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Abstract: In this work, a new amensalism system with the nonlinear Michaelis-Menten type harvest-
ing for the second species is studied. Firstly, we clarify topological types for all possible equilibria
of the system. Then, the behaviors near infinity and the existence of closed orbits as well as sad-
dle connections of the system are discussed via bifurcation analysis, and the global phase portraits of
the model are also illustrated. Finally, for the sake of comparison, we further offer a new complete
global dynamics of the model without harvesting. Numerical simulations show that the system with
harvesting has far richer dynamics, like preserving the extinction of the first species or approaching
the steady-state more slowly. Our research will provide useful information which may help us have a
better understanding to the dynamic complexity of amensalism systems with harvesting effects.
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1. Introduction

The interaction between two or more species has been an important and interesting issue in biology
and ecology since the famous Lotka-Volterra model [1, 2] was proposed. The interaction between dif-
ferent species will generate rich interesting dynamics of biological species, and exhibit the complexity
and diversity [3, 4]. Amensalism, as a typical type of interaction between the species, has been inten-
sively considered in the last decades. Amensalism describes a basic biological interaction in nature,
where one species inflicts harm on another not affected by the former, which means that it does not
receive any costs or benefits to itself. The first pioneer work for the investigations of amensalism model
is due to Sun [5], who, in 2003, proposed the following two-species amensalism model: dx

dt = r1x
(

k1−x−αy
k1

)
,

dy
dt = r2y

(
k2−y

k2

)
,

(1.1)
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where x = x(t) and y = y(t) represent the population densities of two species at time t, respectively; r1

and k1 describe the intrinsic growth rate and the carrying capacity of the first species, respectively; r2

and k2 describe the intrinsic growth rate and the carrying capacity of the second species, respectively;
α describes the effect of the second species on the first species. They explored the stability properties
of all possible equilibria in system (1.1).

Setting a11 = r1
k1

, a12 = r1α
k1

and a22 = r2
k2

, we can see that model (1.1) can be rewritten as{ dx
dt = x(r1 − a11x − a12y),
dy
dt = y(r2 − a22y),

(1.2)

where all parameters r1, r2, a11, a12, and a22 are positive real numbers.
Ever since the first amensalism model was presented, the complicated dynamics of amensalism

models have been studied extensively (see [6–15] and the references cited therein). For example, in [6],
Guan and Chen considered a two-species amensalism model with Beddington-DeAngelis functional
response and gave some comprehensive bifurcation and global dynamics of this system. Recently, Luo
et al. [12] proposed an amensalism model with Holling-II functional response and weak Allee effect
for the first species, and discussed its local dynamics and global structure.

In the real world, from the point of view of human needs, the management of renewable resources,
the exploitation of biological resources, and the harvesting of populations are commonly practiced in
forestry, fishery, and wildlife management [16–18]. Hence, it is necessary to introduce and to consider
the harvesting of species in population models. During the last decade, population models with har-
vesting and the role of harvesting in the management of renewable resources have received significant
attention from the researchers [19–24]. Generally speaking, there are three types of harvesting: 1)
constant harvesting [25]; 2) linear harvesting [25]; 3) non-linear harvesting [26,27]. As is well known,
non-linear harvesting is more realistic from biological and economical points of view [28]. In [26],
Clark first proposed the non-linear harvesting term h(E, x) =

qEx
cE+lx , which is called Michaelis-Menten

type functional form of catch rate, here q is the catchability coefficient, E is the external effort devoted
to harvesting, c and l are constants. After that, many scholars started to focus attention on the influence
of the Michaelis-Menten type harvesting on the population systems [28–34]. For example, a reaction-
diffusion predator-prey model with non-local delay and Michaelis-Menten type prey-harvesting was
investigated by Zhang et al. [32], they obtained that the discrete and non-local delays are responsible
for a stability switch in this system, and a Hopf bifurcation occurs as the delays pass through a critical
value. In [33], Hu and Cao discussed a predator-prey system with the nonlinear Michaelis-Menten type
predator harvesting and gave a detailed analysis of the stability and bifurcation for this system.

These studies have shown that harvesting activity has important influence to dynamics of population
systems and the harvested models can exhibit richer dynamics compared to the model with no harvest-
ing. However, seldom did scholars consider the dynamical behaviors of an amensalism model with
a harvesting term. Accordingly, inspired by the previous works, based on the system (1.2), we now
introduce the Michaelis-Menten type harvesting to the second species, then we propose the following
amensalism model: { dx

dt = x(r1 − a11x − a12y),
dy
dt = y(r2 − a22y) − qEy

cE+ly ,
(1.3)

where the parameters r1, r2, a11, a12, and a22 are positive constants, and this term qEy
cE+ly represents

Michaelis-Menten harvesting.
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Setting t = r1t, x = a11
r1

x, y = a12
r1

y, α =
a12qE

lr2
1
, δ = r2

r1
, β = a22

a12
, γ = a12cE

lr1
, and dropping the bars,

then system (1.3) is transformed into { dx
dt = x(1 − x − y),
dy
dt = y(δ − βy) − αy

γ+y .
(1.4)

The layout of this paper is arranged as follows. In the next section, the global dynamics including
positivity and boundedness of solutions, number of equilibria, local asymptotical stability, codimension
one bifurcations, dynamical behaviors near infinity, closed orbits analysis and global phase portraits
are shown for system (1.4). Further, in Section 3, we also obtain the global dynamics of system
(1.1) without harvesting term. Numerical simulations and discussions are displayed by Section 4 for
demonstrating the theoretical results and the impact of harvesting term. Finally, a brief conclusion is
presented in Section 5.

2. Global dynamics of system (1.4)

In this section, we mainly investigate the global dynamics of system (1.4), which include the posi-
tivity and boundedness of solutions, the existence and local stability analysis of equilibria, all possible
bifurcation behaviors and the global structure of system (1.4).

2.1. Positivity and boundedness of solutions

Here, we give the positivity and boundedness of the solutions of model (1.4) in the region R2
+ =

{(x, y) : x ≥ 0, y ≥ 0}.

2.1.1. Positivity

Lemma 2.1. All solutions of model (1.4) with positive initial value are positive for all t ≥ 0.

Proof. Solving model (1.4) with positive initial condition (x(0), y(0)) gives the result:

x(t) = x(0)
[
exp

∫ t

0
(1 − x(s) − y(s)) ds

]
> 0,

y(t) = y(0)
[
exp

∫ t

0

(
δ − βy(s) −

α

γ + y(s)

)
ds

]
> 0.

Therefore, we can easily see that each solution of model (1.4) starting from the positive initial condition
(x(0), y(0)) still remains in the first quadrant.

2.1.2. Boundedness

Lemma 2.2. All solutions of system (1.4) with positive initial value are bounded in region Ω ={
(x(t), y(t)) : 0 ≤ x(t) < 1 and 0 ≤ y(t) < δ

β

}
for the large enough time t.

Proof. If the initial value is selected in R2
+, each solution of model (1.4) remains positive from the

above result. One can see
ẋ < x(1 − x)
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from the first equation of model (1.4). And a standard comparison theorem shows that

lim
t→∞

supx(t) < 1.

Also, the following inequality

ẏ < βy
(
δ

β
− y

)
is obtained from the second equation of system (1.4). It yields

lim
t→∞

supy(t) <
δ

β
.

Hence, there exists a sufficiently large time T , such that 0 ≤ x(t) < 1 and 0 ≤ y(t) < δ
β

for t > T . In
summary, all the solutions of system (1.4) are always bounded. Thus we complete the proof.

2.2. Existence and stability of equilibria

Theorem 2.1. System (1.4) always has two boundary equilibria E0(0, 0) and E1(1, 0) for all positive
parameters. For the existence of other equilibria, we have

1) For the possible positive equilibria:

i) if α > α∗, then system (1.4) has no positive equilibria;
ii) if α = α∗ and 0 < δ − βγ < 2β, then there is a unique positive equilibrium E33(1 − y∗3, y

∗
3);

iii) if α∗∗ < α < α∗, when α < δ + δγ − β − βγ and δ − βγ > 0, or α = δ + δγ − β − βγ and
0 < δ−βγ < 2β, there is one positive equilibrium E31(1−y∗1, y

∗
1); when α > δ+δγ−β−βγ and

0 < δ − βγ < 2β, there are two distinct positive equilibria E31(1 − y∗1, y
∗
1) and E32(1 − y∗2, y

∗
2);

iv) if α = α∗∗ and 0 < δ−βγ < β, then E31 coincides with E1 and there is one positive equilibrium
E32(1 − y∗2, y

∗
2), where y∗2 =

δ−βγ

β
;

v) if 0 < α < α∗∗ and α > δ + δγ − β − βγ, then there is one positive equilibrium E32(1 − y∗2, y
∗
2).

2) For the other possible boundary equilibria:

i) if α > α∗, then system (1.4) has no other boundary equilibria;
ii) if α = α∗ and δ − βγ > 0, then there is a boundary equilibrium E23(0, y∗3);

iii) if α∗∗ < α < α∗ and δ−βγ > 0, then there are two distinct boundary equilibria E21(0, y∗1) and
E22(0, y∗2);

iv) if α = α∗∗ and δ − βγ > 0, then E21 coincides with E0 and there is one boundary equilibrium
E22(0, y∗2), where y∗2 =

δ−βγ

β
;

v) if 0 < α < α∗∗, then there is one boundary equilibrium E22(0, y∗2).

Where α∗ =
(δ+βγ)2

4β , α∗∗ = δγ, y∗1 =
δ−βγ−

√
(δ+βγ)2−4αβ
2β , y∗2 =

δ−βγ+
√

(δ+βγ)2−4αβ
2β , and y∗3 =

δ−βγ

2β .

Proof. It is easy to see that system (1.4) always possesses two boundary equilibria given by E0(0, 0)
and E1(1, 0) for all positive parameters.

1) If x , 0 and y , 0, system (1.4) has a positive equilibrium which satisfies{
x = 1 − y,
βy2 − (δ − βγ)y + α − δγ = 0.

(2.1)
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For the positive equilibria, y must satisfy 0 < y < 1. Let ∆ denote the discriminant of the second
equation of (2.1), namely,

∆ = (δ + βγ)2 − 4αβ, (2.2)

and let

α∗ =
(δ + βγ)2

4β
. (2.3)

Obviously, when 0 < α < α∗, the second equation of (2.1) has two roots

y∗1 =
δ − βγ −

√
∆

2β
and y∗2 =

δ − βγ +
√

∆

2β
.

When α = α∗, the second equation of (2.1) has one root

y∗3 =
δ − βγ

2β
.

Let
k(y) = βy2 − (δ − βγ)y + α − δγ,

and denote by
α∗∗ = δγ. (2.4)

Then we have
H1) if α > α∗∗, then k(0) > 0;
H2) if α = α∗∗, then k(0) = 0;
H3) if α < α∗∗, then k(0) < 0.

In addition, 0 < α∗∗ ≤ α∗, and α∗∗ = α∗ if and only if δ = βγ.
Based on the above analysis, combining with H1), H2) and H3), we can derive that:
i) If α > α∗, then ∆ < 0 which implies k(y) = 0 has no real roots. So system (1.4) has no positive

equilibria.
ii) If α = α∗, then ∆ = 0, so k(y) = 0 has a unique real roots y∗3 =

δ−βγ

2β , combing with the condition
0 < y∗3 < 1, we get 0 < δ − βγ < 2β. In this situation, there exists a unique positive equilibrium
E33(1 − y∗3, y

∗
3).

iii) If α∗∗ < α < α∗, then ∆ > 0 and k(0) > 0, implying k(y) = 0 two positive real roots y∗1 and y∗2 if
δ − βγ > 0. Moreover, when k(1) < 0, namely, α < δ + δγ − β − βγ, we have 0 < y∗1 < 1 < y∗2, that is,
there is one positive point E31(1− y∗1, y

∗
1); when k(1) = 0 and the symmetry axis of k(y) is y =

δ−βγ

2β < 1,
namely, α = δ + δγ − β − βγ and 0 < δ − βγ < 2β, we have 0 < y∗1 < y∗2 = 1, which means there is one
positive point E31(1 − y∗1, y

∗
1); when k(1) > 0 and the symmetry axis of k(y) is y =

δ−βγ

2β < 1, namely,
α > δ + δγ − β − βγ and 0 < δ − βγ < 2β, we have 0 < y∗1 < y∗2 < 1, that is there are two different
positive equilibria E31(1 − y∗1, y

∗
1) and E32(1 − y∗2, y

∗
2).

iv) If α = α∗∗, then ∆ > 0 and k(0) = 0, hence k(y) = 0 has two real roots y∗1 = 0 and 0 < y∗2 =
δ−βγ

β
<

1 if 0 < δ − βγ < β, thus E31 coincides with E1 and there is one positive equilibrium E32(1 − y∗2, y
∗
2).

v) If α < α∗∗, then ∆ > 0 and k(0) < 0, so there are y∗1 < 0 and y∗2 > 0. When k(1) > 0, i.e.,
α > δ + δγ − β − βγ, we get one positive root 0 < y∗2 < 1, thus there exits one positive equilibrium
E32(1 − y∗2, y

∗
2).

The proof of the corresponding boundary equilibria in 2) is similar to that of 1), and hence omitted
here. This completes the proof of Theorem 2.1.
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In the following, we focus on the local stability of each equilibrium of system (1.4).
Theorem 2.2. For the boundary equilibria E0 and E1, the following statements are true.

1) If 0 < α < α∗∗, then E0 is a hyperbolic unstable node and E1 is a hyperbolic saddle.
2) If α > α∗∗, then E0 is a hyperbolic saddle and E1 is a hyperbolic stable node.
3) If α = α∗∗, then

i) when δ , βγ, E0 and E1 are both saddle-nodes;
ii) when δ = βγ, E0 is a non-hyperbolic saddle and E1 is a non-hyperbolic stable node.

Proof. The Jacobian matrix of system (1.4) evaluated at any equilibrium is

J(x, y) =

(
−2x + 1 − y −x

0 H(x, y)

)
, (2.5)

where H(x, y) = δ − 2βy − αγ

(γ+y)2 .
For the equilibrium E0, the Jacobian matrix is

J(E0) =

(
1 0
0 δ − α

γ

)
, (2.6)

and the two eigenvalues of J(E0) are λ1(E0) = 1 > 0 and λ2(E0) = δ− α
γ
. Obviously, if 0 < α < α∗∗, then

λ2(E0) > 0, so E0 is a hyperbolic unstable node. If α > α∗∗, then λ2(E0) < 0, thus E0 is a hyperbolic
saddle. If α = α∗∗, then λ2(E0) = 0, this means that the equilibrium E0 is non-hyperbolic, so it is hard
to directly judge its type from their eigenvalues. We further discuss its stability properties by applying
Theorem 7.1 in Chapter 2 in [35].

In order to change system (1.4) into a standard form, we expand system (1.4) in power series up to
the fourth order around the origin dx

dt = x − x2 − xy , x + P(x, y),
dy
dt =

(
α
γ2 − β

)
y2 − α

γ3 y3 + α
γ4 y4 + Q0(y) , Q(x, y),

(2.7)

where Q0(y) represents a power series with the terms yi (i ≥ 5). From dx
dt = 0, we obtain that there is a

unique implicit function x = ϕ0(y) = 0 such that ϕ0(y) + P(ϕ0(y), y) = 0 and ϕ0(0) = ϕ′0(0) = 0. Then
substituting x = ϕ0(y) = 0 into the second equation of (2.7), we get that

dy
dt

=

(
α

γ2 − β

)
y2 −

α

γ3 y3 +
α

γ4 y4 + O(|y|5). (2.8)

Because α = α∗∗ = δγ, the coefficient at y2 is δ
γ
− β. By Theorem 7.1 in [35], we have when δ , βγ,

the equilibrium E0 is a saddle-node.
When δ = βγ, (2.8) becomes

dy
dt

= −
β

γ
y3 +

β

γ2 y4 + O(|y|5). (2.9)

Employing the notations of Theorem 7.1 in Chapter 2 in [35], we have m = 3 and am = −
β

γ
< 0, so the

equilibrium E0 is a non-hyperbolic saddle.
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For the equilibrium E1, the Jacobian matrix is

J(E1) =

(
−1 −1
0 δ − α

γ

)
. (2.10)

The two eigenvalues of the above matrix J(E1) are λ1(E1) = −1 < 0 and λ2(E1) = δ − α
γ
. Clearly,

if α < α∗∗, then λ2(E1) > 0, so E1 is a hyperbolic saddle. If α > α∗∗, then λ2(E1) < 0, then E1 is
a hyperbolic stable node. If α = α∗∗, then λ2(E1) = 0, the equilibrium E1 is non-hyperbolic and its
stability cannot be given directly from the eigenvalues. In order to determinate the stability of E1, we
translate E1 to the origin by the translation (x, y) = (x − 1, y) and expand system (1.4) in power series
up to the fourth order around the origin, which makes system (1.4) to be the following form: dx

dt = −x − y − xy − x2,
dy
dt =

(
α
γ2 − β

)
y2
− α

γ3 y3
+ α

γ4 y4
+ Q1(y),

(2.11)

where Q1(y) represents a power series with terms yi (i ≥ 5).
To transform the Jacobian matrix into a standard form, we use the invertible translation(

u
v

)
=

(
1 1
0 1

) (
x
y

)
, (2.12)

then system (2.11) becomes du
dt = −u − u2 + uv +

(
α
γ2 − β

)
v2 − α

γ3 v3 + α
γ4 v4 + Q1(v),

dv
dt =

(
α
γ2 − β

)
v2 − α

γ3 v3 + α
γ4 v4 + Q1(v).

(2.13)

By introducing a new time variable τ = −t, we get du
dτ = u + u2 − uv −

(
α
γ2 − β

)
v2 + α

γ3 v3 − α
γ4 v4 − Q1(v) , u + P(u, v),

dv
dτ =

(
β − α

γ2

)
v2 + α

γ3 v3 − α
γ4 v4 − Q1(v) , Q(u, v).

(2.14)

Based on the implicit function theorem, from du
dτ = 0, we can deduce a unique function

u = ϕ1(v) =

(
α

γ2 − β

)
v2 +

(
α

γ2 −
α

γ3 − β

)
v3 +

 α
γ2 −

α

γ3 +
α

γ4 − β −

(
α

γ2 − β

)2 v4 + · · · ,

which satisfies ϕ1(0) = ϕ′1(0) = 0 and ϕ1(v) + P(ϕ1(v), v) = 0. Then substituting it into the second
equation of (2.14), we have

dv
dτ

=

(
β −

α

γ2

)
v2 +

α

γ3 v3 −
α

γ4 v4 + O(|v|5). (2.15)

From α = δγ it follows that the coefficient at v2 is β − δ
γ
. Thus, by using Theorem 7.1 in Chapter 2

in [35], we get that when δ , βγ, the equilibrium E1 is a saddle node.
When δ = βγ, (2.15) can be written as

dv
dτ

=
β

γ
v3 −

β

γ2 v4 + O(|v|5).

By Theorem 7.1 in [35] again, we obtain m = 3 and am =
β

γ
> 0. Then E0 is a non-hyperbolic unstable

node. Hence, E1 is a non-hyperbolic stable node due to that we have used the transformation τ = −t.
Accordingly, Theorem 2.2 is proved.
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Theorem 2.3. For the boundary equilibria E21, E22 and E23, the following statements are true.

1) Assume α = α∗ and δ − βγ > 0, then there exists the boundary equilibrium E23(0, y∗3). Moreover,

i) If δ − βγ > 2β, then E23 is a saddle-node, which includes a stable parabolic sector.
ii) If 0 < δ − βγ < 2β, then E23 is a saddle-node, which includes an unstable parabolic sector.

iii) If δ − βγ = 2β, then E23 is non-hyperbolic.

2) Assume α∗∗ < α < α∗ and δ − βγ > 0, then there are two boundary equilibria E21(0, y∗1) and
E22(0, y∗2). Moreover,

i) If α < δ + δγ − β − βγ, then E21 is a hyperbolic unstable node and E22 is a hyperbolic stable
node.

ii) If α > δ+δγ−β−βγ and δ−βγ > 2β, then E21 is a hyperbolic saddle and E22 is a hyperbolic
stable node.

iii) If α > δ + δγ − β − βγ and 0 < δ − βγ < 2β, then E21 is a hyperbolic unstable node and E22

is a hyperbolic saddle.
iv) If α = δ + δγ − β − βγ and δ − βγ > 2β, then E21 a saddle-node, which includes an unstable

parabolic sector and E22 is a hyperbolic stable node.
v) If α = δ + δγ − β − βγ and 0 < δ − βγ < 2β, then E21 a hyperbolic unstable node and E22 is

a saddle-node, which includes a stable parabolic sector.

3) Assume α = α∗∗ and δ−βγ > 0, then there is one boundary equilibrium E22(0, y∗2), where y∗2 =
δ−βγ

β
.

Moreover,

i) If 0 < δ − βγ < β, then E22 is a hyperbolic saddle.
ii) If δ − βγ = β, then E22 is a saddle-node, which includes a stable parabolic sector.

iii) If δ − βγ > β, then E22 is a hyperbolic stable node.

4) Assume 0 < α < α∗∗, then there is one boundary equilibrium E22(0, y∗2).

i) If α < δ + δγ − β − βγ, then E22 is a hyperbolic stable node.
ii) If α = δ + δγ − β − βγ, then E22 is a saddle-node, which includes a stable parabolic sector.

iii) If α > δ + δγ − β − βγ, then E22 is a hyperbolic saddle.

Proof. For the equilibrium E2i(i=1, 2, 3), the Jacobian matrix is

J(E2i) =

(
1 − y∗i 0

0 H(x∗i , y
∗
i )

)
, (2.16)

where H(x∗i , y
∗
i ) = δ−2βy∗i −

αγ

(γ+y∗i )2 . The two eigenvalues of the above matrix J(E2i) are λ1(E2i) = 1−y∗i
and λ2(E2i) = H(x∗i , y

∗
i ).

Because (x∗i , y
∗
i ) satisfies δ − βy∗i −

α
γ+y∗i

= 0, we can derive

H(x∗i , y
∗
i ) = δ − 2βy∗i −

αγ

(γ + y∗i )2 = −
2βy∗i
γ + y∗i

(
y∗i −

δ − βγ

2β

)
.

Then

λ2(E21) = H(x∗1, y
∗
1) = −

2βy∗1
(γ + y∗1)2

(
y∗1 −

δ − βγ

2β

)
=

2βy∗1
(γ + y∗1)2

√
∆

2β
> 0,
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λ2(E22) = H(x∗2, y
∗
2) = −

2βy∗2
(γ + y∗2)2

(
y∗2 −

δ − βγ

2β

)
= −

2βy∗2
(γ + y∗2)2

√
∆

2β
< 0

and

λ2(E23) = H(x∗3, y
∗
3) = −

2βy∗3
(γ + y∗3)2

(
y∗3 −

δ − βγ

2β

)
= 0.

In addition, for λ1(E2i) = 1 − y∗i , we discuss it in the following four cases.
Case 1. α = α∗ and δ − βγ > 0.
If δ − βγ > 2β, then y∗3 > 1, which implies λ1(E23) = 1 − y∗1 < 0, so E23 is non-hyperbolic.

In order to determinate the stability of the equilibrium E23, we translate E23 to the origin by letting
(x, y) = (x, y− y∗3), and expand the system in power series up to the third order around the origin, under
which system (1.4) can be transformed into{ dx

dt = (1 − y∗3)x − xy − x2,
dy
dt = c0y + c1y2

+ c2y3
+ Q2(y),

(2.17)

where c0 = δ− 2βy∗3 −
αγ

(γ+y∗3)2 = 0, c1 =
αγ

(γ+y∗3)3 − β, c2 = −
αγ

(γ+y∗3)4 , and Q2(y) represents for a power series

with terms yi (i ≥ 4).
Then introducing a new time variable τ = (1 − y∗3)t, we get dx

dτ = x − 1
1−y∗3

xy − 1
1−y∗3

x2 , x + P(x, y),
dy
dτ = c1

1−y∗3
y2

+ c2
1−y∗3

y3
+ 1

1−y∗3
Q2(y) , Q2(x, y).

(2.18)

We see that the coefficient at y2 is c1
1−y∗3

> 0. Hence, from Theorem 7.1 in Chapter 2 of [35], we have
E23 is a saddle-node, which includes a stable parabolic sector and this parabolic sector is on the upper
half-plane.

If δ − βγ < 2β, then y∗3 < 1, which means λ1(E23) = 1 − y∗1 > 0. Same analysis as the above we can
get E23 is also a saddle-node, which includes an unstable parabolic sector and the parabolic sector is
on the lower half-plane.

If δ − βγ = 2β, then y∗3 = 1, which means λ1(E23) = 1 − y∗1 = 0, so E23 is a non-hyperbolic critical
point with two zero eigenvalues.

Case 2. α∗∗ < α < α∗ and δ − βγ > 0.
1) If α < δ+δγ−β−βγ, then y∗1 < 1 < y∗2, that implies λ1(E21) = 1−y∗1 > 0 and λ1(E22) = 1−y∗2 < 0,

so E21 is a hyperbolic unstable node and E22 is a hyperbolic stable node;
2) If α > δ + δγ − β − βγ and δ − βγ > 2β, then 1 < y∗1 < y∗2, implying λ1(E21) = 1 − y∗1 < 0 and

λ1(E22) = 1 − y∗2 < 0, thus E21 is hyperbolic saddle and E22 is hyperbolic stable node;
3) If α > δ + δγ − β − βγ and δ − βγ < 2β, then y∗1 < y∗2 < 1, that means λ1(E21) = 1 − y∗1 > 0,

λ1(E22) = 1 − y∗2 > 0, hence E21 is a hyperbolic unstable node and E22 is a hyperbolic saddle;
4) If α = δ + δγ − β − βγ and δ − βγ > 2β, then 1 = y∗1 < y∗2, which means λ1(E21) = 1 − y∗1 = 0 and

λ1(E22) = 1 − y∗2 < 0, so E21 is non-hyperbolic and E22 is a hyperbolic stable node.
In order to determinate the stability of the equilibrium E21, we translate the equilibrium E21 to the

origin by the translation (x, y) = (x, y−1), and expand system (1.4) in power series up to the third order
around the origin, which makes system (1.4) to be the following form:{ dx

dt = −xy − x2,
dy
dt = d0y + d1y2

+ d2y3
+ Q3(y),

(2.19)
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where d0 = δ − 2β − αγ

(γ+1)2 , d1 =
αγ

(γ+1)3 − β, d2 = −
αγ

(γ+1)4 , and Q3(y) represents for a power series with
terms yi satisfying i ≥ 4.

Then introducing a new time variable τ = d0t, we get dx
dτ = − 1

d0
xy − 1

d0
x2 , Q(x, y),

dy
dτ = y + d1

d0
y2
−

d2
d0

y3
+ 1

d0
Q3(y) , y + P(x, y).

(2.20)

From dy
dτ = 0, we can derive a unique implicit function y = φ(x) = 0, which satisfies φ(0) = φ′(0) = 0

and φ(x) + P(x, φ(x)) = 0. Substituting y = φ(x) = 0 into the first equation of (2.20), we have that

dx
dτ

= −
1
d0

x2.

The coefficient at x2 is
−

1
d0

= −
γ + 1

δ − βγ − 2β
< 0.

By Theorem 7.1 in Chapter 2 of [35], we know E21 is a saddle-node, which includes an unstable
parabolic sector and this parabolic sector is on the left half-plane.

5) If α = δ + δγ − β − βγ and δ − βγ < 2β, then y∗1 < y∗2 = 1, implying λ1(E21) = 1 − y∗1 > 0 and
λ1(E22) = 1 − y∗2 = 0, therefore E21 a hyperbolic unstable node and E22 is non-hyperbolic. Similarly to
the proof of E21 in 4), we can get that E22 is a saddle-node, which includes a stable parabolic sector.

Case 3. α = α∗∗ and δ − βγ > 0.
If δ − βγ > β, then y∗2 > 1, that is λ1(E22) = 1 − y∗2 < 0, so E22 is a hyperbolic stable node. If

δ − βγ < β, then y∗2 < 1, that is λ1(E22) = 1 − y∗2 > 0, thus E22 is a hyperbolic saddle. If δ − βγ = β,
then y∗2 = 1, that is λ1(E22) = 1− y∗2 = 0, thus E22 is a non-hyperbolic. Similar to the proof of E21 in 4),
we can obtain E22 is a saddle-node, which includes a stable parabolic sector.

Case 4. α < α∗∗.
If α > δ + δγ − β − βγ, then y∗2 < 1, which implies λ1(E22) = 1 − y∗2 > 0, thus E22 is a hyperbolic

saddle. If α < δ+ δγ − β− βγ, then y∗2 > 1, which means λ1(E22) = 1− y∗2 < 0, thus E22 is a hyperbolic
stable node. If α = δ + δγ − β − βγ, then y∗2 = 1, which implies λ1(E22) = 1 − y∗2 = 0, thus E22 non-
hyperbolic. Similar to the proof of 4) in Case 2, we can derive E22 is a saddle-node, which includes a
stable parabolic sector.

This completes the proof of Theorem 2.3.

Theorem 2.4. For the positive equilibria E31, E32 and E33, the following statements are true.

1) If α∗∗ < α < α∗, when α < δ+δγ−β−βγ and δ−βγ > 0, or α = δ+δγ−β−βγ and 0 < δ−βγ < 2β,
or α > δ + δγ − β − βγ and 0 < δ − βγ < 2β, then E31 is a hyperbolic saddle.

2) If 0 < α < α∗∗ and α > δ + δγ − β − βγ, or α = α∗∗ and 0 < δ − βγ < β, or α∗∗ < α < α∗,
α > δ + δγ − β − βγ and 0 < δ − βγ < 2β, then E32 is a hyperbolic stable node.

3) If α = α∗ and 0 < δ − βγ < 2β, then E33 is a saddle-node.

Proof. For the equilibrium E3i(i=1, 2, 3), the Jacobian matrix is

J(E3i) =

(
y∗i − 1 y∗i − 1

0 H(x∗i , y
∗
i )

)
, (2.21)

Electronic Research Archive Volume 31, Issue 2, 549–574.



559

where H(x∗i , y
∗
i ) = δ − 2βy∗i −

αγ

(γ+y∗i )2 . The two eigenvalues of the above matrix J(E3i) are λ1(E3i) =

y∗i − 1 < 0 and λ2(E3i) = H(x∗i , y
∗
i ). From the analysis of the proof of Theorem 2.3, it follows that

λ2(E31) > 0, λ2(E32) < 0, and λ2(E33) = 0.
Hence, when α∗∗ < α < α∗, α < δ+ δγ−β−βγ and δ−βγ > 0, or α∗∗ < α < α∗, α = δ+ δγ−β−βγ

and 0 < δ − βγ < 2β, or α∗∗ < α < α∗, α > δ + δγ − β − βγ and 0 < δ − βγ < 2β, we have λ1(E31) < 0
and λ2(E31) > 0, which means E31 is a hyperbolic saddle.

When 0 < α < α∗∗ and α > δ + δγ − β − βγ, or α = α∗∗ and 0 < δ − βγ < β, or α∗∗ < α < α∗,
α > δ+ δγ− β− βγ and 0 < δ− βγ < 2β, there exists the positive equilibrium E32 with two eigenvalues
λ1(E32) < 0 and λ2(E32) < 0, hence E32 is a hyperbolic stable node.

When α = α∗ and 0 < δ − βγ < 2β, there exists the positive equilibrium E33 with two eigenvalues
λ1(E33) < 0 and λ2(E33) = 0. Then we further to study the stability of E33 by transforming E33 to the
origin by the translation (x, y) = (x− x∗3, y− y∗3) and expand system (1.4) in power series up to the third
order around the origin, which makes system (1.4) to be the following form:

dx
dt = −x∗3x − x∗3y − xy − x2,
dy
dt = c0 + c1y +

(
αγ

(γ+y∗3)3 − β
)

y2
−

αγ

(γ+y∗3)4 y3
+ Q4(y),

(2.22)

where c0 = δy∗3 − β(y∗3)2 − α +
αγ

γ+y∗3
= 0, c1 = δ − 2βy∗3 −

αγ

(γ+y∗3)2 = 0, and Q4(y) stands for a power series

with terms yi (i ≥ 4).
In order to transform the Jacobian matrix into a standard form, we use the invertible translation(

u
v

)
=

(
1 1
0 1

) (
x
y

)
, (2.23)

then system (2.22) can be expressed as
du
dt = −x∗3u + uv − u2 +

(
αγ

(γ+y∗3)3 − β
)

v2 −
αγ

(γ+y∗3)4 v3 + Q4(v),

dv
dt =

(
αγ

(γ+y∗3)3 − β
)

v2 −
αγ

(γ+y∗3)4 v3 + Q4(v).
(2.24)

Then introducing a new time variable τ = −x∗3t, we get
du
dτ = u − 1

x∗3
uv + 1

x∗3
u2 − 1

x∗3

(
αγ

(γ+y∗3)3 − β
)

v2 +
αγ

x∗3(γ+y∗3)4 v3 − 1
x∗3

Q4(v)

, u + P(u, v),
dv
dτ = − 1

x∗3

(
αγ

(γ+y∗3)2 − β
)

v2 +
αγ

x∗3(γ+y∗3)4 v3 − 1
x∗3

Q4(v) , Q(u, v).

(2.25)

According to the implicit function theorem, from du
dτ = 0, we can derive a unique function

u = ϕ4(v) =
1
x∗3

(
αγ

(γ + y∗3)3 − β

)
v2 +

1
(x∗3)2

(
αγ

(γ + y∗3)3 − β

)
v2 −

αγ

x∗3(γ + y∗3)4 v3 + · · · ,

which satisfies ϕ4(0) = ϕ′4(0) = 0 and ϕ4(v) + P(ϕ4(v), v) = 0. Substituting it into the second equation
of (2.25), we have that

dv
dτ

= −
1
x∗3

(
αγ

(γ + y∗3)2 − β

)
v2 +

αγ

x∗3(γ + y∗3)4 v3 + O(|v|4).
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The coefficient at the term v2 is

1
x∗3

(
β −

αγ

(γ + y∗3)2

)
=

1
x∗3

(
β − (δ − βy∗3)

γ

γ + y∗3

)
=
β(δ − βγ)
x∗3(δ + βγ)

> 0.

Therefore, on basis of Theorem 7.1 in [35], the equilibrium E33 of system (1.4) is a saddle-node.
The proof of Theorem 2.4 is finished.

For readers’ convenience, the local dynamical properties of equilibria of system (1.4) are totally
summarized in Table 1. It can be clearly seen that the number and stability of equilibria are different
according to the value range of the parameters. Therefore, we divide (α, β, γ, δ) ∈ R4

+ into the following
twelve regions.

R11 =
{
(α, β, γ, δ) ∈ R4

+ : α = α∗∗, δ = βγ, or α = α∗, δ = βγ or α > α∗
}

;

R12 =
{
(α, β, γ, δ) ∈ R4

+ : α = α∗∗, δ < βγ
}

;

R2a =
{
(α, β, γ, δ) ∈ R4

+ : 0 < α < α∗∗, α ≤ δ + δγ − β − βγ
}

;

R2b =
{
(α, β, γ, δ) ∈ R4

+ : α = α∗∗, δ − βγ ≥ β
}

;

R22 =
{
(α, β, γ, δ) ∈ R4

+ : α = α∗, δ − βγ ≥ 2β
}

;

R3a =
{
(α, β, γ, δ) ∈ R4

+ : 0 < α < α∗∗, α > δ + δγ − β − βγ
}

;

R3b =
{
(α, β, γ, δ) ∈ R4

+ : α = α∗∗, 0 < δ − βγ < β
}

;

R32 =
{
(α, β, γ, δ) ∈ R4

+ : α∗∗ < α < α∗, α ≥ δ + δγ − β − βγ, δ − βγ > 2β
}

;

R33 =
{
(α, β, γ, δ) ∈ R4

+ : α = α∗, 0 < δ − βγ < 2β
}

;

R41 =
{
(α, β, γ, δ) ∈ R4

+ : α∗∗ < α < α∗, α < δ + δγ − β − βγ, δ > βγ
}

;

R42 =
{
(α, β, γ, δ) ∈ R4

+ : α∗∗ < α < α∗, α = δ + δγ − β − βγ, 0 < δ − βγ < 2β
}

;

R5 =
{
(α, β, γ, δ) ∈ R4

+ : α∗∗ < α < α∗, α > δ + δγ − β − βγ, 0 < δ − βγ < 2β
}
.

For R1 = R11 ∪ R12, system (1.4) possesses two equilibria E0 and E1. In R11, E0 is a saddle and E1

is a stable node. In R12, E0 and E1 represent saddle-nodes. And specifically, in R1, E1 is stable in the
first quadrant. Therefore, the qualitative properties of these two equilibria can be seen in Figure 1(a).

For R2 = R21∪R22, there are three equilibria for system (1.4). In R21 = R2a∪R2b, system (1.4) admits
E0 (unstable node or saddle-node), E1 (saddle or saddle-node) and E22 (stable node or saddle-node). In
particular, in R21, E0 is unstable and E22 is stable in the first quadrant. In R22, there are E0 (saddle), E1

(stable node) and E23 (non-hyperbolic or saddle-node). The qualitative properties of these equilibria in
R2 are displayed by Figure 1(b),(c).

For R3 = R31 ∪ R32 ∪ R33, there exist four equilibria for system (1.4). Considering R31 = R3a ∪ R3b,
there are E0 (unstable node or saddle-node which is unstable in the first quadrant), E1 (saddle or saddle-
node), E22 (saddle) and E32 (stable node). Considering R32, system (1.4) admits E0 (saddle), E1 (stable
node), E21 (saddle or saddle-node) and E22 (stable node). Considering R33, there exist E0, E1, E23 and
E33, which are saddle, stable node, saddle-node and saddle-node. The detailed image descriptions of
the qualitative properties of the equilibria in R3 are illustrated by Figure 1(d)–(f).
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Table 1. Equilibria of system (1.4) in finite planes.

Conditions Equilibra
α < δ + δγ − β − βγ E0(u), E1(sd), E22(s)

0 < α < α∗∗ α = δ + δγ − β − βγ E0(u), E1(sd), E22(sn)
α > δ + δγ − β − βγ E0(u), E1(sd), E22(sd), E32(s)

0 < δ − βγ < β E0(sn), E1(sn), E22(sd), E32(s)
δ − βγ = β E0(sn), E1(sn), E22(sn)

α = α∗∗ δ − βγ > β E0(sn), E1(sn), E22(s)
δ = βγ E0(sd), E1(s)
δ < βγ E0(sn), E1(sn)

α < δ + δγ − β − βγ δ − βγ > 0 E0(sd), E1(s), E21(u), E22(s), E31(sd)
α = δ + δγ − β − βγ 0 < δ − βγ < 2β E0(sd), E1(s), E21(u), E22(sn), E31(sd)

α∗∗ < α < α∗ δ − βγ > 2β E0(sd), E1(s), E21(sn), E22(s)
α > δ + δγ − β − βγ 0 < δ − βγ < 2β E0(sd), E1(s), E21(u), E22(sd), E31(sd), E32(s)

δ − βγ > 2β E0(sd), E1(s), E21(sd), E22(s)

0 < δ − βγ < 2β E0(sd), E1(s), E23(sn), E33(sn)
α = α∗ δ − βγ = 2β E0(sd), E1(s), E23(nh)

δ − βγ > 2β E0(sd), E1(s), E23(sn)
δ − βγ = 0 E0(sd), E1(s)

α > α∗ E0(sd), E1(s)
Note: where “sd”, “sn”, “u”, “s” and ‘nh” represent saddle, saddle-node, unstable node, stable node and non-hyperbolic

point, respectively.

(a) R1 (b) R21 (c) R22 (d) R31

(e) R32 (f) R33 (g) R4 (h) R5

Figure 1. The qualitative properties of the equilibria for R1, R2, R3, R4 and R5.
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For R4 = R41∪R42, system (1.4) has five equilibria E0 (saddle), E1 (stable node), E21 (unstable node),
E22 (stable node or saddle-node) and E31 (saddle). Particularly, E22 is stable in the first quadrant. As
shown in Figure 1(g), the qualitative properties of these five equilibria are given.

For R5, system (1.4) possesses six equilibria E0, E1, E21, E22, E31 and E32, which represent sad-
dle, stable node, unstable node, saddle, saddle and stable node, respectively. Hence, the qualitative
properties of these six equilibria are displayed by Figure 1(h).

2.3. Bifurcation analysis

In this section, all possible bifurcations of system (1.4) will be found out. Moreover, the feasible
conditions for the occurence of those bifurcations will be given.
Theorem 2.5. System (1.4) undergoes a saddle-node bifurcation at equilibrium E33 when the pa-
rameters satisfy the restriction α = αS N =

(δ+βγ)2

4β along with the conditions 0 < δ − βγ < 2β and
α > δ + δγ − β − βγ as given in Theorem 2.1.

Proof. Now we will verify the transversality condition for the occurrence of a saddle-node bifurcation
at α = αS N by utilizing the Sotomayor’s theorem [36]. From Section 2.2, we have the two eigenvalues
of J(E33) are λ1(E33) < 0 and λ2(E33) = 0. Denote V and W the eigenvectors corresponding to the
eigenvalue λ2(E33) for the matrices J(E33) and J(E33)T , respectively. Simple computations yield

V =

(
v1

v2

)
=

(
−1
1

)
and W =

(
w1

w2

)
=

(
0
1

)
.

Furthermore, we can obtain

Fα(E33;αS N) =

(
0
−

y
γ+y

)
(E33;αS N )

=

(
0
−
δ−βγ

δ+βγ

)
(2.26)

and

D2F(E33;αS N)(V,V) =


∂2F1
∂x2 v2

1 + 2∂2F1
∂x∂y v1v2 + ∂2F1

∂y2 v2
2

∂2F2
∂x2 v2

1 + 2∂2F2
∂x∂y v1v2 + ∂2F2

∂y2 v2
2


(E33;αS N )

=

 0

−2β +
2αS Nγ

(γ+y∗3)3

 . (2.27)

Obviously, when 0 < δ − βγ < 2β, the vectors V and W satisfy the transversality conditions

WT Fα(E33;αS N) = −
δ − βγ

δ + βγ
, 0

and
WT

[
D2F(E33;αS N)(V,V)

]
= −2β +

2αS Nγ

(γ + y∗3)3 =
2β(βγ − δ)
δ + βγ

, 0.

Hence, by Sotomayor’s theorem, when α = αS N , system (1.4) undergoes a saddle-node bifurcation
at non-hyperbolic critical point E33. The number of positive equilibria of system (1.4) changes from
zero to two as α passes from the right of α = αS N to the left. Thus, the proof of Theorem 2.5 is
completed.

Theorem 2.6. System (1.4) undergoes a transcritical bifurcation at the boundary equilibrium E1 when
the parameters satisfy the conditions α = αTC = δγ and 0 < δ − βγ < 2β.
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Proof. Now we also apply Sotomayor’s theorem [36] to prove the transversality condition for the
occurrence of transcritical bifurcation at E1 as α = αTC. From Section 2.2, we know that λ1(E1) < 0
and λ2(E1) = 0. Let V and W represent the two eigenvectors corresponding to the zero eigenvalue
λ2(E1) of the matrices J(E1) and J(E1)T , respectively, then they are given by

V =

(
v1

v2

)
=

(
−1
1

)
and W =

(
w1

w2

)
=

(
0
1

)
.

Furthermore, we can obtain

Fα(E1;αTC) =

(
0
−

y
γ+y

)
(E1;αTC)

=

(
0
0

)
, (2.28)

DFα(E1;αTC)V =

(
0 0
0 −

γ

(γ+y)2

) (
−1
1

)
(E1;αTC)

=

(
0
− 1
γ

)
, (2.29)

and

D2F(E1;αTC)(V,V) =


∂2F1
∂x2 v2

1 + 2∂2F1
∂x∂y v1v2 + ∂2F1

∂y2 v2
2

∂2F2
∂x2 v2

1 + 2∂2F2
∂x∂y v1v2 + ∂2F2

∂y2 v2
2


(E1;αTC)

=

(
0

−2β + 2δ
γ

)
.

Clearly, the vectors V and W satisfy the transversality conditions

WT Fα(E1;αTC) = 0, WT [DFα(E1;αTC)V] = −
1
γ
, 0

and
WT

[
D2F(E1;αTC)(V,V)

]
= −2β +

2δ
γ
, 0 for 0 < δ − βγ < 2β.

Therefore, by Sotomayor’s theorem, if δ , βγ, system (1.4) experiences a transcritical bifurcation
at non-hyperbolic critical point E1 as the parameter α varies through the bifurcation value α = αTC.

Thus, the proof of Theorem 2.6 is completed.

2.4. Global structure

In this subsection, we pay some attention to the global structure of the plane nonlinear dynamic
system (1.4).

2.4.1. The dynamics near infinity

For the sake of the research of the global dynamics for system (1.4), we have to investigate the
qualitative properties of equilibria at infinity, which is important and useful to study the behavior of
orbits when |x| + |y| → ∞.

Firstly, using Poincaré transformation of Chapter 5 in [35]:

x =
1
z
, y =

u
z
, ds =

dt
z
,
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system (1.4) can be transformed into du
ds = (1 − β)u2 + (δ − 1)uz + u − αuz2

u+γz ,
dz
ds = uz + z − z2.

(2.30)

In the first quadrant of u-z plane, setting z = 0, system (2.30) has one boundary equilibrium e
(

1
β−1 , 0

)
if β > 1 and no boundary equilibrium if β ≤ 1 on the nonnegative u-axis.

Proceed to the next step, we apply the second type of Poincaré transformation:

x =
v
z
, y =

1
z
, ds =

dt
z
,

system (1.4) becomes  dv
ds = −v2 + (1 − δ)vz + (β − 1)v + αvz2

1+γz ,
dz
ds = −δz2 + βz + αz3

1+γz .
(2.31)

In the nonnegative cone of v-z plane, there exist two boundary equilibria e1(0, 0) and e2(β − 1, 0) if
β > 1 and only one e1(0, 0) if β ≤ 1 for system (2.31) .

In this paper, of concern is the global dynamics of system (1.4) when β > 1. The case β ≤ 1 is
similar, hence, it is omitted.
Theorem 2.7. In system (2.30), e

(
1
β−1 , 0

)
is a saddle. In system (2.31), e1(0, 0) is an unstable node and

e2(β − 1, 0) is a saddle.

Proof. The Jacobian matrix at e
(

1
β−1 , 0

)
is evaluated as follows:

J(e) =

 −1 δ−1
β−1

0 β

β−1

 ,
obviously, which has two eigenvalues λ1(e) = −1 < 0 and λ2(e) =

β

β−1 > 0. Hence, e is a saddle in
system (2.30).

Similarly, the corresponding Jacobian matrices of system (2.31) evaluated at e1(0, 0) and e2(β−1, 0)
are

J(e1) =

(
β − 1 0

0 β

)
and J(e2) =

(
1 − β −(δ − 1)(β − 1)

0 β

)
.

Clearly, e1 is an unstable node and e2 is a saddle in system (2.31). This proof of Theorem 2.7 is
completed.

From the point of view of Poincaré transformation, we get

x ,
1
z

= +∞, y ,
u
z

= +∞, x1 ,
v1

z1
= 0,

y1 ,
1
z1

= +∞, x2 ,
v2

z2
= +∞, y2 ,

1
z2

= +∞.

Consequently, e and e2 are equivalent to an infinite singular point I for system (1.4), e1 is equivalent
to an infinite singular point I1 for system (1.4). By combining the Poincaré transformation of Chapter 5
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in [35] and Theorem 2.7, we illustrate the dynamical behaviors near infinity of model (1.4) with Figure
2.

Figure 2. The dynamics of system (1.4) near infinity.

2.4.2. Nonexistence of closed orbit

We, here, for further research of the global structure of system (1.4), need to discuss the existence
of closed orbits in phase space.
Theorem 2.8. No closed orbit exists for model (1.4) in R2

+.

Proof. On the contrary, assume that model (1.4) exhibits a closed orbit in R2
+. From the discussion

in Theorem 2.1, we can deduce that all positive equilibria will lie on invariant lines y =
δ−βγ−

√
∆

2β or

y =
δ−βγ+

√
∆

2β . On the basis of Theorem 4.6 of [35], in the interior of the closed orbit, system (1.4) must

admit a positive equilibrium. As such, the closed orbit has two points of intersection with y =
δ−βγ−

√
∆

2β

or y =
δ−βγ+

√
∆

2β , which is contrary to the existence and uniqueness of solutions. Therefore, there is no
closed orbit for model (1.4). We end the proof of Theorem 2.8.

2.4.3. Global phase portraits

System (1.4), according to the aforementioned Theorem 2.7, admits two equilibria I and I1 at infin-
ity, which stand for a saddle and an unstable node, respectively. A step further, we derive that model
(1.4) exists no closed orbit in R2

+ from the above Theorem 2.8. It now follows that all possible cases of
global phase portraits for model (1.4) can be given.

For the purpose of simplicity, ξI and ω(ξI) are utilized to refer the unstable manifold of I and the
ω-limit set of ξI in the nonnegative cone of R2, respectively.

For (α, β, γ, δ) ∈ R1, it is easy to be checked that ω(ξI) is E1. See Figure 3(a) for the global phase
portrait of model (1.4) related to the case R1.

For (α, β, γ, δ) ∈ R2, we can easily verify that ω(ξI) is E22 in R21 and ω(ξI) is E23 in R22. See Figure
3(b),(c) for the global phase portraits of model (1.4) related to the cases R21 and R22 .

For (α, β, γ, δ) ∈ R3, we analyze the global phase portraits of model (1.4) from the three subregions
R31, R32 and R33, respectively. When (α, β, γ, δ) ∈ R31, we can verify that ω(ξI) is E32. The global phase
portraits of model (1.4) related to R31 are given by Figure 3(d),(e). When (α, β, γ, δ) ∈ R32, ω(ξI) is
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E22. The global phase portrait of model (1.4) related to R32 is shown by Figure 3(f). When (α, β, γ, δ)
∈ R33, it is clear that ω(ξI) is E33 and the global phase portraits of model (1.4) in this region are shown
in Figure 3(g),(h).

For (α, β, γ, δ) ∈ R4, it is clear that ω(ξI) is E22. See Figure 3(i) for the global phase portrait of model
(1.4) related to the case R4.

For (α, β, γ, δ) ∈ R5, it is also clear that ω(ξI) is E32. And the global phase portraits of model (1.4)
in R5 are shown in Figure 3(j),(k).

(a) R1 (b) R21 (c) R22 (d) R31

(e) R31 (f) R32 (g) R33 (h) R33

(i) R4 (j) R5 (k) R5

Figure 3. The global phase portraits of system (1.4).

3. Global dynamics of system (1.1)

Now, we mainly consider the dynamic properties of all possible equilibria and bifurcation behaviors
of model (1.1). More, in R2

+, we analyze the global structure of this model and illustrate our analysis
with the global phase portraits.
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To facilitate this, system (1.1) takes the following form{ dx
dt = x(1 − x − y),
dy
dt = y(δ − βy).

(3.1)

On account of the dynamic properties of system (3.1) corresponding to system (1.1), we study the
dynamics of system (3.1) in the following.

3.1. Existence and stability of equilibria

As it has been shown in [5], the existence and stability properties of equilibria of system (3.1) are
clearly summarized in Table 2. Next, we divide (δ, β) ∈ R2

+ into two regions as follows.

G1 = G11 ∪G12 =
{
(δ, β) ∈ R2

+ : 0 < β < δ
}
∪

{
(δ, β) ∈ R2

+ : δ = β
}

;

G2 =
{
(δ, β) ∈ R2

+ : 0 < δ < β
}
.

Table 2. Local dynamical properties of equilibria.

Equilibrium Existence conditions Type
E0(0, 0) (always exists) unstable node
E1(1, 0) (always exists) saddle
E2

(
0, δ

β

)
0 < δ < β saddle
δ = β non-hyperbolic (stable in R2

+)
0 < β < δ stable node

E3

(
1 − δ

β
, δ
β

)
0 < δ < β stable node

Consider (δ, β) ∈ G1, system (3.1) has three equilibria E0, E1 and E2. Specifically, E0 and E1

represent an unstable node and a saddle. E2 is a stable node in G11 and non-hyperbolic in G12, which
is stable in the first quadrant. See Figure 4(a), the qualitative properties of these three equilibria are
illustrated.

Consider (δ, β) ∈ G2, system (3.1) admits four equilibria E0, E1, E2 and E3, which are unstable
node, saddle, saddle and stable node, respectively. See Figure 4(b), the qualitative properties of these
four equilibria are illustrated.

(a) G1 (b) G2

Figure 4. The qualitative properties of the equilibria for G1 and G2.
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3.2. Bifurcation analysis

Here, we will analyze some of all the possible bifurcation scenarios for model (3.1). According to
the previous methods applied in Section 2.3, a heuristic discussion similar to the one used by Theorem
2.6 can easily get the conditions for a transcritical bifurcation. Therefore, the following theorem can
be directly obtained.
Theorem 3.1 System (3.1) undergoes a transcritical bifurcation at E2 when the parameters satisfy the
condition δ = β.

3.3. Global structure

In order to investigate the global structure of system (3.1), the methods proposed by Section 2.4 can
be extended. By applying Poincaré transformation and analysis of closed orbit, Figure 5(a) describes
the existence and stability of the singular points at infinity, as well as all the boundary equilibria. In
addition, Figure 5(b)–(d) describes minutely the global phase portraits in R2

+ similarly.

(a) (b) (c) (d)

Figure 5. (a) The dynamics of (3.1) near infinity; (b) The global phase portrait of (3.1) in
G1; (c) The global phase portrait of (3.1) in G1; (d) The global phase portrait of (3.1) in G2.

4. Numerical simulations and discussions

Some numerical examples, in this section, are proposed so as to check the obtained parameter
conditions and theoretical results of systems (1.4) and (3.1). Further, we are interested to show the role
of harvesting on the local dynamical properties.
Example 4.1. We consider parameter values as below: α = 2, β = 1.2, γ = 0.8, δ = 2.5. Simple
calculations lead to α = α∗∗, δ − βγ ≥ β and δ > β, which means both systems (1.4) and (3.1) have
three boundary equilibria. The numerical phase portraits related to this case are shown in Figures 6(a)
and 7(a). The impact of harvesting is shown by Figure 8.
Example 4.2. Some parameter values are taken α = 1.85, β = 0.3, γ = 2.5 and δ = 0.8. In this case,
parameters satisfy the conditions 0 < α < α∗∗ and α > δ+ δγ − β− βγ. Consequently, system (1.4) has
a positive equilibrium (global asymptotically stable) and three boundary equilibria. From δ > β, we
can effortlessly observe there exists no positive equilibrium for model (3.1). See Figures 6(b) and 7(b),
the numerical phase portraits corresponding to this situation are presented. The impact of harvesting is
illustrated with curves in Figure 9.
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x ’ = x (1 − x − y)                  
y ’ = y (2.5 − 1.2 y) − 2 y/(0.8 + y)
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x ’ = x (1 − x − y)                  
y ’ = y (2 − 2.5 y) − 0.8 y/(0.4 + y)

 
 

 
 

 
 

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

y

E
32

E
1

E
22

E
0

(c)

Figure 6. The numerical phase portraits of system (1.4): (a) α = 2, β = 1.2, γ = 0.8, δ = 2.5;
(b) α = 1.85, β = 0.3, γ = 2.5, δ = 0.8; (c) α = 0.8, β = 2.5, γ = 0.4, δ = 2.
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Figure 7. The numerical phase portraits of system (3.1): (a) β = 1.2, δ = 2.5; (b) β = 0.3, δ
= 0.8; (c) β = 2.5, δ = 2.

(a) We take the initial condi-
tion (x(0), y(0)) = (1, 0.1). At
this case, the boundary equilibrium
E22(0, 1.25) of system (1.4) is sta-
ble.

(b) We take the initial condi-
tion (x(0), y(0)) = (1, 0.1). At
this case, the boundary equilibrium
E2(0, 2.0833) of system (3.1) is sta-
ble.

Figure 8. The impact of Michaelis-Menten type harvesting on the second species.
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Example 4.3. We select parameter values as follows: α = 0.8, β = 2.5, γ = 0.4, δ = 2. For these
parameters, we derive α = α∗∗ and 0 < δ − βγ < 2β. Therefore, system (1.4) possesses the same types
of equilibria as the above Example 4.2. Whereas, there is a positive equilibrium (global asymptotically
stable) in system (3.1) for δ < β. See Figures 6(c) and 7(c), the corresponding numerical phase portraits
are presented. The impact of harvesting is illustrated with curves in Figure 10.

It can be seen that the harvesting effect has a significant role on the population densities. From a
biological point of view, the permanence and extinction of species are influenced to differential extent
by the harvesting effect on the second species, for instance, greatly slowing the extinction of the first
species (Figure 8) or guaranteeing the permanence of the system by preserving the first species from
extinction (Figure 9). In addition, both species need much more time to reach their stable coexistence
state due to the harvesting effect, which is shown in Figure 10.

(a) We take the initial condi-
tion (x(0), y(0)) = (1, 0.1). At
this case, the interior equilibrium
E32(0.2, 0.8) of system (1.4) is sta-
ble.

(b) We take the initial condi-
tion (x(0), y(0)) = (1, 0.1). At
this case, the boundary equilibrium
E2(0, 2.6667) of system (3.1) is sta-
ble.

Figure 9. The impact of Michaelis-Menten type harvesting on the second species.

(a) We take the initial condi-
tion (x(0), y(0)) = (1, 0.1). At
this case, the interior equilibrium
E32(0.6, 0.4) of system (1.4) is sta-
ble.

(b) We take the initial condition
(x(0), y(0)) = (1, 0.1). At this case,
the interior equilibrium E3(0.2, 0.8)
of system (3.1) is stable.

Figure 10. The impact of Michaelis-Menten type harvesting on the second species.
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5. Conclusions

In this article, by combining local and global dynamical analysis, we have investigated the dynamics
of the amensalism system with Michaelis-Menten type harvesting for the second species. In order to
further explore the influence of harvesting effect, a complete qualitative analysis of the system with no
harvesting is also performed. We could show some differences for the model (1.4) with harvesting on
the second species and the system (3.1) with no harvesting.

1) When harvesting is present in the system, it has shown that model (1.4) has more different types
of equilibria. System (3.1) has at most four equilibria including one interior point in R2

+ and the
unique interior point (if it exists) of system (3.1) is globally stable. However, when the Michaelis-
Menten type harvesting is on the second species, we shown that the model (1.4) has at most six
equilibria including two interior points in R2

+ and the interior point E31 is a saddle.
2) The complex existence of equilibria leads to more bifurcation behaviors of model (1.4). Two

kinds of bifurcation, under some parameter restrictions, saddle-node bifurcation and transcritical
bifurcation will occur for system (1.4), while there exhibits only one saddle-node bifurcation for
the system with no harvesting.

3) More types of equilibria and more bifurcation behaviors can induce potentially dramatic changes
to the dynamics of the system. By the classifications of global phase portraits of model (1.4), we
find that more complex dynamics occur for the appearance of harvesting on the second species.
Such as, for model (1.4) with harvesting, the first species survives permanently rather than ex-
tinction or both species take a lot longer to approach the coexistence state.

These results reveal that the dynamical properties of system (1.4) get more complicated and richer
compared to the system with no harvesting. Furthermore, it would also be interesting to study system
(3.1) with both the first species and the second species with harvesting terms since we usually harvest,
or would like to harvest, both populations.
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