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1. Introduction

In this paper, we study the fractional iterative functional differential equation with a convection term
and nonlocal boundary condition −C Dα0+u(t) + λu′(t) = f (u[0](t), u[1](t), · · · , u[N](t)), 0 < t < 1,

u′(0) = 0, u(1) = φ(u),
(1.1)

where CDα0+ denotes the Caputo derivative of order α, 1 < α < 2, λ ∈ R, u[0](t) = t, u[1](t) =
u(t), · · · , u[N](t) = u[N−1](u(t)). φ(u) =

∫ 1

0
u(s)dA(s) is a Stieltjes integral with a signed measure, that is,

A is a function of bounded variation.
During the recent few decades, a vast literature on fractional differential equations has emerged,

see [1–6] and the references therein. On the excellent survey of these related documents it is pointed
out that the applicability of the theoretical results to fractional differential equations arising in various
fields, for instance, chaotic synchronization [3], signal propagation [4], viscoelasticity [5], dynamical
networks with multiple weights [6], and so on. Recently, we notice that the study of Caputo fractional
differential equations with a convection term has become a heat topic (see [7–10]).

In [7], Meng and Stynes considered the Green function and maximum principle for the following
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Caputo fractional boundary value problem (BVP) −C Dα0+u(t) + bu′(t) = f (t), 0 < t < 1,
u(0) − β0u′(0) = γ0, u(1) + β1u′(1) = γ1,

where 1 < α < 2, b, β0, β1, γ0, γ1 ∈ R and f ∈ C[0, 1] are given. Bai et al. [8] studied the Green
function of the above problem, and the results obtained improve some conclusions of [7] to some
degree.

Wang et al. [9] used operator theory to establish the Green function for the following problem −C Dαa+u(t) + λu′(t) = h(t), a < t < b,

u(a) − β0u′(a) = γ0, u(b) + β1u′(b) = γ1,

where 1 < α < 2, the constants λ, β0, β1, γ0, γ1 and the function h ∈ C[a, b] are given. The methods are
entirely different from those used in [7, 8], and the results generalize corresponding ones in [7, 8].

In [10], Wei and Bai investigated the following fractional order BVP −C Dα0+u(t) + bu′(t) = f (t, u(t)), x ∈ (0, 1),
u(0) − β0u′(0) = 0, u(1) + β1u′(1) = 0,

where 1 < α ≤ 2 and b, β0, β1 ∈ R are constants. By employing the Guo-Krasnoselskii fixed point
theorem and Leggett-Williams fixed point theorem, the existence and multiplicity results of positive
solutions are presented.

Now, not only fractional differential equations have been studied constantly (see [11–17]), but
also iterative functional differential equations have been discussed extensively as valuable tools in the
modeling of many phenomena in various fields of scientific and engineering disciplines, for example,
see [18–26] and the references cited therein. In [22], Zhao and Liu used the Krasnoselskii fixed point
theorem to discuss the existence of periodic solutions of an iterative functional differential equation

u′(t) = c1(t)u(t) + c1(t)u[2](t) + . . . + cn(t)u[N](t) + F(t).

For the general iterative functional differential equation

u′(t) = f (u[0](t), u[1](t), · · · , u[N](t)),

the existence, uniqueness, boundedness and continuous dependence on initial data of positive solutions
was considered in [23].

In [24], the authors studied the following BVPu′′(t) + h(u[0](t), u[1](t), · · · , u[N](t)) = 0, −b ≤ t ≤ b,

u(−b) = η1, u(b) = η2, η1, η2 ∈ [−b, b],

where h : [−b, b] × RN → R is continuous. By using the fixed point theorems, the authors established
the existence, uniqueness and continuous dependence of a bounded solution.

To the best of our knowledge, there are few researches on fractional iterative functional differential
equations integral boundary value problem with a convection term. Motivated by the above works and
for the purpose to contribute to filling these gaps in the literature, this paper mainly focuses on handing
with the existence, uniqueness, continuous dependence and multiplicity of positive solutions for the
fractional iterative functional differential equation nonlocal BVP (1.1).

By a positive solution u of (1.1), we mean u(t) > 0 for t ∈ [0, 1] and satisfies (1.1).
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2. Preliminaries and lemmas

Definition 2.1.( [1], [2]) The Riemann-Liouville fractional integral of order α > 0 of a function f :
(0,+∞)→ R is given by

Iα0+ f (t) =
1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds,

provided the right-hand side is pointwise defined on (0,+∞), where Γ(x) =
∫ +∞

0
tx−1e−tdt (x > 0) is the

gamma function.

Definition 2.2.( [1], [2]) The Caputo fractional derivative of order α > 0 of a function f : (0,∞)→ R
is given by

CDα0+ f (t) =
1

Γ(m − α)

∫ t

0
(t − s)m−α−1 f (m)(s)ds,

provided the right-hand side is pointwise defined on (0,+∞), where m = [α] + 1.

Definition 2.3. [1] The two-parameter Mittag-Leffler function is defined by

Eα,γ(x) :=
∞∑

k=0

xk

Γ(αk + γ)
, for α > 0, γ > 0 and x ∈ R.

Lemma 2.1. [7] Let Fβ(x) = xβ−1Eα−1,β (λxα−1). Then Fβ has the following properties:
(P1) : [Fβ+1(x)]′ = Fβ(x) for β ≥ 0 and x ≥ 0;
(P2) : F1(0) = 1, Fβ(0) = 0 for β > 1;
(P3) : F1(x) > 0 for x > 0, F2(x) is increasing for x ≥ 0;
(P4) : Fα−1(x) > 0 for x > 0, Fα(x) is increasing for x > 0;
(P5) : F1(x) = λFα(x) + 1 for 0 ≤ x ≤ 1.

For β > 0 and ν > 0 one has by [1]

(Iβ0+Fν)(t) =
1
Γ(β)

∫ t

0
(t − s)β−1sν−1Eα−1,ν(λsα−1)ds = tβ+ν−1Eα−1,β+ν(λtα−1).

That is to say,
(Iβ0+Fν)(t) = Fβ+ν(t), 0 < t ≤ 1. (2.1)

Lemma 2.2. Suppose that h ∈ AC[0, 1] and φ(1) , 1. Then u ∈ AC2[0, 1] is the solution of −C Dα0+u(t) + λu′(t) = h(t), 0 < t < 1, 1 < α < 2,
u′(0) = 0, u(1) = φ(u),

(2.2)

if and only if the function u satisfies u(t) =
∫ 1

0
H(t, s)h(s)ds, where

H(t, s) =
1

1 − φ(1)
GA(s) +G(t, s),

GA(s) =
∫ 1

0
G(t, s)dA(t), G(t, s) =

Fα(1 − s) − Fα(t − s), 0 ≤ s ≤ t ≤ 1,
Fα(1 − s), 0 ≤ t ≤ s ≤ 1.
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Proof. Applying Iα0+ to the both sides of the Eq (2.2), we know by simple calculation that the general
solution of (2.2) is given by

u(t) = C0 +C1F2(t) −
∫ t

0
Fα(t − s)h(s)ds, t ∈ [0, 1]. (2.3)

Then

u′(t) = C1F1(t) −
∫ t

0
Fα−1(t − s)h(s)ds.

In view of u′(0) = 0 and u(1) = φ(u), we deduce by (2.3) that

C1 = 0, C0 = φ(u) +
∫ 1

0
Fα(1 − s)h(s)ds.

Therefore,

u(t) = φ(u) +
∫ 1

0
Fα(1 − s)h(s)ds −

∫ t

0
Fα(t − s)h(s)ds

= φ(u) +
∫ 1

0
G(t, s)h(s)ds, t ∈ [0, 1]. (2.4)

Direct computations yield

φ(u) =
∫ 1

0
φ(u)dA(t) +

∫ 1

0

∫ 1

0
G(t, s)h(s)dsdA(t)

= φ(u)φ(1) +
∫ 1

0

∫ 1

0
G(t, s)dA(t)h(s)ds

= φ(u)φ(1) +
∫ 1

0
GA(s)h(s)ds.

It follows that

φ(u) =
1

1 − φ(1)

∫ 1

0
GA(s)h(s)ds.

Substituting it to (2.4), we have u(t) =
∫ 1

0
H(t, s)h(s)ds, t ∈ [0, 1].

Conversely, due to

u(t) =
∫ 1

0
H(t, s)h(s)ds =

∫ 1

0

(
1

1 − φ(1)
GA(s) +G(t, s)

)
h(s)ds,

we obtain

φ(u) =
φ(1)

1 − φ(1)

∫ 1

0
GA(s)h(s)ds +

∫ 1

0
GA(s)h(s)ds =

1
1 − φ(1)

∫ 1

0
GA(s)h(s)ds,

and

u(t) = φ(u) +
∫ 1

0
G(t, s)h(s)ds = φ(u) +

∫ 1

0
Fα(1 − s)h(s)ds −

∫ t

0
Fα(t − s)h(s)ds.
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Then, u(1) = φ(u) and u′(0) = 0.
Let

H(t) =
∫ t

0
Fα(t − s)h(s)ds =

∫ t

0
Fα(s)h(t − s)ds, 0 ≤ t ≤ 1.

Then, for almost all t ∈ [0, 1],

H′(t) = h(0)Fα(t) +
∫ t

0
Fα(s)h′(t − s)ds = h(0)Fα(t) +

∫ t

0
Fα(t − s)h′(s)ds,

and

H′′(t) = h(0)Fα−1(t) +
∫ t

0
Fα−1(t − s)h′(s)ds.

Then using (2.1), we calculate

CDα0+H(t) = (I2−α
0+ H′′)(t)

= h(0)F1(t) +
1

Γ(2 − α)

∫ t

0
(t − r)1−α

∫ r

0
Fα−1(r − s)h′(s)dsdr

= h(0)F1(t) +
∫ t

0
h′(s)[

1
Γ(2 − α)

∫ t−s

0
(t − s − τ)1−αFα−1(τ)dτ]ds

= h(0)F1(t) +
∫ t

0
h′(s)(I2−αFα−1)(t − s)ds

= h(0)F1(t) +
∫ t

0
h′(s)F1(t − s)ds,

(2.5)

and

λH′(t) = λh(0)Fα(t) + λ
∫ t

0
Fα(t − s)h′(s)ds

= λh(0)Fα(t) +
∫ t

0
[F1(t − s) − 1]h′(s)ds.

(2.6)

Combining (2.5) with (2.6), we obtain

CDα0+H(t) − λH′(t)

=h(0)F1(t) − λh(0)Fα(t) +
∫ t

0
h′(s)ds

=h(t) + h(0)[F1(t) − λFα(t) − 1]
=h(t), 0 < t < 1,

where we utilize h ∈ AC[0, 1] and (P5). Consequently, we obtain −CDα0+u(t) + λu′(t) = h(t). The proof
is finished.

As a direct consequence of the previous results, we deduce the following properties that, as we will
see, will be fundamental for subsequent studies.

Lemma 2.3. Assume that 0 ≤ φ(1) < 1 and GA(s) ≥ 0 for s ∈ [0, 1]. Then for t, s ∈ [0, 1],
1). G(t, s) and H(t, s) are continuous;
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2). 0 ≤ G(t, s) ≤ Fα(1 − s), and G(t, s) is decreasing with respect to t;
3). 0 ≤ H(t, s) ≤ ω(s), where ω(s) = 1

1−φ(1)GA(s) + Fα(1 − s), and H(t, s) is decreasing with respect
to t.

Let E = C[0, 1]. Then E is a Banach space with the usual maximum norm ||u|| = maxt∈[0,1] |u(t)|.
For 0 ≤ P ≤ 1 and L > 0, define

Ω(P, L) = {u ∈ E : 0 ≤ u(t) ≤ P, |u(t2) − u(t1)| ≤ L|t2 − t1|, ∀t, t1, t2 ∈ [0, 1]}.

It is easy to show that Ω(P, L) is a convex and compact set.
Define an operator Tλ : E → E as follows:

(Tu)(t) =
∫ 1

0
H(t, s) f (u[0](s), u[1](s), · · · , u[N](s))ds, t ∈ [0, 1].

By Lemma 2.2, we can easily know that u is a solution of BVP (1.1) iff u is the fixed point of the
operator T .

Suppose that
(H1) for the function f : [0, 1]N+1 → [0,+∞), there exist constants 0 < k0, k1, · · · , kN < +∞ such

that

| f (t, u1, u2, · · · , uN) − f (s, v1, · · · , vN)| ≤ k0|t − s| +
N∑

j=1

k j|u j − v j|.

(H2) 0 ≤ φ(1) < 1, and A is a function of bounded variation such that GA(s) ≥ 0 for s ∈ [0, 1].
Clearly, using (H1), we obtain

| f (t, u1, u2, · · · , uN)| ≤ k0|t| + β +
N∑

j=1

k j|u j|, (2.7)

where β = | f (0, 0, · · · , 0)|.

Lemma 2.4. [22] For any u, v ∈ Ω(P, L),

∥u[n] − v[n]∥ ≤

n−1∑
i=0

Li∥u − v∥, n = 1, 2, · · · ,N.

Lemma 2.5. [27] Let P be a cone in a real Banach space E, Pc = {u ∈ P : ∥u∥ ≤ c}, P(θ, a, b) = {u ∈
P : a ≤ θ(u), ∥u∥ ≤ b}. Suppose A : Pc → Pc is completely continuous, and suppose there exists a
concave positive functional θ with θ(u) ≤ ∥u∥ (u ∈ P) and numbers a, b and d with 0 < d < a < b ≤ c,
satisfying the following conditions:

(C1) {u ∈ P(θ, a, b) : θ(u) > a} , ∅ and θ(Au) > a if u ∈ P(θ, a, b);
(C2) ∥Au∥ < d if u ∈ Pd;
(C3) θ(Au) > a for all u ∈ P(θ, a, c) with ∥Au∥ > b.

Then A has at least three fixed points u1, u2, u3 ∈ Pc with

∥u1∥ < d, θ(u2) > a, ∥u3∥ > d, θ(u3) < a.

Remark. If b = c, then (C1) implies (C3).
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3. Existence and uniqueness of positive solution

Theorem 3.1. Suppose that (H1) and (H2) hold. If

(k0 + β +

N∑
j=1

j−1∑
i=0

k jLiP)
∫ 1

0
ω(s)ds ≤ P, (3.1)

and

(k0 + β +

N∑
j=1

j−1∑
i=0

k jLiP)Fα(1) ≤ L, (3.2)

then problem (1.1) has a unique nonnegative solution. If in addition A is an increasing function, and
there exists t0 ∈ [0, 1] such that f (t0, 0, · · · , 0) > 0, then problem (1.1) has a unique positive solution.

Proof. For any u ∈ Ω(P, L), in view of (2.7) and Lemma 2.4, we deduce that

| f (u[0](s), u[1](s) · · · , u[N](s))|

≤k0|s| + β +
N∑

j=1

j−1∑
i=0

k jLi∥u∥

≤k0 + β +

N∑
j=1

j−1∑
i=0

k jLiP, 0 ≤ s ≤ 1,

and hence

|(Tu)(t)| ≤
∫ 1

0
ω(s)| f (u[0](s), u[1](s), · · · , u[N](s))|ds

≤ (k0 + β +

N∑
j=1

j−1∑
i=0

k jLiP)
∫ 1

0
ω(s)ds ≤ P, t ∈ [0, 1].

Therefore, 0 ≤ (Tu)(t) ≤ P for t ∈ [0, 1].
On the other hand, for any t1, t2 ∈ [0, 1] and t1 < t2, by means of Lagrange mean value theorem,

there exists ξ ∈ (t1, t2) ⊂ (0, 1) such that∫ 1

0
|H(t2, s) − H(t1, s)| ds =

∫ 1

0
(G(t1, s) −G(t2, s))ds

=

∫ t2

0
Fα(t2 − s) ds −

∫ t1

0
Fα(t1 − s) ds

= Fα+1(t2) − Fα+1(t1)
= Fα(ξ)(t2 − t1)
≤ Fα(1)(t2 − t1).
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It follows from (3.2) that

|(Tu)(t2) − (Tu)(t1)| ≤ (k0 + β +

N∑
j=1

j−1∑
i=0

k jLiP)
∫ 1

0
|H(t2, s) − H(t1, s)| ds

≤ (k0 + β +

N∑
j=1

j−1∑
i=0

k jLiP)Fα(1)(t2 − t1)

≤ L(t2 − t1).

Therefore, T (Ω(P, L)) ⊂ Ω(P, L).
Next, we show that T is a contraction mapping on Ω(P, L). Indeed, let u, v ∈ Ω(P, L). Then

| f (u[0](s), u[1](s), · · · , u[N](s)) − f (v[0](s), v[1](s), · · · , v[N](s))|

≤

N∑
j=1

k j∥u[ j] − v[ j]∥ ≤

N∑
j=1

j−1∑
i=0

k jLi∥u − v∥,

and

∥Tu − Tv∥

≤

∫ 1

0
ω(s)| f (u[0](s), u[1](s), · · · , u[N](s)) − f (v[0](s), v[1](s), · · · , v[N](s))|ds

≤

N∑
j=1

j−1∑
i=0

k jLi∥u − v∥
∫ 1

0
ω(s)ds.

It follows from (3.1) that
N∑

j=1

j−1∑
i=0

k jLi
∫ 1

0
ω(s)ds < 1.

This shows that T is a contraction mapping on Ω(P, L). It follows from the contraction mapping
theorem that T has a unique fixed point u in Ω(P, L). In other words, problem (1.1) has a unique
nonnegative solution.

Suppose u is the nonnegative solution to problem (1.1). Then

u(t) =
∫ 1

0
H(t, s) f (u[0](s), · · · , u[N](s))ds, t ∈ [0, 1].

By the monotonicity of H(t, s), we have u(t) ≥ u(1) ≥ 0 for t ∈ [0, 1]. If A is an increasing function,
and there exists t0 ∈ [0, 1] such that f (t0, 0, · · · , 0) > 0, we must have u(1) > 0. Otherwise, u(1) = 0
and we have

∫ 1

0
u(s)dA(s) = φ(u) = u(1) = 0. Then u(t) ≡ 0 for t ∈ [0, 1]. By the equation of (1.1), we

conclude f (t, 0, · · · , 0) ≡ 0 for t ∈ [0, 1], which is a contradiction. We have thus proved u(1) > 0 and
u(t) ≥ u(1) > 0 for t ∈ [0, 1].
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4. Continuous dependence

Theorem 4.1. Assume that the conditions of Theorem 3.1 are satisfied. Then the unique positive
solution of problem (1.1) continuously depends on function f .

Proof. For two continuous functions f1, f2 : [0, 1]N+1 → [0,+∞), they correspond respectively to
unique solutions u1 and u2 in Ω(P, L) such that

ui(t) =
∫ 1

0
H(t, s) fi(u

[0]
i (s), u[1]

i (s), · · · , u[N]
i (s))ds, t ∈ [0, 1], i = 1, 2.

By (H1), we find that

| f2(u[0]
2 (s), u[1]

2 (s), · · · , u[N]
2 (s)) − f1(u[0]

1 (s), u[1]
1 (s), · · · , u[N]

1 (s))|

≤| f2(u[0]
2 (s), u[1]

2 (s), · · · , u[N]
2 (s)) − f2(u[0]

1 (s), u[1]
1 (s), · · · , u[N]

1 (s))|

+ | f2(u[0]
1 (s), u[1]

1 (s), · · · , u[N]
1 (s)) − f1(u[0]

1 (s), u[1]
1 (s), · · · , u[N]

1 (s))|

≤∥ f2 − f1∥ +

N∑
j=1

j−1∑
i=0

k jLi∥u2 − u1∥.

It follows from Lemma 2.3 that

|u2(t) − u1(t)| ≤ (∥ f2 − f1∥ +

N∑
j=1

j−1∑
i=0

k jLi∥u2 − u1∥)
∫ 1

0
ω(s)ds, t ∈ [0, 1].

Then

∥u2 − u1∥ ≤

∫ 1

0
ω(s)ds

1 −
∑N

j=1
∑ j−1

i=0 k jLi
∫ 1

0
ω(s)ds

∥ f2 − f1∥.

The proof is complete.

5. Multiplicity of positive solutions

Define
Ω = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]}, Ωc = {u ∈ Ω : ∥u∥ < c},

M =
(∫ 1

0
ω(s)ds

)−1

, m =

∫ 5
6

1
6

min
t∈[ 1

6 ,
5
6 ]

H(t, s)ds

−1

,

θ(u) = min
1/6≤t≤5/6

|u(t)|, Ω(θ, b, d) = {u ∈ Ω : b ≤ θ(u), ∥u∥ ≤ d}.

Obviously, θ is a continuous concave functional and θ(u) ≤ ∥u∥ for u ∈ Ω.

Theorem 5.1. Assume that f ∈ AC([0, 1]N+1, [0,+∞)) and (H2) hold. If there exist constants 0 < a <
1
6 ≤ b < c ≤ 5

6 such that
(D1) f (t, u1, u2, · · · , uN) < Ma, (t, u1, u2, · · · , uN) ∈ [0, 1] × [0, a]N;
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(D2) f (t, u1, u2, · · · , uN) > mb, (t, u1, u2, · · · , uN) ∈ [ 1
6 ,

5
6 ] × [b, c]N;

(D3) f (t, u1, u2, · · · , uN) ≤ Mc, (t, u1, u2, · · · , uN) ∈ [0, 1] × [0, c]N ,
then problem (1.1) has three non-negative solutions u1, u2, u3 ∈ Ωc with

∥u1∥ < a, θ(u2) > b, ∥u3∥ > a, θ(u3) < b.

Proof. We first prove T : Ωc → Ωc is completely continuous. For u ∈ Ωc, we have ∥u∥ ≤ c < 1. Then
0 ≤ u[ j](s) ≤ c for j = 1, 2, · · · ,N and 0 ≤ s ≤ 1. It follows from (D3) that

∥Tu∥ ≤
∫ 1

0
ω(s) f (u[0](s), u[1](s), · · · , u[N](s))ds ≤ Mc

∫ 1

0
ω(s)ds = c.

Therefore, T (Ωc) ⊂ Ωc and T D is uniformly bounded for any bounded set D ⊂ Ωc. We denote M as
the maximum of f on [0, 1]N+1. Since H(t, s) is uniformly continuous on [0, 1] × [0, 1], for any ε > 0,
there exists δ > 0 such that for any u ∈ D, t1, t2 ∈ [0, 1] and |t2−t1| < δ, we have |H(t2, s)−H(t1, s)| < ε

M
.

Then,

|Tu(t2) − Tu(t1)| ≤ M
∫ 1

0
|H(t2, s) − H(t1, s)|ds < ε,

which implies that T D is equicontinuous. Clearly, the fact that f is continuous implies that T is
continuous. Hence, T : Ωc → Ωc is completely continuous.

For any u ∈ Ωa, due to (D1), we conclude

∥Tu∥ ≤
∫ 1

0
ω(s) f (u[0](s), u[1](s), · · · , u[N](s))ds ≤

∫ 1

0
ω(s)Mads = a.

Then, T (Ωa) ⊂ Ωa, which implies that (C2) in Lemma 2.5 holds.
Choose v(t) = c+b

2 , 0 ≤ t ≤ 1. Obviously, v ∈ {u ∈ Ω(θ, b, c) : θ(u) > b}. Then {u ∈ Ω(θ, b, c) :
θ(u) > b} , ∅. For u ∈ Ω(θ, b, c), we have 1

6 ≤ b ≤ u(t) ≤ c ≤ 5
6 for 1

6 ≤ t ≤ 5
6 . Then b ≤ u[ j](s) ≤ c for

j = 1, 2, · · · ,N and 1
6 ≤ s ≤ 5

6 . It follows from (D2) that

θ(Tu) = min
1/6≤t≤5/6

|(Tu)(t)| >
∫ 5

6

1
6

min
1/6≤t≤5/6

H(t, s)mbds = b,

which implies that (C1) in Lemma 2.5 holds. By remark under Lemma 2.5, we know that (C3) in
Lemma 2.5 holds. Then according to Lemma 2.5, problem (1.1) has three nonnegative solutions
u1, u2, u3 ∈ Ωc with

∥u1∥ < a, θ(u2) > b, ∥u3∥ > a, θ(u3) < b.

6. An example

We consider the following BVP
−C D

3
2
0+u(t) + u′(t) = f (t, u(t), u[2](t), u[3](t)), 0 < t < 1,

u′(0) = 0, u(1) =
∫ 1

0
u(s)dA(s),

(6.1)
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where f (t, u(t), u[2](t), u[3](t)) = 1
200 t+ 1

100 sin(u(t))+ 1
100 sin(u[2](t))+ 1

100 sin(u[3](t)), A(s) = 1
2 s. It follows

that φ(1) =
∫ 1

0
d(1

2 s) = 1
2 and GA(s) =

∫ 1

0
G(t, s)d(1

2 t) ≥ 0, which implies (H2) holds. Since

| f (t, u(t), u[2](t), u[3](t)) − f (s, u(s), u[2](s), u[3](s))|

≤
1

200
|t − s| +

1
100
|u(t) − u(s)| +

1
100
|u[2](t) − u[2](s)| +

1
100
|u[3](t) − u[3](s)|,

we obtain k0 =
1

200 , k1 =
1

100 , k2 =
1

100 , k3 =
1

100 and β = 0, which implies (H1) holds.

Direct computation shows that
∫ 1

0
ω(s)ds =

∫ 1

0
[ 1

1−φ(1)GA(s)+ F 3
2
(1− s)]ds < 159

50 . Choose P = 3
4 and

L = 1, we have

(k0 + β +

3∑
j=1

j−1∑
i=0

k jLiP)
∫ 1

0
ω(s)ds <

159
1000

,

and

(k0 + β +

3∑
j=1

j−1∑
i=0

k jLiP)F 3
2
(1) <

3
10
.

Taking t0 =
1
2 ∈ [0, 1], we find that f (t0, 0, 0, 0) = 1

400 > 0. By Theorem 3.1 we conclude that BVP
(6.1) has a unique positive solution.
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