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Abstract: Style transfer is adopted to synthesize appealing stylized images that preserve the 
structure of a content image but carry the pattern of a style image. Many recently proposed style 
transfer methods use only western oil paintings as style images to achieve image stylization. As a 
result, unnatural messy artistic effects are produced in stylized images when using these methods to 
directly transfer the patterns of traditional Chinese paintings, which are composed of plain colors and 
abstract objects. Moreover, most of them work only at the original image scale and thus ignore 
multiscale image information during training. In this paper, we present a novel effective multiscale 
style transfer method based on Laplacian pyramid decomposition and reconstruction, which can 
transfer unique patterns of Chinese paintings by learning different image features at different scales. 
In the first stage, the holistic patterns are transferred at low resolution by adopting a Style Transfer 
Base Network. Then, the details of the content and style are gradually enhanced at higher resolutions 
by a Detail Enhancement Network with an edge information selection (EIS) module in the second 
stage. The effectiveness of our method is demonstrated through the generation of appealing 
high-quality stylization results and a comparison with some state-of-the-art style transfer methods. 
Datasets and codes are available at https://github.com/toby-katakuri/LP_StyleTransferNet. 

Keywords: style transfer; Chinese traditional painting; non-photorealistic rendering (NPR); 
multiscale learning 
 

1. Introduction 

Artistic painting is a long-established artistic expression technique that comprises lots of diverse 
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information. It not only contains the content information, which reflects what is described but also 
contains the style information which shows how contents are expressed. For example, scenes and 
objects are content, and the combination of different colors, strokes and lines represents different 
styles. Style transfer is a helpful image processing technique in computer vision and its goal is to 
generate a target image with the content structure of an ordinary content image and the style patterns 
of an artistic painting. Different from the previous traditional style transfer methods that adopt only 
low-level image features of a target image to achieve the transfer of style textures [1–3], Gatys et al. [4] 
proposed a seminal image-optimization style transfer algorithm based on deep convolutional neural 
network, which uses the correlation of features extracted from a pre-trained visual geometry group 
(VGG) network [5] to iteratively update a white noise image. Johnson et al. [6], and Ulyanov et al. [7] 
propose more efficient model-optimization methods that train a feed-forward neural network with a 
style image and then generate stylized images with this style in real time. Both of these methods can 
speed up the optimization procedure of training. Adaptive instance normalization (AdaIN) [8], 
whitening and coloring transforms (WCT) [9], and style-attentional network (SANet) [10] are also 
model-optimization style transfer methods, but they can transfer patterns of arbitrary style images 
after a training process with different feature transforms. 

After reviewing these methods, we found that almost all of them adopt only colorful and 
texture-rich western oil paintings as the style images to generate acceptable stylized images. When 
using these methods to transfer the patterns of traditional Chinese paintings that are not rich in color 
and texture, too many disharmonious artistic effects are produced in stylized images. One reason is 
that these colorful western oil paintings are usually filled with various colors and textures, so the 
stylization results generated by these methods look acceptable, although some colorful textures may 
be transferred anywhere. However, when the textures of Chinese paintings, which are composed of 
simple lines and sober colors, are transferred to the wrong place by these methods, the stylization 
results look messy and unnatural and lose the spirit of Chinese paintings. Another reason is that the 
original content and style images are only used with a fixed resolution during the training of these 
methods. Furthermore, the deep features of images extracted from the neural network only work at 
the same scale. As a result, trivial details such as local content structures are maintained 
indiscriminately, and essential elements such as overall object shapes are not highlighted. For 
example, in some cases, the unnatural style textures are transferred to the blank space of content 
images and make the stylized images look messy and unaesthetic. 

Inspired by the universal process of painting creation [11], which first draws simplified shapes 
of contents from a holistic view and then adds fine local details gradually, the first stage of our 
method achieves a rough style transfer at a low resolution, and then the details of stylized images are 
enhanced gradually at a higher resolution in the second stage. Based on the observations from the 
Laplacian pyramid translation network (LPTN) [12], some image attributes such as illuminations or 
colors are exhibited on the low-frequency component, and the content details are more related to the 
higher-frequency component. Therefore, we propose a novel effective multiscale method based on 
Laplacian pyramid decomposition and reconstruction for the style transfer task of traditional Chinese 
paintings. LPTN is an image-to-image translation (I2IT) method that transfers the different daytimes 
or seasons and adjusts the color or illumination in a target image. Different from LPTN which only 
handles the same image during the whole training process, the goal of our model is to adopt a content 
image and a style image to generate a new stylized image. 

In the first stage of our model, a Style Transfer Base Network is designed to transfer the global 
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coarse style patterns by adopting the low-frequency component at a low resolution. Different from 
the translation on the low-frequency component of LPTN that only adopts one image based on some 
simple convolutional layers to get a translated image, the task of our Style Transfer Base Network is 
to adopt two different images to generate a stylized image based on the architecture of the style 
transfer method. In the second stage of our model, a Detail Enhancement Network is employed to 
enhance the details of contents and patterns by adopting the high-frequency component at a higher 
resolution. In LPTN, an adversarial loss based on the least squares generative adversarial network 
(LSGAN) objective [13] and a multi-scale discriminator [14] need to be calculated. However, we 
discard this loss for achieving faster training speed and still obtain high-quality stylization results. 

 

(a) (b) (c) (d) (e) 

Figure 1. Stylization results generated by our model in different stages. (a) The content 
image. (b) The style image with Chinese traditional style. (c) The coarse stylized image 
with a resolution of 128  128 is generated by Style Transfer Base Network. (d) The 
stylized image with a resolution of 256  256 is refined in Detail Enhancement 
Network. (e) The final stylized image with a resolution of 512  512 is further 
enhanced in Detail Enhancement Network. 

Figure 1 shows the stylized images with different resolutions synthesized by our model in 
different stages. In Figure 1(c), a coarse stylized image with a resolution of 128   128 is generated 
by our Style Transfer Base Network in the first stage. The overall color distribution and content 
structure are transferred roughly in the first stage. Figure 1(d) shows that the texture and color of the 
stylized image are refined preliminarily at a resolution of 256   256 in the second stage. Finally, 
Figure 1(e) shows that the final high-quality stylized image with a resolution of 512   512 is 
synthesized by our full model in the second stage, where the content details and style patterns are 
further enhanced. 

Our main contributions are as follows: 
• We present a novel effective multiscale style transfer method that is designed to transfer the 

unique style patterns of traditional Chinese painting and then synthesize high-quality stylized images. 
In the first stage, coarse style patterns such as color distribution and holistic content structure are 
transferred by using a Style Transfer Base Network at a low resolution. In the second stage, the 
details of the style patterns and the content objects are gradually enhanced by adopting a Detail 
Enhancement Network at higher resolutions. 

• Laplacian pyramid decomposition and reconstruction are applied in our model for multiscale 
learning. We use only the low-resolution image to transfer the style in the first stage while avoiding 
heavy convolutions on feature maps of the high-resolution image in the second stage. In this way, our 





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model avoids the heavy computational cost and can be applied in practical high-resolution applications. 
• We propose an EIS module that refines the features of content edge maps to pay more 

attention to the key semantic information of content structures in the second stage. As a result, 
essential content details such as the outline of objects can be preserved in the stylized images. 

• It is demonstrated through different experiments that our method can transfer the patterns of 
traditional Chinese paintings and synthesize appealing high-quality stylization results. The style 
characteristics of Chinese paintings such as plain colors and abstract objects can be transferred 
accurately. Meanwhile, the structural details of the content images such as the edge of objects can be 
well maintained. 

The following parts of this paper are organized as follows. In Section 2, we review the works 
related to different style transfer methods based on neural networks. Then, in Section 3, the pipeline 
of our method, the details of our network, and the loss functions are described. Different 
experimental results are shown and analyzed in Section 4. Finally, we summarize our work and 
discuss future research in Section 5. 

2. Related works 

2.1. Style transfer 

Style transfer is an attractive method of computer vision that is adopted to synthesize the stylized 
image which preserves the content structure while transferring the style texture. Gatys et al. [4] 
proposed a pioneering model-optimization style transfer method that adopts a pre-trained VGG 
network [5] to extract features and update a white noise image iteratively as a stylized image. 
Recently, Style transfer by relaxed optimal transport and self-similarity (STROTSS) [15] adopted 
different loss terms to achieve a model-optimization method with multiscale learning, which can 
generate superior stylization results. However, both of these methods take a lot of time to train and 
only generate one stylized image after one training. To solve this problem, Johnson et al. [6] 
proposed a feed-forward method to generate any number of stylized images with the same style 
after a training process. This model adopts an encoder-decoder architecture. In addition, some 
approaches [16,17] speed up the style transfer process, and others [18–20] improve visual quality. 
Sanakoyue et al. [21] trained an autoencoder network with a proposed style-aware loss and a set of 
style images instead of a style to improve the visual quality of stylized images. Deng et al. [22] 
proposed a transformer-based framework with two different transformer encoders and a multilayer 
transformer decoder, which adopt domain-specific sequences of content and style to generate 
outstanding results based on a content-aware positional encoding (CAPE) scheme. Yang et al. [23] 
proposed an exemplar-based portrait style transfer method that retains an intrinsic style path to 
control the style of the original domain and adds an extrinsic style path to model the style of the 
target extended domain based on a generative adversarial network. 

To simultaneously handle multiple styles, a flexible conditional instance normalization (CIN) 
approach proposed by Dumoulin et al. [24] is applied in the style transfer network to learn multiple 
styles. Stylized neural painter (SNP) [25] proposed a novel dual-pathway rendering network that can 
synthesize realistic painting artworks by generating vectorized strokes sequentially to render in a 
variety of painting styles. In the multi-style method proposed by Ye et al. [26], a convolutional block 
attention module (CBAM) attention layer and a CIN layer are integrated into the stylization network 
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for preserving the original semantic information. In addition, a YOLACT (you only look at 
coefficients) network and the Poisson fusion algorithm are used to achieve more natural stylization 
between different regions. 

To generate arbitrary stylized images with arbitrary content and style images, AdaIN [8] 
adopts adaptive instance normalization to learn multiple styles during training, and WCT [9] 
applies whitening and coloring transforms to the features of content and style images with a series 
of pre-trained image restructuring decoders. Inspired by the decomposition of Gram matrices, 
Wang et al. [27] proposed a deep feature perturbation (DFP) operation to generate diverse results 
without any extra learning process in WCT-based frameworks. Moreover, SANet [10] achieves the 
arbitrary style image method by integrating local style patterns into content features based on the 
self-attention mechanism. 

2.2. Style transfer for traditional Chinese painting 

To transfer the style patterns of traditional Chinese paintings, Lin et al. [28] proposed a deep 
learning method that uses a generative network with an edge detector to transform sketches into 
Chinese paintings. Li et al. [29] proposed a neural abstract style transfer method to preserve 
abstraction for traditional Chinese paintings by adopting different losses based on a novel modified 
version of the extended Difference-of-Gaussians. 

2.3. Style transfer based on multiscale learning 

For the style transfer framework, working at multiple scales is a useful technique that can 
capture a wide range of image statistics to improve image quality. A generative adversarial network 
trained on a single natural image (SinGAN) [30] captures patch-level distribution at different image 
scales with a pyramid of adversarial networks and then synthesizes high-quality stylized images with 
a style image. Sheng et al. [31] proposed an Avatar-Net that achieves multiscale holistic style transfer 
based on an hourglass network with multiple skip connections and a style decorator. Lin et al. [32] 
proposed a Laplacian pyramid style network (LapStyle) which works at multiple scales and synthesizes 
stylized images with high visual quality based on a Drafting Network and a Revision Network. 

3. Proposed methods 

3.1. Framework overview 

Unlike most colorful and texture-rich western oil paintings with realism, traditional Chinese 
paintings are impressionistic and characterized by simple colors and abstract objects. During the 
process of style transfer, we do not need to preserve too many local content structures while needing 
only to keep some areas of the stylized images blank and clean. Therefore, we propose to adopt 
multiscale learning to selectively transfer the style patterns of Chinese paintings while avoiding 
messy texture generation. 

To achieve the training of our model at different scales, we employ the long-standing image 
processing technique Laplacian pyramid. Specifically, we first use the Laplacian pyramid to 
decompose an original high-resolution content image into a low-resolution content image as the 
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low-frequency component and a series of high-resolution residual content images as the 
high-frequency components. Then, a Style Transfer Base Network with two style attentional (SA) 
modules is designed to transfer style with the low-resolution content image, and a Detail 
Enhancement Network with an EIS module is designed to refine these residual content images to 
obtain the set of residual stylized images. Finally, we use the low-frequency component and the set 
of refined high-frequency components to reconstruct the final high-resolution stylized image based 
on Laplacian pyramid reconstruction. In this way, the trivial local content structures are discarded 
while the holistic content structures are maintained at low resolution, and key details of style patterns 
are enhanced gradually at higher resolution. As a result, our stylization results show the same artistic 
expression as traditional Chinese paintings. 

 

Figure 2. Overview of our framework. 

Our framework is designed based on a 2-level Laplacian pyramid because of the limitation of 

computational resources. In Figure 2, given an original content image 3
c

h wx    and an original 

style image 3 h w
sx   , we decompose cx  into a low-frequency component and a set of 

high-frequency components by adopting Laplacian Pyramid. We downsample cx  to obtain a 

low-resolution content image 
3

2 2

h w

cx
 

   based on a fixed kernel and further downsample cx   to 

obtain a content image 
3

4 4

h w

cx
 

   with a lower resolution as the low-frequency component. In this 

way, a set of high-resolution residual content images as the high-frequency components denoted by

 0 1,H h h  can be obtained, where  0 c ch x Up x   ,  1 c ch x Up x   , and Up  is a 2   upsample 

operation. In the first stage, our Style Transfer Base Network takes cx   and sx   as the input and 
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then synthesizes the coarse low-resolution stylized image 
3

4 4

h w

csx
 

    as the stylized low-frequency 

component for reconstruction. In the second stage, our Detail Enhancement Network utilizes two 

steps to gradually enhance the details. In the first step, the Detail Enhancement Network takes 1h , 

cx  , csx  , and 
3

2 2

h w

ex
 

  as the input, where ex  denotes the edge map of cx  . Then, the 

high-resolution residual stylized image 
3

2 2
1
ˆ

h w

h
 

  as the first stylized high-frequency component 

can be generated. In the second step, our Detail Enhancement Network takes 0h , cx  , and 1ĥ  as the 

input and then generates the second stylized high-frequency component 3 w
0

ˆ hh   . The descriptions 

of the components are shown in Table 1. Eventually, the final high-resolution stylized image 
3 h w

csx    can be synthesized based on Laplacian pyramid reconstruction by adopting element-wise 

operations between csx  , 1ĥ , and 0ĥ . Specifically, we perform an element-wise operation between 

 csUp x   and 1ĥ  to obtain csx   then perform an element-wise operation between  csUp x   and 0ĥ  

to obtain csx . 

Table 1. The descriptions of the components. 

Component Description 

cx   
Low-frequency component (Low-resolution 
content image) 

sx   
Low-frequency component (Low-resolution style 
image) 

csx 
 

Stylized low-frequency component 
(Low-resolution stylized image) 

0h  
High-frequency component (High-resolution 
residual content image) 

1h  
High-frequency component (High-resolution 
residual content image) 

0ĥ  
Stylized high-frequency component 
(High-resolution residual stylized image) 

1ĥ  
Stylized high-frequency component 
(High-resolution residual stylized image) 

In addition, higher-resolution applications can be achieved by increasing the levels of a 
Laplacian pyramid to handle higher-resolution images. To obtain higher-resolution stylized images, 
we can stack the network used in the second step in Detail Enhancement Network. Then we repeat 
the second step for higher-frequency components and generate stylized higher-frequency 
components to reconstruct. 

3.2. Style Transfer Base Network 

The goal of the Style Transfer Base Network is to transfer coarse style patterns at a low 

resolution. The low-resolution content image cx   and the low-resolution style image sx   are taken 
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as the inputs and the low-resolution stylized image csx   is generated as the output. Figure 2 shows 

the architecture of the Style Transfer Base Network, which is designed as an effective 

encoder-decoder architecture with an encoder, two SA modules, and a decoder. The encoder is a 

pretrained VGG-19 network, which is fixed during training. 

3.2.1. SA module 

 

Figure 3. Schematic for SA module. 

To transfer the rough style patterns in the Style Transfer Base Network, we employ the SA 

module proposed in [10] to embed the style feature into the content feature. The SA module is 

designed to preserve the content structure as much as possible while enriching the style patterns 

based on multilevel feature embeddings. In Figure 3, we take v v vc h w
cf

   and v v vc h w
sf    as the 

input of the SA module, where cf  and sf  are the feature maps of low-resolution content image 

cx   and style image sx  , which are extracted by a pre-trained VGG network. Next, cf  and sf  are 

normalized and then transformed into two feature spaces cg  and sg  to calculate the attention 

between i
cf  and j

sf  as follows: 

 
   
   

 
exp

exp

T
i j

c c s s
i j

sT
i jj

c c s sj

cs

g f g f
f h f

g f g f


 
 
 
 
 
 




 (1) 

where  c c c cg f W f ,  s s s sg f W f ,  s h sh f W f , and f  denotes a mean-variance channel-wise 

normalized version of f . Moreover, i  is the index of an output position, and j  is the index that 

enumerates all possible positions. cW , sW , and hW  are the learned weight matrices, which are 

implemented by convolution layers. Then, csf  obtained by Eq (1) is fed into a convolutional layer to 

produce a refined result. Finally, we obtain a style-attentional stylized feature v v vc h w
csf    by 
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performing an element-wise sum operator between this refined result and the original content 

feature cf , which integrates local style patterns in light of the semantic spatial distribution of the 

content image. 

3.2.2. Workflow of Style Transfer Base Network 

In Style Transfer Base Network, given cx   and sx  , the content features cf  and the style 

features sf  at ReLU_4_1 and ReLU_5_1 are extracted by the VGG encoder. Next, two SA modules 

are applied to these features for style feature embedding. We take 4 _ 1
cf  and 4_1

sf  from ReLU_4_1 

as the inputs of the first SA module and then generate a stylized feature 4 _1
csf . In the same way, the 

stylized feature 5 _1
csf  can be generated by the second SA module when taking 5 _1

cf  and 5_1
sf  as 

the inputs. Then, we add 5 _1
csf  to  4_1

csUp f  to obtain a multilevel stylized feature and feed it into a 

convolutional layer to produce a final refined stylized feature v v vc h w
csf   . Finally, the decoder is 

used to reconstruct csf  to generate the final stylized image csx  , which is designed to be 

symmetrical to the VGG-19 network. 

3.3. Detail Enhancement Network 

In Detail Enhancement Network, our task is to add the details of style patterns and content 
structures to stylized images gradually at higher resolution. The high-frequency component 

 0 1,H h h  obtained by Laplacian pyramid decomposition and the content edge map ex  are utilized 
as the inputs. Then one refined stylized high-frequency component 1ĥ  is generated in the first step 
and another refined stylized high-frequency component 0ĥ  is generated in the second step. 
Eventually, we take csx  , 0ĥ , and 1ĥ  to reconstruct the final high-resolution stylized image csx . 

Figure 2 shows the architecture of the Detail Enhancement Network, which is designed to be 
simple. It includes some simple convolution layers followed by leaky rectified linear unit (ReLU) 
layers, a series of residual blocks, and an EIS module. The encoding-decoding paradigm with heavy 
convolutional layers commonly used in some traditional image-to-image translation methods is not 
used because of the limitations of their applications to high-resolution tasks. 

3.3.1. Edge information selection (EIS) module 

To preserve more key local content structures such as the outline of objects in stylized images, 
we adopt the edge map of the content image to contribute semantic content information. An EIS 
module is designed to select essential semantic features of content images by capturing contextual 
feature dependencies based on the self-attention mechanism. Inspired by the dual attention network 
(DANet) proposed in [33], we adopt the channel attention module, which can adaptively integrate 
local features from a global view in the channel dimensions to model the semantic interdependencies 
between edge feature maps. In addition, the feature representation of specific semantics can be 
improved, and interdependent feature maps can be emphasized by exploiting the interdependencies 
between channel maps. We do not apply the position attention module proposed in DANet in our EIS 
module due to the limitation of GPU memory. 
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Figure 4. Schematic for EIS module. 

In Figure 4, we take the edge map of the content image ex  as the input of the EIS module and 
then feed it into a convolutional layer to produce an edge feature e e ec h wE   . After E  is reshaped to 

e ec n , we apply a channel matrix operation that denotes performing a matrix multiplication between E  
and the transpose of E . Then, the channel attention map e ec cM   is calculated as follows: 

 
 
 

1

exp

exp

i j

ji c

i ji

E E
m

E E






 (2) 

where jim  denotes the thi  channel’s impact on the thj  channel. We perform a matrix 
multiplication between the transpose of M  and E  to obtain a result and perform an element-wise 
sum operator between this result, which is reshaped to e e ec h w   and E  to produce a refined edge 
feature e e ec h wR    as follows: 

  
1

ec

j ji i j

i

R m E E


   (3) 

where   gradually learns a weight from 0. Eq (3) shows that the refined edge feature of each 
channel is a weighted sum of the features of all channels and original features. Finally, the refined 
edge feature R  is fed into a convolutional layer to obtain the final edge feature e e ec h w

ef
   as part 

of the input of the Detail Enhancement Network. 

3.3.2. Workflow of Detail Enhancement Network 

In the first step of Detail Enhancement Network, we concatenate 1h ,  cUp x  , and  csUp x   as 
the inputs. Meanwhile, we take ex  as the input of the EIS module to produce the edge feature ef . 
After the second leaky ReLU layer, ef  is concatenated into the network to generate the first refined 
high-frequency component 1ĥ . In the second step of the Detail Enhancement Network, we 
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concatenate  cUp x  , 0h , and  1
ˆUp h  as the input and then generate the second refined 

high-frequency component 0ĥ . Eventually, we adopt the set of refined high-frequency stylized 
components 0 1

ˆ ˆˆ ,H h h     and the low-frequency stylized component csx   to obtain the final 
high-resolution stylized image csx  based on Laplacian pyramid reconstruction. 

3.4. Loss function 

Our model includes two training processes for two networks. We first train the Style Transfer 
Base Network with a single style image in the first stage. Then we train the Detail Enhancement 
Network with a single style image in the second stage. Style Transfer Base Network is fixed during 
the training process of Detail Enhancement Network. 

3.4.1. Loss function of Style Transfer Base Network 

Following SANet [10], we use content, style, and identity losses to optimize our Style Transfer 
Base Network during training. Given cx  , sx  , and csx  , we use a pretrained VGG-19 encoder to 
extract their features   t t t

t c h w
cF   ,   t t t

t c h w
sF   , and   t t t

t c h w
csF   , where t  denotes the features 

extracted at ReLU_ t  ( t  = 1_1, 2_1, 3_1, 4_1, 5_1). 
Style Loss: For style loss, we use the mean-variance loss as: 

            2 2
t t t t

s cs s cs s

t

F F F F   


        (4) 

where   and   denote the mean and covariance of the feature maps, respectively. 

Content Loss: For content loss, we use the Euclidean distance between  t
csF  and  t

cF  as follows: 

    
2

t t
c cs c

t

F F


    (5) 

where  t
csF  and  t

cF  denotes a mean-variance channel-wise normalized version of  tF . 
Identity Loss: To consider both the global statistics and the semantically local mapping 

between the content features and the style features, we adopt the identity loss function as follows: 

         2 2 2 21 2
t t t t

i i cc c ss s i cc c ss s

t

x x x x F F F F 


               (6) 

where ccx  and ssx  denote the output images of our Style Transfer Base Network with two same 
content images and style images as inputs. 1i  and 2i  are identity loss weights. In addition,  t

ccF  
and  t

ssF  are the features of ccx  and ssx  extracted by a pretrained VGG-19 encoder.  
The overall optimization objective of the Style Transfer Base Network in the first stage is 

defined as: 

 STBNet c c s s i        (7) 

where c  and s  are weight terms. Specifically, c  works on ReLU_4_1 and ReLU_5_1. Then, 

s  and i  work on ReLU_1_1, ReLU_2_1, ReLU_3_1, ReLU_4_1, and ReLU_5_1. 
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3.4.2. Loss function of Detail Enhancement Network 

To train the Detail Enhancement Network, we adopt content and style losses for optimization. In 

the same way, we adopt the same pretrained VGG-19 encoder to extract the features of cx , sx , and 

csx . As a result, we can obtain   t t t
t c h w

cF   ,   t t t
t c h w

sF   , and   t t t
t c h w

csF   , where t  denotes the 

features extracted at ReLU_ t  ( t  = 1_1, 2_1, 3_1, 4_1).  
Style Loss: For style loss, we adopt two different style losses. We first adopt the same 

mean-variance loss used in the Style Transfer Base Network as: 

             22
t t t t

mv cs s cs s

t

l F F F F   


        (8) 

where   and   denote the mean and covariance of the feature maps, respectively. Then, we use 
the relaxed Earth mover’s distance (rEMD) loss [15] as the second style loss, which is significant to 
achieve our final stylization results and improve the visual quality. The rEMD loss between  t

csF  and 
 t

sF  is defined as: 

 
1 1

1 1
max min , min

t t t th w h w

r ij ij
j i

t t t tt i j

l C C
h w h w  

 
 
 
 

    (9) 

where C  is the cost matrix, which can be calculated as the cosine distance between  t
sF  and  t

csF : 

     
   

   
, ,

, ,

, ,

, 1
t t

s i cs jt t
ij cos s i cs j t t

s i cs j

F F
C D F F

F F 


  


 (10) 

Content Loss: For content loss, we use two different content losses. First, we adopt the same 
content loss used in the Style Transfer Base Network, which is defined as: 

    
2

t t
p cs c

t

l F F


    (11) 

Then, we adopt the self-similarity loss [15], which can retain the relative relation in the content 

image to the stylized image: 

 
 2

,

1
c cs
ij ij

ss c cs
t i j ij ijt t i j

D D
l

D Dh w

 
    
 

   
 (12) 

where c
ijD  and cs

ijD  are self-similarity matrices, which are calculated by pairwise cosine similarity. 

As shown in Eq (10),     , ,,t tc
ij cos c i c jD D F F  and     , ,,t tcs

ij cos cs i cs jD D F F . 
The overall optimization objective of our Detail Enhancement Network in the second stage is 

defined as: 

  1 2 3 4DENet p ss mv rl l l l         (13) 

where  , 1 , 2 , 3 , and 4  are weight terms. Specifically, pl  and mvl  both work on ReLU_1_1, 
ReLU_2_1, ReLU_3_1, and ReLU_4_1. Then, ssl  and rl  both work on ReLU_3_1, and ReLU_4_1. 
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In addition, by adjusting  , the degree of stylization can be controlled. 

4. Experimental results and analysis 

4.1. Experimental dataset and implementation details 

During both training processes of the Style Transfer Base Network and Detail Enhancement 
Network, we use the Microsoft common objects in context (COCO) [34] dataset as the set of content 
images and some famous and representative Chinese traditional paintings as style images. In addition, we 
select some copyright-free images from Pexels.com as content images to show the experimental results. 

In our experiments, we train our Style Transfer Base Network with a set of content images and a 
single style image in the first stage. Then, the Style Transfer Base Network is fixed, and the Detail 
Enhancement is optimized to generate the final stylized image in the second stage. In the experiments, 
we use the content images and the style images with a resolution of 512   512. Following SANet [10], 
we use the Adam optimizer [35] with a learning rate of 1e-4 and a batch size of 5 during the 
training of the Style Transfer Base Network. Moreover, the weighting parameters 1i , 2i , c , and 

s  are set to 1, 50, 1, and 3, respectively. During the training of the Detail Enhancement Network, we 
also use the Adam optimizer with a learning rate of 5e-3, and the batch size is set as 1 because of the 
limitation of the GPU memory. The loss weight terms,  , 1 , 2 , 3 , and 4  are set to 1, 1, 15, 50, 
and 80, respectively. The experimental environment configuration is shown in Table 2. 

Table 2. Experimental environment configuration. 

Designation Information 
Operating system Windows 10 
System configuration CPU: AMD Ryzen 9 5900X 
 GPU: NVIDIA GeForce RTX 3090 
Python library Cuda 11.7 
 Pytorch 1.8 
 Torchvision 0.9 
 Numpy 1.21 

4.2. Qualitative comparisons with prior works 

In Figure 5, we compare the stylized images generated by our method with the stylized images 
generated by five state-of-the-art style transfer methods. Gatys et al. [4] proposed the seminal 
optimization-based style transfer method, which generates a stylized image by updating a white noise 
image. Although some style patterns such as lines and color blocks can be synthesized, many messy 
artistic effects are generated in the part of the sky in the stylized images (e.g., rows 1, 2, and 6). 
Similar to our method, Johnson et al. [6] proposed a model-optimization model that is trained to 
generate images with a single given style image. It can transfer a holistic style texture and structure 
but sometimes maintains too many local content structures (e.g., rows 1 and 5). AdaIN [8], WCT [9], 
and SANet [10] are arbitrary style transfer methods that can synthesize stylization results with 
arbitrary style images. They have a common problem in that they all fail to transfer the essential 
local style structures such as brushstrokes. Specifically, the color distribution of style images is not 
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maintained accurately in AdaIN (e.g., rows 1, 2, and 4), and too many content structures of stylized 
images are distorted in WCT (e.g., rows 1, 3, and 8). Compared with AdaIN and WCT, the stylization 
results generated by SANet have a more appealing visual effect but ignore some details of objects 
(e.g., rows 4 and 8). In contrast to these methods, our method can simultaneously transfer the local 
style structure and maintain the color distribution of the style image. Moreover, our stylization 
results look more natural and cleaner. For example, in the second row, the image of the sky generated 
by our method looks more artistic and harmonious than other methods in the stylized image. 

 
Content Style Ours Gatys et 

al. [4] 
Johnson 
et al. [6] 

AdaIN [8] WCT [9] SANet 
[10] 

Figure 5. Qualitative comparisons between our method and five state-of-the-art methods. 
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4.3. Quantitative comparisons with prior works 

In the experiment of quantitative comparisons, we use the peak signal noise ratio (PSNR) to 
compare the quality of stylized images generated by our method with the quality of stylized images 
generated by five state-of-the-art methods. A higher PSNR value indicates a higher quality of the 
reconstructed images. Meanwhile, we use the learned perceptual image patch similarity (LPIPS) 
proposed in [36] and the structural similarity index measurement (SSIM) proposed in [37] to 
compute the difference in style similarity between the stylized image and style image. A lower LPIPS 
value indicates a higher similarity of human perceptual judgments and a higher SSIM value indicates 
a higher structural style similarity. For each method, 2000 pairs of stylized and style images, which 
include ten styles, are used to compute the average value of these three metrics respectively.  

Table 3 shows that our stylization results have slightly higher image quality than the stylization 
results generated by other methods when we take PSNR as the metrics. Meanwhile, among these 
results generated by different methods, our stylization results have the highest style similarity when 
we use LPIPS and SSIM as the metrics. The experimental results show that our model can synthesize 
stylized images that have a higher image quality and a higher style similarity to the style images. 

Table 3. Quantitative comparisons of PSNR, LPIPS, and SSIM between our method and 
five state-of-the-art methods. 

Methods Ours Gatys et al. [4] Johnson et al. [6] AdaIN [8] WCT [9] SANet [10] 
PSNR 11.7133 11.1994 11.5578 11.4221 11.1369 11.2020 
LPIPS 0.6291 0.6484 0.6533 0.6487 0.6507 0.6440 
SSIM 0.2478 0.2261 0.2330 0.2155 0.2144 0.2065 

4.4. Comparisons of inference speed with prior works 

Table 4. Running time comparison between our method and five state-of-the-art methods 
(in seconds). 

Methods Ours Gatys et al. [4] Johnson et al. [6] AdaIN [8] WCT [9] SANet [10] 
Time 0.127 29.057 0.062 0.094 2.162 0.141 

We compare the inference speed of our proposed method with five state-of-the-art methods. We 
use different style transfer models to generate 200 stylized images with a resolution of 512   512. 
All experiments are conducted on the same environment configuration. The comparison results are 
listed in Table 4. Johnson et al. [6] is the faster method because they used only a simple 
encoder-decoder architecture to achieve style transfer. Our method is the third faster method, and 
there is only a marginal inference speed difference between our method and the faster method. 
However, our method can capture multiscale information to synthesize more appealing high-quality 
stylized images. Compared to other methods except for Johnson et al. [6] and AdaIN [8], our method 
has the advantage of inference speed. There are two reasons for the fast inference speed: 1) Our Style 
Transfer Base Network is designed to only synthesize low-resolution coarse stylized images. 2) In 
the Detail Enhancement Network, only several simple convolution layers and residual blocks are 
adopted to enhance the details of stylized images. To conclude, our proposed multiscale model traded 
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a small increase in inference time cost for a promising improvement in the quality of stylized images. 

4.5. Ablation study on loss function 

In the first stage, the task of the Style Transfer Base Network is to generate low-resolution 

coarse stylized images for reconstruction, so we only conduct the ablation experiments to verify the 

effectiveness of each loss term in the second stage which generates the final stylized images with 

more details. The results are shown in Figure 6. 1) Without the perceptual loss p
l , the basic content 

structures are discarded such as the shape of the tower disappearing in the stylized image. 2) Without 

the self-similarity loss ss
l , some local content details are not transferred and disordered textures are 

produced; for example, there are some messy brushstrokes in the part of the cloud in the stylized 

image. 3) Without the mean-variance loss mv
l , the color distribution is not maintained accurately. 4) 

Without the rEMD loss r
l , key style structures such as some representative brushstrokes are not 

transferred, and only the color distribution is changed. 

 

Content/style Full model w/o p
l  

 

w/o ss
l  w/o mv

l  w/o r
l  

Figure 6. Ablation study of effects of different loss terms during training. 
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4.6. Effectiveness of Style Transfer Base Network 

We compare the stylized images generated by our full model with the stylized images generated 
by the model without the Style Transfer Base Network. First, we take c

x   as cs
x   when we train the 

model without the Style Transfer Base Network. In addition, all weight terms are the same for 
comparing these two models. During of training of two models, Figure 7 shows that the model 
without the Style Transfer Base Network can achieve a lower content loss after 20,000 iterations 
because the content image c

x   instead of the stylized image cs
x   is fed into the network as input 

information and used as a low-frequency component for reconstruction. For style loss, the full model 
can achieve a stable lower value with fewer iterations. As shown in Figure 8, our full model achieves 
a stylization result that is more in line with the style image. Without the Style Transfer Base Network, 
the local style structures are not the same as the stylized images. Moreover, the color distribution of 
stylized images is not transferred because we can only take c

x   as the low-resolution stylized image 
to reconstruct the final high-resolution stylized image. 

 

Figure 7. Comparison of full model and model without Style Transfer Base Network in 
terms of content and style losses. 

 

Style Content Full model w/o Style Transfer 
Base Network  

Figure 8. Comparison of stylized image of full model and the model without Style 
Transfer Base Network. 
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4.7. Effectiveness of Detail Enhancement Network 

We compare the stylized images generated by our full model with the stylized images generated 
by the model without the Detail Enhancement Network. In Figure 9, we directly take content and 
style images with a resolution of 512   512 as inputs to train the Style Transfer Base Network and 
then generate unsatisfactory stylized images that lose many local style details. In contrast, our full 
model with the help of the Detail Enhancement Network can achieve more appealing stylization 
results that maintain essential style structures and style color distribution. 

 

Style Content Full model w/o Detail 
Enhancement Network

Figure 9. Comparison of stylized image of full model and the model without Detail 
Enhancement Network. 

4.8. Effectiveness of EIS module 

We compare the stylized images generated by our full model with the stylized images generated 
by the model without the EIS module. During the training of the two models, Figure 10 shows that 
the content and style loss of the model without the EIS module are slightly different from those of 
the full model between 0 and 5000 iterations. Then, the model without the EIS module obtains a 
similarity in content and style loss to that of the full model between 5000 and 25,000 iterations of 
optimization. As shown in Figure 11, our full model with the EIS module can generate more 
complete stylized images that maintain some details of the content structure. For example, without 
the EIS module, part of the outline of the mountain disappears in the stylized image in the first row. 
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Figure 10. Comparison of full model and model without EIS module in terms of content and style losses. 

 

Style Content Edge map Full model w/o EIS module 

Figure 11. Comparison of full model and the model without EIS module in stylized images. 

4.9. Additional experiments 

To show the high-resolution stylization results generated by our method more clearly, we zoom 
in on some details in style, content, and stylized images in Figure 12. We can observe that the holistic 
content structures are transferred to the stylized image while the local texture of our stylized image is 
extremely similar to that of the style image. For example, the brushstrokes of the vegetation in the 
stylized image are close to that in the style image (e.g., rows 1 and 3). These results demonstrate that 
our model can learn the artistic expression of style images. 
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Style Content Stylization 

Figure 12. Fine-grained style details of stylization results. 
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Moreover, in our method, the degree of stylization can be controlled during training by 
adjusting the weight term  . Figure 13 shows that only the color distribution is transferred when we 
set   to 5 and too many content structures are discarded when we set   to 0.1. The essential style 
textures are transferred while the basic content structures are maintained when we set   to 1. 

 
Content 5   1   0.1   Style 

Figure 13. Trade-off of content-style losses. 

5. Conclusions and future work 

We proposed a novel efficient style transfer method based on a Laplacian pyramid for Chinese 
traditional painting. In our model, we adopt Laplacian pyramid decomposition and reconstruction to 
train our model with multiscale information. First, our Style Transfer Base Network transfers rough 
style patterns at a low resolution. Then, our Detail Enhancement Network can gradually enhance the 
details of the content structure and style texture as the resolution increases. In addition, an EIS 
module is applied in the network to integrate content edge information into our model to select key 
content structures to improve the visual quality of the stylization results. Eventually, promising 
high-resolution stylized images can be synthesized by our full model. Different experimental results 
demonstrated the effectiveness of our full model in synthesizing high-quality stylized images, which 
are preferred over the stylization results synthesized by other state-of-the-art style transfer methods. 

We further discuss the design rationales for our model from three aspects. First, one of the core 
constructs of our model is Style Transfer Base Network, which can transfer the global coarse style 
patterns while ignoring the unimportant structural details at a low resolution. Our Style Transfer Base 
Network is constructed based on the style transfer framework. Therefore, our model can still work 
when we change our style transfer framework to other style transfer frameworks such as AdaIN or 
WCT. However, the final generated stylized results are affected by the style transfer framework and 
different universal style transfer frameworks can be attempted based on different needs. Second, 
different image-to-image frameworks can be used to replace our simple convolutional networks in 
Detail Enhancement Network. For example, an encoder-decoder architecture can be applied in our 
Detail Enhancement Network to generate residual stylized images but it needs more computer 
computing resources. Finally, we can add an adversarial loss during the optimization of the Detail 
Enhancement Network. A generative adversarial network objective and a discriminator will consume 
more computing resources and greatly increase training time, so we do not use them in our model. 

Although our method can synthesize high-quality stylization results, only one style of stylized 
images can be generated after one training process. In future work, we will adopt the framework of 
our method to achieve the multiscale arbitrary style transfer method which can transfer arbitrary style 
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images to content images after one training process. Moreover, we will try to adopt the adversarial loss 
to obtain more exquisite and appealing stylized images if our experimental environment gets improved. 
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