d2µ < 0 or, equivalently that
d2

d1
>
λ

µ
. Then, solving ∆F < 0 from (3.7), we have

2ρ2
1λ

2(ρ2
1λ − 2µ

»
ρ2(ρ2

1λ − ρ2µ2))

µ(ρ2
1λ − 2ρ2µ2)2

<
d2

d1
<

2ρ2
1λ

2(ρ2
1λ + 2µ

»
ρ2(ρ2

1λ − ρ2µ2))

µ(ρ2
1λ − 2ρ2µ2)2

. (3.8)

If 8 − 4
√

3 <
ρ2

1λ

ρ2µ2 < 8 + 4
√

3 holds, then we have

2ρ2
1λ

2(ρ2
1λ − 2µ

»
ρ2(ρ2

1λ − ρ2µ2))

µ(ρ2
1λ − 2ρ2µ2)2

<
λ

µ
. (3.9)

Then, to let ∆F < 0, we need

d2

d1
∈

Å
λ

µ
,

2ρ2
1λ

2(ρ2
1λ + 2µ

»
ρ2(ρ2

1λ − ρ2µ2))

µ(ρ2
1λ − 2ρ2µ2)2

ã
. (3.10)

If
ρ2

1λ

ρ2µ2 > 8 + 4
√

3 or 1 <
ρ2

1λ

ρ2µ2 < 8 − 4
√

3 holds, then we have

λ

µ
<

2ρ2
1λ

2(ρ2
1λ − 2µ

»
ρ2(ρ2

1λ − ρ2µ2))

µ(ρ2
1λ − 2ρ2µ2)2

. (3.11)

Electronic Research Archive Volume 31, Issue 4, 1922–1947.



1936

Then, to ∆F < 0, we need

d2

d1
∈

Å2ρ2
1λ

2(ρ2
1λ − 2µ

»
ρ2(ρ2

1λ − ρ2µ2))

µ(ρ2
1λ − 2ρ2µ2)2

,
2ρ2

1λ
2(ρ2

1λ + 2µ
»
ρ2(ρ2

1λ − ρ2µ2))

µ(ρ2
1λ − 2ρ2µ2)2

ã
. (3.12)

So far, by Theorem 2.1 of [14], we are in the position to state the following results on Hopf
bifurcations:

Theorem 3.4. Suppose that (3.2) holds and that
(3.10) holds if

ρ2
1λ

ρ2µ2 ∈

Å
8 − 4

√
3, 8 + 4

√
3
ã
,

(3.12) holds if
ρ2

1λ

ρ2µ2 ∈

Å
8 + 4

√
3,+∞

ã
∪

Å
1, 8 − 4

√
3
ã
.

(3.13)

Then, for any ℓ > ℓ1 (ℓn is defined in (3.5)), there exists n points λH
j (ℓ), 1 ≤ j ≤ n, satisfying

λH
n < · · · < λH

j < · · · < λ
H
1 < λ0

such that the reaction-diffusion system undergoes a Hopf bifurcation at λ = λH
j or λ = λ0 and

the following holds true:

1. The bifurcating periodic solutions from λ = λH
0 are spatially homogeneous and unstable,

which coincides with the periodic solution of the corresponding ODE system;

2. The bifurcating periodic solutions from λ = λH
j are spatially non-homogeneous and unsta-

ble.

Remark 3.5. 1. For the bifurcating spatially homogeneous periodic solutions, it is always
unstable in the reaction-diffusion system given by System (3.1) since it is unstable in the
corresponding ODE system given by System (2.1). On the other hand, the bifurcating spa-
tially non-homogeneous periodic solutions from λ = λH

j are always unstable, since, under
(3.2), (uλ, vλ) is unstable with respect to the reaction-diffusion system given by System
(3.1).

2. Biological meaning: Our results showed that, with the inclusion of the spatial diffusion, as
the decay rate of v changes, the reaction-diffusion system given by System (3.1) might not
only undergo temporal oscillations, but also spatiotemporal oscillations with the evolution
of time. That is, the densities of the activator u and the inhibitor v will oscillate with
respect to t, but they will also depend on the spatial variable x (in the case of spatially
non-homogeneous periodic solutions).
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3.3. Steady-state bifurcation analysis: Non-constant positive equilibrium solutions

In this subsection, we shall use the steady-state bifurcation theory to show the existence of
the bifurcating non-constant positive equilibrium solutions.

Following [14], we identify steady-state bifurcation values, denoted by λS , which satisfy
the following: there exists n ∈ N0 such that

Dn(λS ) = 0,Tn(λS ) , 0 and T j(λS ) , 0,D j(λS ) , 0 for j , n, (3.14)

and that
d

dλ
Dn(λS ) , 0. (3.15)

By Theorems 3.1 and 3.2, for any λ ∈
Å

2ρ2µ
2

ρ2
1

,+∞

ã
, (uλ, vλ) is locally asymptotically sta-

ble with respect to the diffusive system given by System (3.1). Hence, any potential bifurcation

point λS must be in the interval
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
. We shall study the steady-state bifurcation

points in this interval.

We rewrite Dn(λ) in the form of

Dn(λ) = µC(λ) − d2A(λ)p + d1d2 p2,

where p := n2/ℓ2 and

C(λ) :=
2(ρ2

1λ − ρ2µ
2)

ρ2
1

, A(λ) := −
2d1ρ

2
1λ

2 + d2ρ
2
1µλ − 2d2ρ2µ

3

d2ρ
2
1λ

.

Solving p from Dn(λ) = 0, we have

p = p±(λ) :=
d2A(λ) ±

»
C(λ)(d2

2h(λ) − 4d1d2µ)

2d1d2
, (3.16)

where

h(λ) :=
A(λ)2

C(λ)
=

(2d1ρ
2
1λ

2 + d2ρ
2
1µλ − 2d2ρ2µ

3)2

2d2
2ρ

2
1λ

2(ρ2
1λ − ρ2µ2)

.

By direct calculation, we have

h′(λ) :=
g1(λ)g2(λ)

2d2
2ρ

2
1λ

3(ρ2
1λ − ρ2µ2)2

, (3.17)

where

g1(λ) :=2d1ρ
2
1λ

2 + d2ρ
2
1µλ − 2d2ρ2µ

3,

g2(λ) :=2d1ρ
4
1λ

3 − (4d1ρ
2
1ρ2µ

2 + d2ρ
4
1µ)λ2 + 6d2ρ

2
1ρ2µ

3λ − 4d2ρ
2
2µ

5.
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Clearly, g1(λ) = 0 has a unique positive root, denoted by λg1 . In particular, g1(λ) < 0 for
λ ∈ (0, λg1), while g1(λ) > 0 for λ ∈ (λg1 ,+∞). On the other hand, since g2(0) = −4d2ρ

2
2µ

5 < 0
and g2(+∞) = +∞, g2(λ) = 0 has at least one positive root in (0,+∞). In particular, g2(λ) = 0
may have one unique positive root or three positive roots in (0,+∞).

In what follows, for our particular interests, we assume that g2(λ) = 0 has a unique positive
root in (0,+∞). (The case of g2(λ) = 0 having more than one positive root in (0,+∞) is much
more complicated and will be considered in our future investigations.)

We have the following results on the properties of h(λ) in the interval
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
:

Lemma 3.6. Let λg1 be the unique positive root of g1(λ) = 0. Assume, in addition that, g2(λ) = 0
also has a unique root, denoted by λg2 in (0,+∞). Then, the following conclusions hold true:

1. Suppose that 0 <
d2

d1
<

2ρ2µ

ρ2
1

holds. Then,

(a) λg1 <
ρ2µ

2

ρ2
1

< λg2 <
2ρ2µ

2

ρ2
1

;

(b) for any λ ∈
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
, h(λ) > 0 and

h
Å
ρ2µ

2

ρ2
1

ã
= +∞, h

Å
2ρ2µ

2

ρ2
1

ã
=

8d2
1ρ2µ

2

d2
2ρ

2
1

.

(c) h(λ) is decreasing in λ ∈
Å
ρ2µ

2

ρ2
1

, λg2

ã
, while it is increasing in λ ∈

Å
λg2 ,

2ρ2µ
2

ρ2
1

ã
; at

λ = λg2 , h(λ) attains its positive minimum value h(λg2).

2. Suppose that
d2

d1
>

2ρ2µ

ρ2
1

holds. Then,

(a) λg2 <
ρ2µ

2

ρ2
1

< λg1 <
2ρ2µ

2

ρ2
1

;

(b) for any λ ∈
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
, h(λ) > 0 and

h
Å
ρ2µ

2

ρ2
1

ã
= +∞, h

Å
2ρ2µ

2

ρ2
1

ã
=

8d2
1ρ2µ

2

d2
2ρ

2
1

.

(c) h(λ) is decreasing in λ ∈
Å
ρ2µ

2

ρ2
1

, λg1

ã
, while it is increasing in λ ∈

Å
λg1 ,

2ρ2µ
2

ρ2
1

ã
; at

λ = λg1 , h(λ) attains its positive minimum value h(λg1).
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Proof. The proof is moved to the Appendix.

Define
ΣD(λ) := C(λ)(d2

2h(λ) − 4d1d2µ).

We have the following results on the sign of ΣD(λ) in the interval
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
:

Lemma 3.7. Let λg1 be the unique positive root of g1(λ) = 0. Assume, in addition that, g2(λ) = 0
also has a unique root, denoted by λg2 in (0,+∞). Then, the following conclusions hold true:

1. Suppose that 0 <
d2

d1
<

2ρ2µ

ρ2
1

holds.

(a) if
4µ

h(λg2)
<

d2

d1
<

2ρ2µ

ρ2
1

holds, then, for all λ ∈
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
, ΣD(λ) > 0;

(b) if
d2

d1
< min

Å
4µ

h(λg2)
,

2ρ2µ

ρ2
1

ã
holds, then there exist λ, λ ∈

Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
, with λ < λ,

such that
h(λ)
4µ
=

h(λ)
4µ
=

d1

d2
,

and, for any λ ∈ (λ, λ), ΣD(λ) < 0, while, for λ ∈
Å
ρ2µ

2

ρ2
1

, λ

ò
∪

ï
λ,

2ρ2µ
2

ρ2
1

ã
, ΣD(λ) > 0.

2. Suppose that
d2

d1
>

2ρ2µ

ρ2
1

holds. Then, there exists a unique point λ∗ ∈
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
such

that h(λ∗) = 4µ
Å

d1

d2

ã
. In particular, ΣD(λ) < 0 for any λ ∈

Å
λ∗,

2ρ2µ
2

ρ2
1

ã
, while ΣD(λ) > 0

for any λ ∈
Å
ρ2µ

2

ρ2
1

, λ∗

ò
.

Proof. The proof is moved to the Appendix.

For clarity of our later discussions, we divide our discussions into the following cases:

Case 1:
4µ

h(λg2)
<

d2

d1
<

2ρ2µ

ρ2
1

and λ ∈
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
;

Case 2:
d2

d1
< min

Å
4µ

h(λg2)
,

2ρ2µ

ρ2
1

ã
and λ ∈

Å
ρ2µ

2

ρ2
1

, λ

ò
∪

ï
λ,

2ρ2µ
2

ρ2
1

ã
;

Case 3:
d2

d1
>

2ρ2µ

ρ2
1

and λ ∈
Å
ρ2µ

2

ρ2
1

, λ∗

ò
, where λ∗ is defined in Lemma 3.7.
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Theorem 3.8. Suppose that either Case 1 or 2 holds. Then, no steady-state bifurcation around
(uλ, vλ) occurs.

Proof. Suppose that either Case 1 or 2 holds. Then, p±(λ) is well defined. Clearly,
d2

d1
<

2ρ2µ

ρ2
1

.

Then, by (a) of Lemma 3.6, we have that λg1 <
ρ2µ

2

ρ2
1

< λg2 <
2ρ2µ

2

ρ2
1

. One can check that A(λ)

is decreasing since

A′(λ) := −
2d1ρ

2
1λ + 2d2ρ2µ

3

d2ρ
2
1λ

2
. (3.18)

Since A(λg1) = 0, it follows that, for all λ ∈
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
, A(λ) < 0. Thus, p±(λ) < 0

whenever they are well defined. In this case, no steady-state bifurcation around (uλ, vλ) occurs.

Lemma 3.9. Suppose that Case 3 holds. Then, there exists λ∗ ∈
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
, with λ∗ < λg1 ,

such that p+(λ) is decreasing while p−(λ) is increasing in
Å
ρ2µ

2

ρ2
1

, λ∗

ò
. In particular,

0 < p−

Å
ρ2µ

2

ρ2
1

ã
< p−(λ) < p−(λ∗) = p+(λ∗) < p+(λ) < p+

Å
ρ2µ

2

ρ2
1

ã
< +∞, (3.19)

and lim
λ→λ∗

p′−(λ) = +∞ and lim
λ→λ∗

p′+(λ) = −∞.

Proof. The proof is moved to the Appendix.

Therefore, for any n > 0, if p−

Å
ρ2µ

2

ρ2
1

ã
< n2/ℓ2 < p+

Å
ρ2µ

2

ρ2
1

ã
, then there exists λS

n ∈Å
ρ2µ

2

ρ2
1

, λ∗

ã
such that p−(λS

n ) = 0 or p+(λS
n ) = 0.

Define

ℓ+n := n/

√
p+

Å
ρ2µ

2

ρ2
1

ã
, ℓ−n := n/

√
p−

Å
ρ2µ

2

ρ2
1

ã
. (3.20)

Then, for any ℓ ∈ (ℓ+n , ℓ
−
n ), there exists λS

n such that Dn(λS
n ) = 0. These points λS

n are
potential steady-state points. As remarked in [14], however, it is possible that, for some i < j,
p−(λS

i ) = p+(λS
j ). In this case, for λ = λS

i = λ
S
j , 0 is not a simple eigenvalue of L(λ), and we

shall consider bifurcations at such points. Let LE be the set of such points.

Summarizing the aforementioned observations, by Theorem 3.10 of [14], we have the fol-
lowing results on the existence of steady-state bifurcations:
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Theorem 3.10. Suppose that Case 3 holds. Let ℓ+n and ℓ−n be defined in (3.20). If, for some

n ∈ N, ℓ ∈ (ℓ+n , ℓ
−
n )\{LE} and there exists a point λS

n ∈

Å
ρ2µ

2

ρ2
1

, λ∗

ã
such that p+(λS

n ) = 0 or

p−(λS
n ) = 0. Then, there is a smooth curve of positive solutions of the reaction-diffusion system

bifurcating from (λ, u, v) = (λS
n , uλS

n
, vλS

n
).

Remark 3.11. Biological meaning: Our results showed that, for any ℓ > 0 (the length of the
spatial domain), there exists an n > 0 such that, for a suitable λ (the decay rate of the inhibitor
v) and suitable diffusion rates d1 and d2, the reaction-diffusion system given by System (3.1)
might have positive non-constant steady-state solutions with the eigen-mode cos(nx/ℓ); That is,
the densities of the activator u and the inhibitor v have a non-uniform spatial distribution in Ω.
From the viewpoint of pattern dynamics, in this case, System (3.1) will undergo spatial patterns
which are different from Turing patterns.

4. Conclusions

In this study, we were mainly concerned with the spatiotemporal patterns and multiple
bifurcations of a reaction-diffusion model for hair follicle spacing.

First, we consider the stability and instability of the equilibrium solution of the ODE sys-
tem. In particular, by using the center manifold theory, normal form methods, as well as the
standard Hopf bifurcation theory, we were able to prove the existence of the Hopf bifurcating
periodic solutions bifurcating from the equilibrium solution. By calculating the first Lyapunov
coefficient, we found that the Hopf bifurcating periodic solutions are always unstable. This is
one of the novel points of this paper. Since the bifurcating periodic solutions are unstable in
ODEs, they will never undergo Turing instability (see [9, 15, 16] for more details on the Tur-
ing instability of periodic solutions) in the reaction-diffusion equations given by System (3.1).
This is different from the equilibrium solutions, which may experience Turing instability under
certain suitable conditions on the diffusion rates (d1 and d2) and the decay rate of v. This was
shown in the analysis of the reaction-diffusion system.

Second, we studied the stability and instability of the constant equilibrium solution in the
reaction-diffusion system. In particular, by using Hopf bifurcation theory and steady-state bi-
furcation theory, we were capable of showing the existence of spatially non-homogeneous Hopf
bifurcating periodic solutions, as well as the non-constant bifurcating steady-state solutions for
the reaction-diffusion equations. Moreover, Turing instability of the constant equilibrium solu-
tion was investigated in detail. If Turing instability of the constant equilibrium solutions occurs,
then Turing patterns emerge.

However, in application, for many reaction-diffusion equations, Turing-Hopf bifurcations
can also be observed. In this study, we did not consider the existence of Turing-Hopf bifurca-
tions. Indeed, the analytical analysis of Turing-Hopf bifurcation will be much more difficult
than that of either Turing bifurcation or Hopf bifurcation. We will consider Turing-Hopf bifur-
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cations of this particular reaction-diffusion system in our future investigations.

Regarding the numerical simulations, we would like to mention that we did not include
numerical simulations in the paper. The reasons are as follows: from our analytical analysis,
it was found that the Hopf bifurating periodic solutions are always unstable, so it is hard to
simulate numerically; on the other hand, for the steady-state bifurcations, under our conditions,
the constant equilibrium solutions and bifurcating steady-state solutions are unstable. Again, it
is hard to simulate numerically.

Finally, we ought to remark that our results in the current paper tend to be much more ana-
lytical. Although it will make contributions to the field of bifurcation theory with applications,
as well as to the field of mathematical biology, further work needs to be done to use our analyt-
ical results to understand the factors that affect the hair follicle spacing. We shall study it in our
future investigations.
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A. Appendix

1. Proof of Theorem 3.1. To understand the stability and instability of (uλ, vλ), we need to
know the linearized operator of System (3.1) evaluated at (uλ, vλ), which is given by

L(λ) :=

á
d1
∂2

∂x2 +
(−ρ2

1λ + 2ρ2µ
2)µ

ρ2
1λ

−
ρ1

ρ2
λ

2ρ2
2µ

3

ρ3
1λ

d2
∂2

∂x2 − 2λ

ë
.

It is well known that (see [14, 17–20]) the eigenvalue problem

−φ′′ = µ̂φ, x ∈ (0, ℓπ), φ′(0) = φ′(ℓπ) = 0

has eigenvalues µ̂n =
n2

ℓ2 (n = 0, 1, 2, · · · ), with corresponding eigenfunctions φn(x) = cos
n
ℓ

x.

Let Å
ϕ

ψ

ã
=

∞∑
n=0

cos
n
ℓ

x
Å

an

bn

ã
be an eigenfunction for L(λ) with the eigenvalue γ(λ). Then, we have

Ln(λ)
Å

an

bn

ã
= γ(λ)

Å
an

bn

ã
, n = 0, 1, 2, · · · ,

where

Ln(λ) :=

á
(−ρ2

1λ + 2ρ2µ
2)µ

ρ2
1λ

−
d1n2

ℓ2 −
ρ1

ρ2
λ

2ρ2
2µ

3

ρ3
1λ

−2λ −
d2n2

ℓ2

ë
.

Then, the eigenvalues of L(λ) are given by the eigenvalues of Ln(λ) for n = 0, 1, 2, · · · .

Indeed, the characteristic equation of Ln(λ) is

γ2 − γTn(λ) + Dn(λ) = 0, n = 0, 1, 2, · · · ,
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where 
Tn(λ) :=T (λ) −

(d1 + d2)n2

ℓ2 =
−2ρ2

1λ
2 − ρ2

1µλ + 2ρ2µ
3

ρ2
1λ

−
(d1 + d2)n2

ℓ2 ,

Dn(λ) :=
2µ(ρ2

1λ − ρ2µ
2)

ρ2
1

+

Ç
(ρ2

1λ − 2ρ2µ
2)µ

ρ2
1λ

d2 + 2d1λ

å
n2

ℓ2 +
d1d2n4

ℓ4 .

(A.1)

Note that µ ≥
ρ2

1

2ρ2
or, equivalently, λ0 ≤

ρ2µ
2

ρ2
1

holds; we have that Tn(λ) < 0 for any

λ >
ρ2µ

2

ρ2
1

and n ∈ N0 since T (λ) < 0. We now consider the sign of Dn(λ), with n ∈ N0\{0}:

Suppose that λ ∈
Å

2ρ2µ
2

ρ2
1

,+∞

ã
holds. Then, for any n ∈ N0, we have that Dn(λ) > 0. Thus,

in this case, (uλ, vλ) is locally asymptotically stable with respect to the diffusive system given
by System (3.1). By Theorem 2.1, (uλ, vλ) is also locally asymptotically stable with respect to
the ODE system. Thus, Turing instability of (uλ, vλ) does not occur.

Suppose that λ ∈
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
holds.

If, in addition, d1 ≥
(2ρ2µ

2 − ρ2
1λ)µℓ2

ρ2
1λ

holds, then, for any n ∈ N0, we have

Dn(λ) =
2µ(ρ2

1λ − ρ2µ
2)

ρ2
1

+ 2d1λ
n2

ℓ2 +

Ç
(ρ2

1λ − 2ρ2µ
2)µ

ρ2
1λ

+
d1n2

ℓ2

å
d2n2

ℓ2

≥
2µ(ρ2

1λ − ρ2µ
2)

ρ2
1

+ 2d1λ
n2

ℓ2 +

Ç
(ρ2

1λ − 2ρ2µ
2)µ

ρ2
1λ

+
d1

ℓ2

å
d2n2

ℓ2 > 0.

(A.2)

In this case, (uλ, vλ) is locally asymptotically stable with respect to the diffusive system given
by System (3.1). Again, Turing instability of (uλ, vλ) does not occur.

If, in addition d1 <
(2ρ2µ

2 − ρ2
1λ)µℓ2

ρ2
1λ

holds, then, by the definition of nd1 , for any integer

n > nd1 , we have that Dn(λ) > 0. Moreover, for any d2 < d̂2, Dn(λ) > 0 with n ∈ N0\{0}. In
this case, (uλ, vλ) is locally asymptotically stable with respect to the diffusive system given by
System (3.1). If d2 > d̂2 holds, then there exists at least an n ∈ [1, nd1] such that Dn(λ) < 0. In
this case, (uλ, vλ) is unstable with respect to the diffusive system given by System (3.1). Thus,
(uλ, vλ) undergoes Turing instability in the reaction-diffusion system given by System (3.1). We
thus complete the proof.

2. Proof of Lemma 3.6. We only prove the first part, since the proof of the second part is
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similar. Clearly, g1(λ) is increasing in (0,+∞). By direct calculation, we have

g1

Å
ρ2µ

2

ρ2
1

ã
=

2d1ρ
2
2µ

4 − d2ρ
2
1ρ2µ

3

ρ2
1

, g1

Å
2ρ2µ

2

ρ2
1

ã
=

8d1ρ
2
2µ

4

ρ2
1

> 0,

g2

Å
ρ2µ

2

ρ2
1

ã
=

d2ρ
2
1ρ

2
2µ

5 − 2d1ρ
3
2µ

6

ρ2
1

, g2

Å
2ρ2µ

2

ρ2
1

ã
= 4d2ρ

2
2µ

5 > 0.
(A.3)

If
d2

d1
<

2ρ2µ

ρ2
1

holds, then, by (A.3), g1

Å
ρ2µ

2

ρ2
1

ã
> 0 and g2

Å
ρ2µ

2

ρ2
1

ã
< 0. This implies that

λg1 <
ρ2µ

2

ρ2
1

< λg2 <
2ρ2µ

2

ρ2
1

. In this case, the monotonic properties of h(λ) can be obtained. We

thus complete the proof.

3. Proof of Lemma 3.7. We only prove Part 1, since the other parts can be proved similarly.

Assume that 0 <
d2

d1
<

2ρ2µ

ρ2
1

holds. Then, we have that 4µ
Å

d1

d2

ã
< h
Å

2ρ2µ
2

ρ2
1

ã
.

If, in addition, 4µ
Å

d1

d2

ã
< h(λg2) or, equivalently that

d2

d1
>

4µ
h(λg2)

holds, then, for any

λ ∈

Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
, ΣD(λ) > 0.

If, in addition,
d2

d1
< min

Å
4µ

h(λg2)
,

2ρ2µ

ρ2
1

ã
holds, then there exist λ, λ ∈

Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
,

with λ < λ, such that
h(λ)
4µ
=

h(λ)
4µ
=

d1

d2

and ΣD(λ) < 0 for any λ ∈ (λ, λ), while ΣD(λ) > 0 for λ ∈
Å
ρ2µ

2

ρ2
1

, λ

ò
∪

ï
λ,

2ρ2µ
2

ρ2
1

ã
. We thus

complete the proof.

4. Proof of Lemma 3.9. Suppose that Case 3 holds. By Lemma 3.7, p±(λ) is well defined

in
Å
ρ2µ

2

ρ2
1

, λ∗

ò
, where λ∗ ∈

Å
ρ2µ

2

ρ2
1

, λg1

ã
. Thus, in this interval, p±(λ) > 0.

Since A(λ) is decreasing, C(λ) is increasing in
Å
ρ2µ

2

ρ2
1

,
2ρ2µ

2

ρ2
1

ã
and

d2

d1
>

2ρ2µ

ρ2
1

; by

p = p+(λ) :=
A(λ) +

»
A2(λ) − 4µ d1

d2
C(λ)

2d1
, (A.4)

we know that p+(λ) is decreasing in
Å
ρ2µ

2

ρ2
1

, λ∗

ò
.
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On the other hand, by p+(λ)p−(λ) =
µC(λ)
4d1d2

, we know that p−(λ) is increasing in
Å
ρ2µ

2

ρ2
1

, λ∗

ò
,

since p+(λ) is decreasing and C(λ) is increasing. By direct calculation, it follows that

p′−(λ) =

»
A2(λ) − 4µ d1

d2
C(λ)A′(λ) − A(λ)A′(λ) + 4µ

d1

d2

2d1

»
A2(λ) − 4µd1

d2
C(λ)

,

p′+(λ) =

»
A2(λ) − 4µ d1

d2
C(λ)A′(λ) + A(λ)A′(λ) − 4µ

d1

d2

2d1

»
A2(λ) − 4µd1

d2
C(λ)

.

(A.5)

Since A′(λ) < 0, we can obtain that lim
λ→λ∗

p′−(λ) = +∞ and lim
λ→λ∗

p′+(λ) = −∞.

Noticing that h(λ∗) :=
A2(λ∗)
C(λ∗)

= 4µ
d1

d2
, we have

p−(λ∗) = p+(λ∗) =
A(λ∗)
2d1

=

 
C(λ∗)µ

d1d2
.

Since p−(λ) is increasing and p+(λ) is decreasing, we have that p−(λ) < p−(λ∗) = p+(λ∗) <

p+(λ) for all λ ∈
Å
ρ2µ

2

ρ2
1

, λ∗

ò
. In summary, we have (3.19). We thus complete the proof.
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