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Abstract: We study the Benjamin-Bona-Mahony model with finite distributed delay in 3D, which
depicts the dispersive impact of long waves. Based on the well-posedness of model, the family of
pullback attractors for the evolutionary processes generated by a global weak solution has been obtained,
which is unique and minimal, via verifying asymptotic compactness in functional space with delay CV

and topological space V ×CV , where the energy equation method and a retarded Gronwall inequality
are utilized.
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1. Introduction

In studying the dispersive impact of long waves in shallow water, Benjamin, Bona and Mahony
discovered the following physical model (called the Benjamin-Bona-Mahony equations)

ut + ux + uux − uxxt = 0,

also called BBM equations for short (see [1]). In addition, this model covers many kinds of waves, such
as the surface wave, acoustic-gravity wave, hydromagnetic wave, acoustic waves and so on.

In previous decades, there have been many interesting results on the BBM equations subject to
different conditions. In 1985, the existence results of solutions were extended to all dimensions in [2],
and it was shown that the supremum solution norm decayed to zero like the expression s−2/3 as s→ ∞
in considering the generalized BBM equations in 2D with small initial data (see [3]). Moreover, the
relating existence of solutions in non-cylindrical domains can be found in [4], some conclusions on
well-posedness on the energy space and numerical analyses can be seen in [5].
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For existence, dimension estimate, regularity, smoothness of global attractor and determining nodes,
many meaningful results can be found in [6–9]. Literatures [10, 11] have shown that the global weak
attractors to the BBM equations exist in H2

per and H1 respectively, which are actually the global strong
attractors via the energy equation method.

About the asymptotic behavior of BBM model, via the Littlewood-Paley projection operator, a
sufficient condition was given in [12,13], and an attractor was obtained by showing that the BBM system
had the point dissipative property and asymptotic compactness, and the regularity of the system attractor
was finally given. On an unbounded domain, in 2009 B. Wang studied the stochastic BBM system,
obtained a random attractor in [14], showed that under the forward flow the attractor was invariant and
had the property of pullback attraction to any random set, and by the tail-estimate method derived the
asymptotic compactness of corresponding dynamical systems. Other results, such as the multiple-order
breathers for the BBM system, can be seen in [15] and literatures therein.

In the industrial and economic fields, the delay/memory effect arises naturally, which leads to the
idea that some motion depends on the present state together with the past state, for which some related
interesting works can be seen in [16–21] for the dynamical behaviour of Navier-Stokes equations with
delay, [22, 23] for long-time behaviour of solutions to the BBM system the delay/memory, [24] for the
Brinkman-Forchheimer equation with delay and [25] for a viscoelastic system with memory and delay.
However, results involving dynamics of the BBM model with finite distributed delay are few, and we
aim to consider the dynamical behavior of the following BBM equations in 3D with finite distributed
delay on a bounded domain Θ ⊂ R3

ut − 4ut − ν4u + ∇ ·
−→
F (u) =

∫ 0

−h
G(t, s, ut)ds, (t, x) ∈ Θτ,

u(t, xi + Lei) = u(t, xi), (t, x) ∈ ∂Θτ,

u(σ, x) = u0(x), x ∈ Θ,

u(t + σ, x) = η(t, x), (t, x) ∈ [−h, 0] × Θ,

(1.1)

where the boundary ∂Θ is smooth, Θσ = (σ,+∞)×Θ, ∂Θσ = (σ,+∞)×∂Θ, and σ ∈ R is the initial time.
u(t, x) denotes the velocity vector field unknown, ν the kinematic viscosity of fluid, and

∫ 0

−h
G(t, s, ut)ds

is the finite distributed delay, where

ut(s) = u(t + s), s ∈ [−h, 0], h > 0.

Also, u0 and the delay term η in [−h, 0] satisfy that u0 = η(0).
−→
F (t) = (F1(t), F2(t), F3(t)) is a nonlinear

vector function on R, where Fk(t) (k = 1, 2, 3) are smooth functions satisfying

Fk(0) = 0, |Fk(t)| ≤ C(|t| + |t|2).

To the system (1.1) in 2D, if F(u) = u + 1
2u2, then it can be reduced into the generalized BBM

equations
ut + ux + uux − νuxx − uxxt = g

which reflect the dispersive impact together with the dissipative effect. The main characteristics and
difficulty encountered in this paper can be summed up in the following two points.

(i) For the system (1.1), we give some Banach spaces, some hypotheses on
∫ 0

−h
G(t, s, ut)ds and

−→
F ,

and the definition of a weak solution together with the theory on dynamics in Section 2. Then, we derive
the global well-posedness of system (1.1) via Fadeo-Galerkin approximation method in Section 3.
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(ii) In Section 4, the novelty in this paper is to use the retarded Gronwall inequality, construct a
tempered universe D, and show that the D-pullback absorbing set exists. Via the energy equation
method, we show the process U(·, ·) to (1.1) has the property ofD-pullback asymptotic compactness,
and get the pullback attractor in CV and V ×CV .

2. Preliminaries

2.1. Some spaces

Let H be (C∞0 (Θ))3 in (L2(Θ))3 topology with inner product (·, ·) and norm | · |, V denotes (C∞0 (Θ))3

in (H1(Θ))3 topology with inner product ((·, ·)) and norm ‖ · ‖, and W is a homogeneous space of all
functions in (H2(Θ))3. Let V? denote the dual space of V with norm ‖ · ‖?, 〈·, ·〉 is the dual product
between V and V?, and there holds the embedding relation that V ↪→ H ↪→ V?.

Under the periodic boundary condition, the elliptic operator A = −∆ is positively self-adjoint in H,
and in space H the inverse operator A−1 is also compact. The properties of A lead to the fact that the
eigenvalues {λk}

∞
k=1 of A exist together with eigenfunctions {ωk}

∞
k=1, which are orthonormal and satisfy

0 < λ1 ≤ λ2 ≤ · · · , lim
k→+∞

λk = +∞.

Define the retarded Banach spaces as

CY = C([−h, 0]; Y), L2
Y = L2(−h, 0; Y), Y = H,V

with the norm

‖u‖CY = sup
s∈[−h,0]

‖u(· + s)‖Y , ‖u‖L2
Y

=

∫ 0

−h
‖u(· + s)‖Yds.

2.2. The retarded Gronwall inequality

Lemma 2.1. ( [26]) u(t) ∈ Y, Y is a Banach space, and there holds for any t ≥ σ ≥ 0 that

‖u(t)‖Y ≤ E(t, σ)‖uσ‖CY +

∫ t

σ

K1(t, s)‖us‖CY ds +

∫ ∞

t
K2(t, s)‖us‖CY ds + C0, (2.1)

where the functions E(·, ·), K1(·, ·), K2(·, ·) ≥ 0 are measurable in R2, and C0 ≥ 0. Assume that

κ(K1,K2) = κ0 = sup
t≥σ

( ∫ t

σ

K1(t, s)ds +

∫ ∞

t
K2(t, s)ds

)
< +∞,

and

lim
t→+∞

E(t + l, l) = 0, ∀ l ∈ R+.

Let ϑ = sup
t≥s≥σ

E(t, s), then it holds that

(R1) When κ0 < 1, then for ∀ ε > 0 and R > 0, there is a positive constant T = T (ε,R) such that for
any t > T

‖ut‖CY < µC0 + ε,
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where u(t) ∈ C([−h,∞); Y) satisfying (2.1) with ‖uσ‖CY ≤ R, and µ = 1
1−κ0

.
(R2) When κ0 <

1
1+ϑ

, there are positive constants M0 and ι such that for any t ≥ σ

‖ut‖CY ≤ M0‖uσ‖CY e−ιt + γC0,

where u(t) ∈ C([−h,∞); Y) satisfying (2.1), γ =
µ+1

1−κ0c , and c = max{ ϑ
1−κ0

, 1}.
(R3) When κ0 <

1
1+ϑ

and κ0c < 1, u(t) reduces to the trivial case.

3. Global well-posedness

3.1. Some hypotheses

To prove the existence of a solution to (1.1), we let g(t, ut) =
∫ 0

−h
G(t, s, ut)ds and give the following

conditions.
(C1) the measurable function g : R×CH → (L2(Ω))3 satisfies for any t ∈ R that g(t, 0) = 0, and there

is a constant Lg > 0 satisfying for any ut, vt ∈ CH that

‖g(t, ut) − g(t, vt)‖L2 ≤ Lg‖ut − vt‖CH .

(C2) ∃ Cg > 0 satisfying∫ t

σ

‖g(s, us) − g(s, vs)‖2L2ds ≤ Cg

∫ t

σ−h
‖u(s) − v(s)‖2Hds.

(C3) denote

fi(t) = F′i (t), Fi(t) =

∫ t

0
Fi(r)dr,

which satisfy

| fi(t)| ≤ C(1 + |t|), |Fi(t)| ≤ C(|t|2 + |t|3),

where
−→
f (t) = ( f1(t), f2(t), f3(t)),

−→
F (t) = (F1(t),F2(t),F3(t)).

3.2. Well-posedness

Let G(u) = ∇ ·
−→
F (u), then the system (1.1) is reduced to the following form{

∂u
∂t + A∂u

∂t + νAu + G(u) = g(t, ut),
u(σ) = u0, u(s + σ) = η(s, x), s ∈ [−h, 0].

(3.1)

Definition 3.1. Assume u0 ∈ W, η ∈ CV , a function u(·, x) : [σ,∞)→ V, satisfying u(σ + s, x) = η(s)
in [−h, 0], is said to be a weak solution to (3.1) if it holds for any T > σ that

(i) u ∈ C([σ,T ]; V), ∂u
∂t ∈ L2(σ,T ; H).

(ii) for any w ∈ V it holds that

< u(t) + Au(t),w > +ν

∫ t

s
< Au(l),w > dl +

∫ t

s
(G(um),w)dl
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=< u(s) + Au(s),w > +

∫ t

s
(g(l, ul

m),w)dl, ∀ s, t ∈ [σ,T ).

(iii) the energy equality holds

1
2

d
dt
|u(t, x)|2 +

1
2

d
dt
‖u(t, x)‖2 + ν‖u(t, x)‖2 = (g(t, ut), u(t, x)). (3.2)

Moreover, the Eq (3.2) could be expressed as

−
1
2

∫ T

σ

(|u(l)|2 + ‖u(l)‖2)ζ′(l)dl + ν

∫ T

σ

‖u(l)‖2ζ(l)dl +

∫ T

σ

(G(u(l)), u(l))ζ(l)dl

=

∫ T

σ

(g(l, ul), u(l))ζ(l)dl, ∀ ζ ∈ C∞0 [σ,T ].

To sum up, the main results on well-posedness of solution to (3.1) are stated as follows.

Theorem 3.2. Suppose u0 ∈ W, η ∈ CV , and assumptions (C1)–(C3) hold. Then the existence of solution
u(t, σ) to (3.1) holds, it is unique and depends on η continuously, and the system process U(·, ·) is
generated by u(t, σ).

Proof. The Faedo-Galerkin method will be used to obtain the conclusion.

Procedure I. Existence of solution to the Galerkin equation
Considering the orthogonal eigenfunctions {ω1, ω2, · · · , ωk, · · · } in V and letting

Vk = span{ω1, ω2, · · · , ωk},

we can denote an approximate solution as

uk(t) =

k∑
j=1

χ jk(t)ωk ( j = 1, 2, · · · , k)

for system (3.1) in Vk, which satisfies the corresponding differential equation of (3.1)

d
dt

(uk, ω j) +
d
dt
< Auk, ω j > +ν < Auk(t), ω j > +(G(uk), ω j) = (g(ut

k), ω j), (3.3)

uk(σ + s) = Pkη(s) = ηk(s), s ∈ [−h, 0]. (3.4)

where χ jk(t) is undetermined and Pk : H → Vk is the orthogonal projection operator, and ηk → η in CV

as k → ∞.
From the conclusion on ordinary differential equations, the local solution to systems (3.3) and (3.4),

which has finite dimension, can be derived uniquely.

Procedure II. Conclusions on a priori estimate
Multiplying (3.3) with χ jk and summing from j = 1 to k, from F (0) = 0 and the divergence theorem

we have ∫
Θ

(∇ ·
−→
F (uk))ukdx = −

∫
Θ

−→
F (uk) · ∇ukdx
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= −

∫
∂Θ

−→
F (uk) · −→n dx = −

∫
∂Θ

−→
F (0) · −→n dx = 0, (3.5)

it follows that

1
2

d
dt
|uk|

2 +
1
2

d
dt
‖uk‖

2 + ν‖uk‖
2 = (g(ut

k), uk) ≤
ν

2
‖uk‖

2 +
1

2νλ1
|g(ut

k)|
2. (3.6)

Integrating (3.6) over [σ, t] and using conditions (C1) and (C2), we deduce

|uk(t)|2 + ‖uk(t)‖2 + ν

∫ t

σ

‖uk(l)‖2dl

≤ |u0|
2 + ‖u0‖

2 +
1
νλ1

∫ t

σ

|g(ul
k)|

2dl

≤ |u0|
2 + ‖u0‖

2 +
Cg

νλ1

∫ t

σ−h
|uk(l)|2dl

≤ |u0|
2 + ‖u0‖

2 +
Cg

νλ1
‖η‖2L2

H
+

Cg

νλ1

∫ t

σ

|uk(l)|2dl, (3.7)

and assumptions on the initial conditions together with the Gronwall Lemma lead to

{uk(t)} ⊂ L∞(σ,T ; V) ∩ L2(σ,T ; V). (3.8)

Multiplying (3.3) with Aχ jk and summing from j = 1 to k, we show

1
2

d
dt
‖uk(t)‖2 +

1
2

d
dt
|Auk(t)|2 + ν|Auk(t)|2

≤ |(g(ut
k), Auk(t))| + |(∇ ·

−→
F (uk), Auk(t))|

≤
ν

6
|Auk(t)|2 +

3
2ν
|g(ut

k)|
2 + |(∇ ·

−→
F (uk), Auk(t))|2. (3.9)

By using the conditions (C1) and (C2) and the interpolation inequalities such as

‖uk(t, x)‖L4 ≤ C|∇uk(t, x)|3/4|uk(t, x)|1/4, ‖∇uk(t, x)‖L4 ≤ C|Auk(t, x)|3/4|∇uk(t, x)|1/4,

we have

|(∇ ·
−→
F (uk), Auk(t))| ≤

∫
|F′(uk)||∇uk||Auk|dx

≤ C
∫

Θ

(1 + |uk|)|∇uk||Auk|dx

≤ C
∫

Θ

|∇uk||Auk|dx + C
∫

Θ

|uk||∇uk||Auk|dx, (3.10)

where

C
∫

Θ

|∇uk||Auk|dx ≤
C
ν
|∇uk|

2 +
ν

6
|Auk|

2, (3.11)
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and

C
∫

Θ

|uk(x)||∇uk(x)||Auk(x)|dx ≤ ‖uk(x)‖L4 |Auk(x)|‖∇uk(x)‖L4

≤ C|uk|
1/4|∇uk|

3/4|Auk||Auk|
3/4|∇uk|

1/4

≤ C|uk|
2|∇uk|

8 +
ν

6
|Auk|

2. (3.12)

Integrating (3.9) over [σ, t], we show that

|∇uk(t)|2 + |Auk(t)|2 + ν

∫ t

σ

|Auk(l)|2dl

≤ ‖u0‖
2 + ‖u0‖

2
W +

3
ν

∫ t

σ

|g(ul
k)|

2dl

+C
∫ t

σ

|uk(l)|2‖uk(l)‖8dl +
C
ν

∫ t

σ

‖uk(l)‖2dl (3.13)

≤ ‖u0‖
2 + ‖u0‖

2
W +

3Cg

ν
‖η‖2L2

H
+

3Cg

ν

∫ t

σ

|uk(l)|2dl

+C
∫ t

σ

|uk(l)|2‖uk(l)‖8dl +
C
ν

∫ t

σ

‖uk(l)‖2dl, (3.14)

the fact that uk ∈ L∞(σ,T ; V) ∩ L2(σ,T ; V) together with the Gronwall Lemma lead to

{uk(t)} ⊂ L∞(σ,T ; W) ∩ L2(σ,T ; W). (3.15)

Procedure III. Compact argument
From (3.1) we see that

(I + A)
∂

∂t
uk = −νAuk −G(uk) + g(t, ut

k), (3.16)

and the above results make us know Auk, g(ut
k) ∈ L2(σ,T ; H). Moreover, from condition (C3), we derive

‖G(uk)‖2L2(σ,T ;H) = ≤ C
∫ T

σ

∫
Θ

|(|uk| + 1)∇uk|
2dxds

≤ C
∫ T

σ

‖uk‖
2ds + C

∫ T

σ

∫
Θ

|uk|
2|∇uk|

2dxds

≤ C
∫ T

σ

‖uk‖
2ds + C

∫ T

σ

‖uk‖
1/2
L4 ‖∇uk‖

1/2
L4 ds

≤ C
∫ T

σ

‖uk‖
2ds + C

∫ T

σ

(‖uk‖L4 + ‖∇uk‖L4)ds

≤ C
∫ T

σ

(‖uk‖
2 + 1 + |Auk|)ds, (3.17)

and from the result in Procedure II we show G(uk) ∈ L2(σ,T ; H). Thus, it follows that

(I + A)
duk

dt
∈ L2(σ,T ; H).
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For the operator A : D(A)→ H, the property of positive self-adjoint operator makes us know there
is a unique determined resolution

{Eλ}λ≥0

which is a family of projection operators, called the resolution of the identity I, and some properties are
presented in [27]. Therefore, we can consider the following resolvent

(I + A)−1 =

∫ ∞

0
(1 + λ)−1dE(λ),

with the operator norm

‖(I + A)−1‖2L =

∫ ∞

0
(1 + λ)−2d‖Eλ‖

2 ≤ 1,

and it holds that
∂uk

∂t
∈ L2(σ,T ; H).

The Aubin-Lions Lemma together with the above results leads to

uk ⇀
∗ u weakly in L∞(σ,T ; W),

uk ⇀ u weakly in L2(σ,T ; W),
∂
∂t uk ⇀

∂
∂t u weakly in L2(σ,T ; H),

uk → u strongly in L2(σ,T ; V),
uk → u strongly in V, a.e.t ∈ (σ,T ),

(3.18)

and from the Lions-Aubin-Simon Lemma with (3.18) we get u ∈ C([σ,T ]; V).

Procedure IV. Limit process
From (3.18) we can obtain

|uk(t, x)|2 + ‖uk(t, x)‖2 → |u(t, x)|2 + ‖u(t, x)‖2, k → ∞

and

2ν
∫ t

s
< Auk(l),w > dl→ 2ν

∫ t

s
< Auk(l),w > dl, ∀ w ∈ V.

Since G(uk) ∈ L2(σ,T ; H), the property of sequential compactness in L2 ensures the existence of
subsequence satisfying in L2(σ,T ; H) that

G(uk) ⇀ G(u),

and

2
∫ t

s
(G(uk(l)),w)dl→ 2

∫ t

s
(G(uk(l)),w)dl.

From the conditions (C1) and (C2), the fact that η ∈ L2
H leads to g(ut

k) ∈ L2(σ,T ; H), and it also holds
that

2
∫ t

s
(g(ul

k),w)dl→ 2
∫ t

s
(g(ul),w)dl.
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Making the limit procedure on (3.3), we get that u is a solution to (3.2), and from (3.18) we can also
obtain the following weak convergence in V

uk(σ) ⇀ u(σ).

Procedure V. Uniqueness
Assume that u(t), v(t) are two solutions to (3.1) with initial conditions η1 and η2 respectively, then

û(t) = u(t) − v(t) satisfies the equation

ût + Aût + νAû + G(u) −G(v) = g(t, ut) − g(t, vt), (3.19)

where ηw = η1 − η2. Multiplying (3.19) by û, we obtain

1
2

d
dt
|û(t)|2 +

1
2

d
dt
‖û(t)‖2 + ν‖û(t)‖2

≤ |(G(u) −G(v), û)| + |(g(ut) − g(vt), û)|

≤

∫
Θ

|F(u) − F(v)||∇û|dx +

∫
Θ

|g(ut) − g(vt)||û|dx

≤

∫
Θ

|û||∇û|dx +

∫
Θ

|g(ut) − g(vt)||û|dx

≤
ν

4
‖û(t)‖2 + C|û(t)|2 +

1
νλ1
|g(ut) − g(vt)|2 +

ν

4
‖û(t)‖2. (3.20)

Integrating (3.20) with respect to t, we show

|û(t)|2 + ‖û(t)‖2 + ν

∫ t

σ

‖û(s)‖2ds

≤ |û0|
2 + ‖û0‖

2 + C
∫ t

σ

|û(s)|2ds +
1
νλ1

∫ t

σ

|g(us) − g(vs)|2ds

≤ |û0|
2 + ‖û0‖

2 +
Cg

νλ1
‖ηw‖

2
L2

H
+ C

∫ t

σ

|û(s)|2ds, (3.21)

it follows from Gronwall’s inequality that

|û(t)|2 ≤
(
|û0|

2 + ‖û0‖
2 +

Cg

νλ1
‖ηw‖

2
L2

H

)
eC(T−σ). (3.22)

Therefore, the uniqueness of the solution holds naturally together with the dependence on initial
conditions, it follows that the continuous process U(·, ·) in the space CV is finally generated.

4. Tempered pullback dynamics for BBM equation with finite distributed delay

4.1. Theory on tempered pullback dynamics

We will offer in this part some conclusions relating to tempered pullback dynamic theory (see [20]),
and we first denote P(Y) as the family consisting of all subsets nonempty in Banach space Y . LetD be
a nonempty class, whose element is the family D̂ = {D(t)}t∈R in P(Y), andD is said to be a universe in
P(Y).
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Definition 4.1. For any t ∈ R, a subset family D̂0 = {D0(t)} in P(Y) is said to beD−pullback absorbing
with respect to U(·, ·) on Y if, for any D̂ ∈ D, there is always a positive constant T (t, D̂) ≤ t satisfying
that

U(t, σ)D(σ) ⊂ D0(t), ∀ σ ≤ t.

Definition 4.2. For any t ∈ R, D̂ ∈ D, {σn} ⊂ (−∞, t] satisfying σn → −∞ when n → ∞, and any
sequence yn ∈ D(σn), we say that the process U(·, ·) isD−pullback asymptotically compact on Y if it
always holds that the sequence {U(t, σn)yn} has the property of relative compactness in space Y.

Definition 4.3. For any t ∈ R, for the familyA = {A(t)} in Y if the following hold
1) Property of pullback invariance: U(t, σ)AD(σ) = AD(t), ∀ σ ≤ t,
2) Property of pullback attraction:

lim
σ→−∞

distY(U(t, σ)B,A) = 0, ∀ B ∈ D,

thenA is called aD-pullback attractor to U(t, σ).

Definition 4.4. Assume that M̂ = {M(t)} is a family consisting of closed sets in P(Y) satisfying for any
D̂ = {D(t)} ∈ D that

lim
σ→−∞

distY(U(t, σ)D(σ),M(t)) = 0.

IfAD(t) ⊂ M(t), then we say thatAD is minimal.

Theorem 4.5. Let be U(·, ·) : R2
d × Y → Y a closed process, which has the D−pullback absorbing

set D̂0 = {D0(t)} in P(Y), and has the property of D−pullback asymptotical compactness. Then, the
D-pullback attractorAD = {AD(t)} exists and is shown as for any t ∈ R

AD(t) =
⋃
D̂∈D

Γ(D̂, t)
Y

,

where

Γ(D̂, t) =
⋂
s≤t

⋃
σ<s

U(t, σ)D(σ)
Y

.

Moreover, the familyAD is minimal.

4.2. D-pullback absorbing set

For any t ∈ R, we first construct a universeD = {D(t)} in P(CV) satisfying that

lim
σ→−∞

er̃σ sup
η∈D(σ)

‖η‖2CV
= 0, r̃ =

λ1

1 + λ1
ν.

Lemma 4.6. Let assumptions (C1)–(C3) hold, and η ∈ CV . Then, the process {U(·, ·)} to (3.1) has the
D-pullback absorbing setD0 = {D0(t)} in CV in which

D0(t) = B̄CV (0, ρ̃(t))
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with radius

ρ̃(t) = M0(‖η‖2CH
+ ‖η‖2CV

)e−ιt + (γ + 1)C0, (4.1)

where M0, ι,C0 > 0 are positive constants and

γ =
2 − κ0

(1 − κ0)(1 − κ0c)
, c = max{

1
1 − κ0

, 1}.

Proof. Multiplying (3.1) by u leads to

1
2

d
dt
|u(t)|2 +

1
2

d
dt
‖u(t)‖2 + ν‖u(t)‖2 = (g(ut), u(t)) ≤

ν

2
‖u(t)‖2 +

1
2νλ1

|g(ut)|2, (4.2)

i.e.,

d
dt
|u(t)|2 +

d
dt
‖u(t)‖2 + ν‖u‖2 ≤

1
νλ1
|g(ut)|2, (4.3)

and

d
dt

(er̃(t−σ)(|u(t)|2 + ‖u(t)‖2))

≤ er̃(t−σ)(r̃|u(t)|2 + r̃‖u(t)‖2 − ν‖u(t)‖2) +
1
νλ1

er̃(t−σ)|g(ut)|2

≤
1
νλ1

er̃(t−σ)|g(ut)|2, (4.4)

where r̃ = λ1
1+λ1

ν. Integrating (4.4) with respect to t leads to

|u(t, x)|2 + ‖u(t, x)‖2

≤ er̃(σ−t)(|u0|
2 + ‖u0‖

2) +
1
νλ1

∫ t

σ

er̃(s−t)|g(us)|2ds

≤ er̃(σ−t)(|u0|
2 + ‖u0‖

2) +
C f

νλ1

∫ t

σ−h
er̃(s−t)|u(s)|2ds

≤ er̃(σ−t)(|u0|
2 + ‖u0‖

2) +
C f

νλ1
er̃h

∫ t

σ

er̃(s−t)|us|2ds

+
C f

νλ1

∫ t

t−h
er̃(s−t)|u(s)|2ds +

C f

νλ1

∫ σ

σ−h
er̃(s−t)|u(s)|2ds, (4.5)

i.e.,

|u(t, x)|2 + ‖u(t, x)‖2

≤ er̃(τ−t)(|u0|
2 + ‖u0‖

2) +
C f

νλ1
er̃h

∫ t

σ

er̃(s−t)|us|2ds +
C f

νλ1
‖η‖2L2

H
ds +

C f h
νλ1
‖u‖L∞ . (4.6)

From the retarded integral inequality, we can set

E(t, s) = er̃(s−t), K1(t, s) =
C f

νλ1
er̃her̃(s−t), C0 =

C f

νλ1
‖η‖2L2

H
ds +

C f h
νλ1
‖u‖L∞ ,
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where

lim
t→+∞

E(t + ·, ·) = 0, ϑ = sup
t≥s≥σ

E(t, s) = 1, κ0 = κ(K1, 0) = sup
t≥σ

∫ t

σ

K1(t, s)ds,

and choosing a suitable t could lead to

C f

νλ1
er̃h

∫ t

σ

er̃(s−t)ds ≤ 1/2, κ0 = κ(K1, 0) <
1

1 + ϑ
.

It follows from Lemma 2.1 that there exist positive constants M0 and ι satisfying

‖u‖2CH
+ ‖u‖2CV

≤ M0(‖η‖2CH
+ ‖η‖2CV

)e−ιt + γC0, (4.7)

and by using (4.7) in (4.6) we can obtain

|u(t, x)|2 + ‖u(t, x)‖2

≤ er̃(σ−t)(|u0|
2 + ‖u0‖

2) +
1
2

(M0(‖η‖2CH
+ ‖η‖2CV

)e−ιt + γC0) + C0. (4.8)

It follows that the following pullback absorbing set exists

D̂0 = {D0(t)}t∈R,

where D0(t) = {u|‖u‖CV ≤ M0(‖η‖2CH
+ ‖η‖2CV

)e−ιt + (γ + 1)C0}.

Remark 4.1. Let ‖(u(t), ut)‖V×CV be the norm of topology of V ×CV , conditions (C1)–(C3) hold, and
η ∈ CV . Then, the tempered pullback absorbing setD◦ = {D◦(t)} in V ×CV exists for the system (3.1),
and

D◦(t) = B̄V×CV (0, ρ̃◦(t)),

where

ρ̃◦(t) = 2M0(‖η‖2CH
+ ‖η‖2CV

)e−ιt + (γ + 3)C0. (4.9)

In fact, combining (4.7) and (4.8), we can obtain the above conclusion directly.

4.3. D-pullback asymptotic compactness

The following aims to use the energy equation method(see [28]) to show the process U(·, ·) to (3.1)
has the property of tempered pullback asymptotic compactness.

Lemma 4.7. Assume that the conditions (C1)–(C3) hold, and η ∈ CV . Then, for the system (3.1), the
D-pullback asymptotical compactness of U(·, ·) in CV holds.

Proof. We will achieve the goal via two procedures.

Procedure I. Convergence of {uk} in [t0 − h, t0] and V
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For t0 ∈ R, we assume that {uk} ⊂ D(t, σk; φk), {φk} ⊂ D(σk) is bounded in CV , and {σk} ⊂

(−∞, t0 − 2h], where σk → −∞ as k → +∞. From Theorem 3.2 with the Aubin-Lions Lemma, a
subsequence {uk} exists and satisfies

uk ⇀
∗ u in L∞(t0 − 2h, t0; W),

uk ⇀ u in L2(t0 − 2h, t0; W),
∂
∂t uk ⇀

∂
∂t u in L2(t0 − h, t0; H),

uk → u in L2(t0 − h, t0; V),
uk → u in V, a.e. t ∈ (t0 − h, t0).

(4.10)

From (4.10) we can use the Lions-Aubin-Simon Lemma to derive that there exists a subsequence {uk}

satisfying
uk → u in C([t0 − h, t0]; V),

and there holds in V

uk(sk) ⇀ u(s), (4.11)

where {sk} ⊂ [t0 − h, t0] and sk → s ∈ [t0 − h, t0] as k → ∞.
Also, the hypotheses on G(·) and g(t, ut) lead to G(uk) ⇀ G(u) weakly in L2(t0 − 2h, t0; H) and

g(t, ukt) ⇀ g(t, ut) weakly in L2(t0 − t, t0; H), and we can conclude that u satisfies the system (3.1) in
[t0 − h, t0].

Procedure II. Strong convergence of {uk}

In this part, the energy equation method will be used to show the tempered pullback asymptotical
compactness for U(·, ·), that is,

‖uk(sk) − u(s)‖ → 0 as k → +∞. (4.12)

Claim 1.

lim inf
k→∞

‖uk(sk)‖ ≥ ‖u(s)‖. (4.13)

The weak convergence (4.11) together with the Banach-Steinhaus Theorem leads to the fact that
(4.13) holds, which means the possible energy loss.

Claim 2.

lim sup
k→∞

‖uk(sk)‖ ≤ ‖u(s)‖. (4.14)

Multiplying Eq (3.1) by u, we get that

d
dt
|u(t, x)|2 +

d
dt
‖u(t, x)‖2 = −2ν‖u(t, x)‖2 + 2(g(ut), u(t, x)), (4.15)

and integrating yields that

|u(s)|2 + ‖u(s)‖2 = |u(l)|2 + ‖u(l)‖2 + 2
∫ s

l
((g(ur), u(r)) − ν‖u(r)‖2)dr.
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In the interval [t0 − h, t0] we define the following functionals

Q(t) = |u(s)|2 + ‖u(s)‖2 − 2
∫ s

t0−h
(g(ur), u(r))dr (4.16)

and

Qk(s) = |uk(s)|2 + ‖uk(s)‖2 − 2
∫ s

t0−h
(g(ur

k), uk(r))dr, (4.17)

where Q(s) and Qk(s) are continuous and decreasing in [t0 − h, t0], and the above conclusion that the
subsequence {uk} is convergent leads to that, as k → ∞,

Qk(s)→ Q(s) a.e. s ∈ (t0 − h, t0). (4.18)

Therefore, for ∀ ε > 0, ∃ k̃ ∈ N, and when k ≥ k̃ and {sk} ⊂ [t0 − h, t0], it always holds that

|Qk(sk) − Q(sk)| ≤
ε

2
. (4.19)

The continuity of Q(s) in [t0 − h, t0] leads to uniform continuity, and thus it follows that, for ∀ ε > 0 and
any sequence {sk} ⊂ [t0 − h, t0] with sk → s∗ as k → ∞, that there is ˜̃k ∈ N satisfying

|Q(sk) − Q(s∗)| ≤
ε

2
, k > ˜̃k. (4.20)

Let k̄ = max{k̃, ˜̃k}, then

|Qk(sk) − Q(s∗)| ≤ |Qk(sk) − Q(sk)| + |Q(sk) − Q(s∗)| < ε, ∀ k > k̄, (4.21)

and from the arbitrariness of ε we know that, for any {sk} ⊂ [t0 − h, t0], it holds that

lim sup
k→∞

Qk(sk) ≤ Q(s∗), (4.22)

and with

lim sup
k→∞

(
|uk(sk)|2 + ‖uk(sk)‖2

)
≤ |u(s∗)|2 + ‖u(s∗)‖2, (4.23)

it follows that

‖uk(sk)‖ → ‖u(s∗)‖. (4.24)

The convergence relations (4.24) and (4.11) together with the Radon Theorem lead to (4.12), and we
finish the proof on the asymptotic compactness in CV naturally.

The process U(t, σ) to (3.1) in V × CV also has the property of tempered pullback asymptotical
compactness.
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4.4. The tempered pullback dynamics in CV

The main results of pullback dynamics to system (3.1) is stated as the following.

Theorem 4.8. Let assumptions (C1)–(C3) hold, u0 ∈ W, and η ∈ CV . Then, theD-pullback attractor
ACV (t) in CV to the process U(t, σ) of (3.1), and it is minimal in addition.

Proof. Theorem 3.2 shows that the continuity of process U(t, σ) is satisfied in CV , the existence
ofD-pullback absorbing set in CV is derived in Lemma 4.6, and in Lemma 4.7 the tempered pullback
asymptotic compactness is established. From Theorem 4.5 we can obtain the minimal pullback attractor
in CV to system (3.1). These complete the proof.

Remark 4.2. Let assumptions (C1)–(C3) hold, u0 ∈ W, and η ∈ CV . To the process U(t, σ) of (3.1), the
D-pullback attractorAV×CV (t) exists in V ×CV , and has the property of minimality.

Proof. The proof is similar as in the above theorem by using the same technique in [29], and here we
skip the details.

5. Further research

Based on the result of well-posedness of the BBM model with finite distributed delay, we finish
the proof on existence and minimality of pullback attractorsACV (t). If the delay approaches infinity,
the problem relating to pullback dynamics and continuity of attractors is still open, which is our next
objective.
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