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Abstract: Analysis of transport mode choice is crucial in transportation planning and optimization. 
Traditionally, the transport mode of individuals is detected by discrete choice models (DCMs), which 
rely on data regarding individual and household attributes. Using these attribute data raises privacy 
concerns and limits the applicability of the model. Meanwhile, the detection results of DCMs may be 
biased, despite providing insight into the impact of variables. The machine learning models are more 
effective for mode detection, but most models need more interpretability. In this study, an interpretable 
machine learning model is developed to detect the transport modes of individuals. The mobility 
features of individuals, which introduce the velocity and acceleration of the center of mass (COM) are 
innovatively considered in the detection model. These mobility features are combined with multi-
source data, including land use mix, GDP, population and online map service data as detection features. 
Using the travel survey data from Nanjing, China in 2015, the effects of different machine learning 
models on fine-grained detection performance are investigated. The results indicate that the deep forest 
model presents the best detection performance and achieves an accuracy of 0.82 in the test dataset, 
demonstrating the effectiveness of the proposed detection model. Furthermore, t-distributed stochastic 
neighbor embedding (t-SNE) and ablation experiments are conducted to overcome the non-
interpretability issue of the machine learning models. The results show that the mobility features of 
individuals are the most critical features for improving detection performance. This study is essential 
for improving the structure of transport modes and maintaining low-carbon and sustainable 
development in urban traffic systems. 

Keywords: transport mode choice; machine learning modeling; multi-source data analysis; model 
interpretability 
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1. Introduction  

Rapid urbanization generates growing amounts of travel flows, urging the requirement for 
efficient transport planning policies. During 1980’s, in Shanghai, China, the urbanization processes 
were in their nascent stages, with an approximate daily total of 20 million trips. By 2019, this daily 
total had surged to approximately 57.31 million trips. Similarly, in Beijing, since the inception of the 
first travel survey in 1986, the daily volume of trips in the central urban area has exhibited an average 
annual increase of 4%. By 2019, the daily volume of trips had reached a significant 39.57 million. The 
substantial growth has resulted in severe traffic congestion, with an average congestion duration of 
three hours in 2019 [1,2]. These trends underscore the urgent need for the development and 
implementation of efficient transport planning policies. Accurate comprehension of an individual's 
transport mode choice enables the development of customized guidance policies for different 
demographic groups. These policies can significantly contribute to the optimization of transportation 
system infrastructure, the promotion of increased public transportation utilization and the relief of 
traffic congestion. Consequently, the development of precise models for transport mode detection 
assumes paramount importance [3]. 

1.1. Background 

In fact, the choice of transport modes is influenced by many types of factors, including individual, 
household and built environment factors. Individual factors include age, gender, income, occupation, 
attitudes and trip purpose [4–9]. Household factors include household structure, household 
characteristics, number of household members and car ownership, etc. [10–12]. Furthermore, several 
attributes of the built environment have been recognized to influence the choice of transport modes, 
such as building density, land use mix and distance to the transport facilities [13–16]. The primary 
method of collecting the data is via travel survey. Collecting individual mobility patterns and rich 
sociodemographic information are critical advantages of travel surveys [17–20]. However, respondents 
may provide incorrect information out of a desire to protect their privacy, such as by providing lower-
income information, etc. This reason results in insufficient data collection accuracy and impacts the 
validity of the subsequent study [21–22]. Additionally, ensuring the security of respondents’ privacy 
can be challenging. Balancing the detection performance of transport mode with the imperative of 
ensuring respondents’ privacy remains a significant challenge in this field of research. 

Most detection models for transport mode are predicted by econometric discrete choice models 
(DCMs) based on the random utility framework, such as multinomial logit model, nested logit model 
and mixed logit model [23–25]. The main advantage of these models is that they have good 
interpretability because of explicit mathematical formulas. The utility functions in the model are 
defined manually before fitting the model. This step allows for the integration of established behavioral 
theory into the model [26,27]. However, manual definitions may be violated under real complex 
problems, leading to biased predictions [28,29]. In contrast to traditional DCMs, machine learning 
models applied to model the choice of transport modes are promising methods to address current 
limitations [30–34]. Instead of making the necessary prior definitions, machine learning models 
represent complex relationships between variables through data-driven learning. Although machine 
learning models have better predictive accuracy, they focus on prediction and lack model 
interpretability [35]. Novel techniques and experiments such as t-SNE, SHapley Additive exPlanations 
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(SHAP) and ablation experiments are proposed to overcome the non-interpretability issue of the 
machine learning models [36–38]. At the same time, most of the current detection models detect 
transport modes, with their categories including car, walk, bike, and public transport. Some studies 
refine “bike” into bike and e-bike. For public transport, studies consider them as a broad category. For 
example, they do not distinguish between the bus and the subway [30,39,40]. The coarse-grained 
classification of public transport results in the inability to target groups with specific transport modes 
for interventions in transportation planning. Therefore, achieving accurate individual transport mode 
detection for improved travel demand management still presents many areas for research. 

1.2. Literature review 

1.2.1. Features for transport mode detection 

The detection of transport mode plays a crucial role in managing travel demand. The choice of 
transport mode is influenced by a variety of factors including age [4], gender [5], income [6], 
occupation [7], attitudes [8], trip purpose [9], household structure [10], household characteristics [11] 
number of household members [12], car ownership [13] and built environment [14]. For example, Kim 
et al. found that the built environment has a greater impact on young and elderly individuals compared 
to middle-aged individuals in the choice of public transportation [4]. Subjective determinants like 
travel satisfaction can also influence transport mode detection. A study found that pro-environmental 
attitudes have a positive impact on the utility of subway and walking as modes of travel, and this 
preference increases with the duration of walking trips [41]. Another study found that cars promote 
subjective well-being by facilitating leisure activities, but they also diminish a sense of belonging and 
achievement through shopping activities [42]. The acquisition of this information can be time-
consuming and challenging [26,43]. Respondents may provide inaccurate information due to privacy 
concerns, which affect the efficacy of subsequent research. Therefore, there is potential to propose a 
method to both protect individual privacy and accurately detect the transport mode. 

Research on individual spatial mobility features has provided the potential for detecting modes. 
Gonzalez et al. first introduced physical concepts such as the COM and radius of gyration to study 
individuals’ mobility features [44]. They found that individuals’ trajectories exhibit high 
spatiotemporal regularities, with each individual displaying time-invariant features such as travel 
distance and a significant probability of returning to specific frequent locations. Another study revealed 
that if a person’s future mobility behaviour is influenced by their historical movements, it can be 
considered a memory-dependent human mobility model [45]. Later, Hong et al. observed that 
individuals from both datasets maintain a consistent number of combinations of travel modes and 
activity locations over time [46]. However, the currently proposed mobility features alone may not be 
sufficient for detecting travel modes. Velocity and acceleration play crucial roles in transport mode 
detection. To improve the accuracy of transport mode detection using trip information, we have 
introduced velocity and acceleration of the COM in the mobility features. 

1.2.2. Models for transport mode detection 

Traditionally, DCMs have been employed to detect transport modes of individuals. DCMs based 
on the random utility maximization theory commonly include forms such as the multinomial logit 
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model, nested logit model and mixed logit model [34]. These models have a mathematical structure, 
making them highly interpretable. Nevertheless, DCMs require many specific features for assessing 
their impact on transport mode detection, demanding the collection of extensive and detailed data [26]. 
The acquisition of this data is time-consuming and involves significant implementation costs. 
Additionally, DCMs are based on model assumptions, such as the independence of irrelevant 
alternatives (IIA) for the multinomial logit model. If these assumptions are violated, it will lead to 
biases in parameter estimation and model detection.  

Machine learning models which are driven by data are emerging as feasible alternatives for 
detecting individual transport modes. Various machine learning methods like support vector machines 
(SVM) [47], k-nearest neighbors (KNN) [27], decision trees (DT) [48] and artificial neural networks 
(ANN) [49] have been employed in transport mode detection without stringent assumptions. As 
machine learning models develop, individual models have exhibited limitations in predicting various 
aspects. To enhance detection accuracy and robustness, ensemble models such as random forests 
(RF) [30], XGBoost [50] and CatBoost [51] have been developed. For example, a study compared the 
performance of seven different machine learning models in detecting transport modes and successfully 
detected four modes: walk, bike, public transport and car [27]. Omrani used four machine learning 
models to detect individual transport modes in Luxembourg, aggregating walking and biking into one 
category and recognizing three transport modes: car, public transport and soft mode [52]. In another 
study, Zhao et al. compared four different types of machine learning models, namely Naive Bayes, 
tree-based models, SVM and neural networks (NN) for predicting individual choices among four 
transport modes: car, walk, bike and public transport [26]. 

Recently, a novel machine learning model called Deep Forest (DF) has been developed and has 
achieved success in various domains, including image recognition, natural language processing and 
anomaly detection [53]. The DF model demonstrates the ability to handle high-dimensional data, 
capture intricate patterns, and make accurate predictions with limited data. The advantages of the DF 
model make it a potential method to enhance the accuracy and reliability of transport mode detection 
models. However, most of the methods proposed in literature lack interpretability, which limits their 
applicability in policy-making. Additionally, these models can detect only a limited number of 
transport modes, typically three or four. They can detect public transport modes but are unable to 
distinguish between buses and subways within the category of public transport. 

1.3. Objectives of this research 

The review of these studies reveals that some aspects need to be improved in the current research: 
(i) The traditional DCMs employ individual and household attribute data to detect transport modes. 
These attribute data involve individual privacy and affect the applicability of the model. (ii) The DCMs 
produce biased detections, though they reveal the contribution of the variables. The machine learning 
models are more effective for mode detection, but most models need more interpretability. (iii) Current 
studies mainly treat public transport as a broad category, making it ill-suited for implementing fine 
transportation planning. 

Therefore, an interpretable machine learning model is proposed for the detection of transport 
modes. We ignore individual and household attribute data and consider individual mobility features to 
train the detection models. A wide range of multi-source data that can be utilized to detect transport 
modes is easily accessible with the rapid development of big data, such as land use mix, GDP, 
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population and online map service data. We combine individual mobility features and multi-source 
data as detection features for the models. The different machine learning models using detection 
features were applied to detect fine-grained transport modes, which were divided into seven categories. 
Specifically, the categories of public transport are subdivided into bus, metro and public transport 
(including transfers). We calculate four performance metrics to verify the performance of the proposed 
models for the transport modes. Furthermore, t-SNE and ablation experiments are applied to improve 
the interpretability of the machine learning models. 

The main contributions of this study are as follows. First, the individual and household factors 
are ignored in the transport mode detection models in order to protect individual privacy and improve 
the applicability of the model. Thus, the study innovatively considers individual mobility features and 
combines them with multi-source data, including land use mix, GDP, population and online map 
service data as detection features. Third, the performance of the deep forest machine learning models 
has been investigated in a comparative study with traditional classifiers for transport mode detection. 
We detect the transport modes at the fine-grained level, which are divided into seven categories: car, 
walk, bike, e-bike, bus, metro and public transport (including transfers). Finally, t-SNE and ablation 
experiments are employed to enhance the interpretability of the machine learning models. 

The remainder of the paper is organized as follows: Section 2 describes the proposed method for 
transport mode detection, including the extraction of individual mobility features, processing of multi-
source data and interpretable machine learning detection models. Sections 3 and 4 discuss the 
experimental results of different machine learning models using Nanjing as an example. Finally, in 
Section 5, we summarize the study and propose future research directions. 

2. Methodology 

The proposed model for detecting transport modes compromises three steps. First, individual 
mobility features are extracted, making use of the spatial movement. Next, land use mix and online 
map service data are extracted as multi-source data to enhance the performance of transport mode 
detection. Finally, these extracted features and multi-source data serve as inputs for the proposed 
detection model. The performance of models is assessed using performance metrics such as accuracy, 
recall, precision and F1-measure to verify its effectiveness. The following sections discuss in detail the 
steps and substeps of the proposed method. 

2.1. Overview 

Historical movements influence mobility of individuals. Information about the choice of transport 
modes is implied in individual mobility features [45,54]. The COM of trips is the center of individual 
spatial mobility, which is a vital feature in describing individual mobility. Radius of gyration is used 
to measure the extent of individual travel activity. These are the essential features of individual 
mobility [44,55]. Velocity and acceleration are critical features in transport mode detection. These two 
features are introduced to detect the transport mode more accurately from the trip information. We 
innovatively introduce the velocity and acceleration of the COM in the mobility features. 

Many multi-source datasets used to detect transport modes are readily available with the rapid 
development of big data [56,57]. First, the share of different transport modes varies in areas with 
different land uses. Land use mix is an important indicator of the choice of transport mode [58,59]. 



6849 

Electronic Research Archive  Volume 31, Issue 11, 6844-6865. 

Second, individual income levels and regional development levels also influence the choice of 
transport modes [60]. Owing to the anonymity of the data, it is impossible to identify the 
socioeconomic and demographic backgrounds of individuals. The proposed model considers the 
analysis in different administrative regions, using regional GDP and population as detection features. 
Finally, online map service data can be used to obtain the travel path, distance and time of different 
transport modes, which can further improve the performance of the detection models [61]. Hence, this 
study uses the land use mix, GDP, population, and online map service data as the features to detect the 
transport modes of individuals. 

We combine individual mobility features and multi-source data, including land use mix, GDP, 
population and online map service data as detection features. The machine learning models are applied 
to detect transport modes, which are divided into seven categories: car, walk, bike, e-bike, bus, metro 
and public transport (including transfers). To enhance the interpretability of the machine learning 
models, t-SNE and ablation experiments are conducted in the analysis. 

2.2. Individual mobility features extraction 

Center of mass. COM mc


 for individual trips is determined by considering an individual's stay 
locations and the frequency of their stays at various spatial positions. This metric can be viewed as the 
central location within an individual's spatial mobility range. To calculate the COM for individual trips, 
we map the stay location of an individual onto a two-dimensional (2D) coordinate system and use the 
following formula: 

i ii
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n r
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                                                                                        (1) 

where i is the stay location of the individual, ni is the number of stays at location I, L is the set of stay 

locations and  ir


 is the 2D vector coordinate of stay location i. 

Velocity and Acceleration of the COM. The velocity and acceleration of the COM are applied to 
calculate the velocity and acceleration of the COM for the trips of an individual. The velocity of the 
COM indicates the speed at which individuals move through space, while the acceleration of the COM 
reflects changes in an individual's mobility, such as instances of acceleration or deceleration during a 
journey. Stay location i to stay location i + 1 constitutes one trip i, where each trip includes a transport 
mode. The distance from stay location i to i + 1 is li, and the trip duration is ti. The velocity iv


 and 
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 of trip i are calculated for each individual trip.  
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Except for the velocity of the COM mentioned below, the calculation procedure for the 
acceleration of the COM is the same. The calculation procedure is illustrated in Figure 1. Specifically, 
the velocity of trip i is decomposed into velocity in the horizontal ixv


  and velocity in the vertical 
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where 
ir

x  is the latitude of stay location I and 
ir

y  is the longitude of stay location i.  

Then the velocity of COM cv  is calculated using the frequency of each stay location. 
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where cxv


 is the horizontal velocity of the COM and cyv


 is the vertical velocity of the COM. 

 

Figure 1. Procedure for calculating the velocity for the center of mass (COM). 

Radius of gyration. Radius of gyration rg represents the weighted average of distances from an 
individual’s stay locations to the COM. This metric is employed to measure the spatial extent covered 
by individual mobility. COM is used as the axis of rotation, and the frequency of the individual at the 
stay location is used as the mass. rg for the individual trip is calculated as follows: 
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2.3. Multi-source data process 

Land Use Mix. Land use mix is an important indicator that reflects the choice of the transport 
mode. In this study, the land use mix were used as detection features. Land use data were obtained 
from the Chinese essential urban land use categories (EULUC) dataset [62]. We draw on the code for 
planning standards of development land, and classify land use into six categories: residential, 
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administration and public services, commercial and business facilities, industrial, street and 
transportation and green space. The processing method involves the following steps, as illustrated in 
Figure 2. 

 

Figure 2. Calculation process of land use mix. 

First, the size of the land use map was chosen as the basis for creating the fishnet. The width and 
height of the cell size were set to 1 km in the fishnet. We clip the fishnet and overlay it with land use 
data. The entropy index (ENT) is usually applied to measure land use heterogeneity. The calculation 
procedure is as follows: 

 ln

ln
ij ij
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                                                                             (8) 

where Aij is the proportion of land use type i in cell j and Nj is the number of land use types in grid j. 
ENT ranges from zero to one. 

Finally, the coordinate data of the trip origin and destination were imported to calculate ENT at 
each destination and origin. 

Online Map Service Data.  We introduce online map service data as multi-source data to improve 
detection performance [61]. Specifically, the Baidu application programming interface (API) is utilized 
to obtain the shortest travel path of individuals in seven transport modes: car, walk, bike, e-bike, bus, 
metro and public transport-including transfers. 

The Baidu API is an open map solution interface for developers that provides route planning, real-
time navigation, global positioning and other services. We mainly used the route planning function, 
which can query travel routes. The parameters include the latitude and longitude coordinates of the 
origin and destination of the trip, geographic coordinate system type and developer key. We consider 
that the four transport modes of route change less in a short period (including driving, riding a bike or 
e-bike and walking), while public transport needs to consider departure time. Therefore, the parameters 
of public transport include departure time, date and tactics. It is worth mentioning that the parameters 
named “Departure_date” and “Departure_time” respectively represent the date and time of the trip's 
departure. Therefore, it is possible to return the route parameters based on the specified date and time. 
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Table 1 lists the public transport API web addresses and parameters. 

Table 1. Public transport API web address and parameters. 

Parameters Value Description 
Origin 32.048245, 118.796519 Trip origin (Latitude, longitude) 
Destination 32.052371, 118.890583 Trip destination (Latitude, longitude) 
Coord_type WGS84 Type of geographic coordinate system 
Departure_date 20150618 Date of trip origin 
Departure_time 08:00 Time of trip origin 
Tactics_incity 0 0: Recommended mode; 

1: Minimal interchanges mode; 
2: Minimal walking mode; 
3: No metro mode; 
4: Short time mode; 
5: Metro priority mode.  

URL https://api.map.baidu.com/direction/v2/transit? 

These parameter values are input to a uniform resource locator (URL) and requested using Python 
to obtain the shortest travel path for each transport mode. The returned results include the travel time, 
distance and path for the entire trip. This method determines the transport mode of individual trips by 
comparing the travel time from the survey data with the time taken by the Baidu API. 

2.4. Machine learning models for transport mode detection 

Many machine learning models are used for classification. The task of the models is to detect the 
transport modes using key feature sets, with the entire process being supervised. Python and open-
source libraries were used for all these models, and the parameters were transparent during the 
detection process. 

Nonetheless, it is unclear which model is the best for our detection. Therefore, we tested several 
machine learning models. Specifically, we used logistic regression (LogisticReg), SVM, KNN, DT 
and RF. All the models were applied using the scikit-learn open-source library. In addition, we used 
artificial neural networks (ANN) [63], XGBoost [50], CatBoost [51] and DF [53]. Moreover, one or 
more hyperparameters must be optimized to achieve the best performance for each model. We tuned 
each model to the optimal parameters using a grid search to avoid the problem of unfairness due to 
improperly set hyperparameters. Unless otherwise stated, the default hyperparameter configuration of 
the respective models was maintained. 

To verify the performance of the fine-grained detection models for the transport modes, we used 
the confusion matrix to calculate the number of true positives (TP), true negatives (TN), false positives 
(FP) and false negatives (FN). Then, we calculated four performance metrics through the classification 
results, including accuracy, recall, precision and F1-measure [64].  The performance metrics are 
calculated using the following equation: 

TP TN
Accuracy

TP FP TN FN




  
                                                                    (9) 
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                                                                              (10) 
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                                                                                (11) 
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3. Dataset 

The dataset used in this study is collected in the Nanjing Transport Development White Paper 
project. The collection date was June 18, 2015. The survey randomly selected 22,191 participants 
from 8547 households in 11 administrative districts of Nanjing. 

Table 2. Descriptive statistics of extracted features. 

Variables Source of variables Description 

Continuous Variables  Mean Std. 
Longitude of trip origin Collected 118.801758 0.077547 
Latitude of trip origin Collected 32.025352 0.156764 
Longitude of trip destination Collected 118.801786 0.077544 
Latitude of trip destination Collected 32.025306 0.156759 
Time of trip origin (hours, minutes) Collected 11.63, 16.04 4.68, 16.70 
Time of trip destination (hours, minutes) Calculated 11.92, 24.71 4.69, 16.82 
Trip duration (h) Calculated 0.44 0.30 
Distance il  (km) Calculated 4.30 6.60 

GDP of administrative districts Collected 781.53 336.50 
Population of the administrative district Collected 90.16 30.12 

Center of mass  mc


 Calculated 13224.95, 3766.65 8281.63, 20296.36 
Velocity of COM cv  (km/h) Calculated 8.30 8.56 
Acceleration of COM ca  (km/h2) Calculated 24.15 28.40 

Radius of gyration gr  (km) Calculated 2.28 3.33 

Entropy index ENT Calculated 0.46 0.35 
Categorical variables    
Transport modes determined by Baidu 
API  

From Baidu API 
Car; walk; bike; e-bike; bus; metro; 
public transport (including transfers) 

In this study, the dataset was cleaned because the scope of our research included intra-city 
transport modes. The cleaned dataset comprises a total of 43,039 trips, including 13,301 walking 
trips, 4692 bike trips, 10,300 e-bike trips, 4996 bus trips, 8135 car trips, 335 public transport trips 
(including transfers) and 1280 metro trips. Public transport encompasses a broad category, including 
both buses and metro transfers. By adopting this classification approach, we can better capture the 
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diversity and nuances of travel behaviours, particularly concerning the usage of public transport 
involving bus and metro transfers. We only use trip information in the survey data, including 
coordinates of the trip origin, coordinates of the trip destination, time of the trip origin, time of the trip 
destination and the label of the transport mode. The extracted features of the proposed method are 
presented in Table 2. These features are used as inputs to the model. It is worth mentioning that the 
indicators of the calculation process are used as features, including ixv


, iyv


, cxv


, cyv


, ixa


,  iya


, cxa


 
and cya


.We used 80% of the dataset for training and 20% for testing. 

Many studies have determined the radius of gyration distribution P(rg) using a truncated power-
law statistic for all individuals to explore the statistical properties of individual trip features [65].We 
also used statistics to distribute the mobility of individuals in Nanjing: 

     0 exp
r

g g g g rP r r r r k


                                                                        (13) 

where 0
gr  = 0.91, r  = 0.81, rk  = 8. The r-squared statistic is used to show how well the data fit the 

regression model. The r-squared statistic is calculated as follows: 

 
 

2

2
2

ˆ
1

i ii

i ii

y y
r

y y


 





                                                                          (14) 

where yi is the observed values of the data. ˆiy   represents the predicted values by the model. iy
represents the mean of the observed values. 

The r-squared statistic for the truncated power-law function mentioned above is 0.999. It is evident 
that the radius of gyration decreases rapidly from 1 to 10 km, and the long tail part shows a discrete 
state, as shown in Figure 3. This phenomenon indicates that the daily activities of most individuals 
were limited to from 1 to 10 km. The share of long-distance travelers was relatively low. 

 

Figure 3. Distribution P(rg) of the radius of gyration measured for the individuals. 

Meanwhile, we counted the velocity and acceleration of the COM introduced in this study to 
discover the patterns. Surprisingly, the distribution is also very close to the truncated power-law: 

     0 exp
v

c c c c vP v v v v k


                                                                     (15) 
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     0 exp
a

c c c c aP a a a a k


                                                                      (16) 

where 0
cv   = 1954.9, v   = -0.015, vk  =7.03, r-squared = 0.998, 0

ca   = 0.9, a   = -0.11, ak   = 16.4 and r-

squared = 0.997. As previously depicted in Figures 4 and 5, slow-speed transport modes account for a 
relatively large proportion of all transport modes, whereas the acceleration of all travel modes is low. 
The main reason is that the study only considers intra-city transport modes excluding high-speed rail 
and airplanes, resulting in a lower velocity of the COM. 

 

Figure 4. Distribution P(vc) of the velocity for the COM. 

 

Figure 5. Distribution P(ac) of the acceleration for the COM. 

4. Results 

In order to validate the detection performance of various machine learning models, experiments 
were conducted using travel survey data from Nanjing, China in 2015. The primary focus of these 
experiments was to assess the accuracy and effectiveness of these models in transport mode detection. 
For the most promising model in terms of performance, further analysis was performed to provide 
detailed detection results for each transport mode, aiming to explore the reasons for any shortcomings 
in the detection performance of model. Furthermore, we explored the interpretability of the model, 
examining its role in the process of transport mode detection. 
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4.1. Performance results of machine learning models 

The four standard metrics used to assess the performance of the detection process are accuracy, 
recall, precision and the F1-measure. The F1-measure is the harmonic average of precision and recall. 
Hence, the accuracy and F1-measure were selected as performance metrics in this study. Meanwhile, 
we selected several machine learning models for comparison. These models include logisticReg, SVM, 
KNN, DT, RF, ANN, CatBoost, XGBoost and DF. We also compared the results obtained directly from 
the Baidu API for detecting transport modes. The SVM used a radial basis function kernel to obtain 
the best results, and the cascade layer of the deep forest was automatically fitted to four layers. We 
used five layers (including three hidden layers) in the ANN to detect transport modes. The ANN 
includes 28 input neurons and 7 output neurons. Figure 6 shows the performance of all models. 

Table 3. Performance results of machine learning models. 

Models Accuracy Precision Recall F1-measure 
Baidu API 0.45 0.37 0.39 0.35 
logisticReg 0.58 0.35 0.34 0.31 
SVM 0.64 0.43 0.73 0.41 
KNN 0.68 0.6 0.56 0.58 
DT 0.71 0.71 0.71 0.71 
RF 0.8 0.67 0.83 0.73 
ANN 0.63 0.52 0.64 0.56 
CatBoost 0.74 0.62 0.72 0.65 
XGBoost 0.75 0.64 0.76 0.68 
DF 0.82 0.82 0.7 0.74 

Table 3 demonstrates that the deep forest model achieves the best detection results among all the 
models, with an accuracy and F1-measure of approximately 0.82 and 0.74, respectively. While the RF 
model also performs well, it does not match the performance of the deep forest model. Our results 
suggest that the deep forest may have better applicability to our proposed detection model and further 
supports our decision to use the deep forest model for the remainder of the study. 

4.2. Performance results of the DF model 

In the previous experiments, we evaluated the performance of several machine learning models. 
These results suggest that the deep forest model is an effective and robust machine learning model for 
detecting fine-grained transport modes. The specific detection results for each transport mode were 
output further to explore the reasons for the imperfect detection performance of the DF model. The 
results are presented in Figure 6. 

As seen in Figure 6, the performance of detecting walking is the best for either performance metric. 
The walking speed is lower than that of other transport modes, resulting in better detection through the 
velocity of the COM. Meanwhile, public transport has the worst detection performance, with an 
accuracy of only 0.31. Public transport may involve a transfer process that includes waiting and 
transfer times. Moreover, interchange transport modes are unknown, and detecting public transport 
(including transfers) is the most challenging. 
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Figure 6. Performance results of each single-mode detection. 

4.3. Interpretability of the DF model 

In fact, it is unclear which individual transport mode is actually misidentified in the data or which 
features are more important. The reason is due to the need for more interpretability of machine learning 
models. We can find the reason for the detection error and improve detection accuracy if a model can 
capture the misidentification among different modes or obtain the importance ranking of features. 
Therefore, we performed t-SNE and ablation experiments to overcome the non-interpretability issue 
of the machine learning models. We also analysed the confusion matrix of the model. 

(a) t-SNE visualization of layer 1 (b) t-SNE visualization of layer 2 

(c) t-SNE visualization of layer 3 (d) t-SNE visualization of layer 4 

Figure 7. t-SNE visualization of four layers. 
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First, we extracted augmented features of the deep forest detection process; there were four layers 
of features in the detection process of this study in total. They are challenging to understand and 
visualize because their features are highly dimensional. t-SNE, which is used for high-dimensional 
feature visualization, is used to reduce the dimensionality of the features [36,66] achieved by 
minimizing the Kullback-Leibler divergence between a joint probability distribution in high and low 
dimensional spaces. High-dimensional data are eventually mapped into 2D, which is more suitable for 
human observation. A visualization of t-SNE is shown in Figure 7. Subsequently, we extracted the 
confusion matrix of the model, as shown in Table 4. 

Table 4. Confusion matrix of deep forest model. 

  Actual result 
  walk bike e-bike bus car public transport metro 

Predicted 
Result 

walk 2578 26 47 18 10 0 0 
bike 133 637 90 33 30 0 1 
e-bike 154 43 1642 75 129 0 9 
bus 38 11 98 750 127 1 8 
car 35 12 158 77 1303 5 7 
public transport 0 0 2 13 21 24 2 
metro 1 1 26 28 60 2 143 

Figure 7 and Table 4 illustrate the reasons for the imperfect detection of transport modes by the 
deep forest model. As depicted in the figure, some of the green, orange and blue-green dots are heavily 
intermingled. This is consistent with the results of the confusion matrix. This phenomenon means that 
the detection of cars, e-bikes and buses is biased. One potential explanation is that their travel speeds 
are not significantly different when urban traffic congestion occurs, resulting in inaccurate detection. 
Additionally, some of the red and yellow dots are also mixed, indicating a biased detection of walking 
and bikes due to similar travel speeds. The biased detection of transport modes is a result of the slight 
speed differences during actual travel process. Therefore, the results indicate that, although the velocity 
of the COM introduced by the paper can substantially enhance the detection performance, further 
improvements are necessary in the detection of details. 

To further investigate the effectiveness of each feature and obtain the importance ranking of a 
feature, we designed an ablation experiment (including four features and two multi-source data) [67,68]. 
The results of the experiments are listed in Table 5. ENT and OMS respectively represent the entropy 
index of land use and the travel modes recognized by the Baidu API. The checked ones in the table are 
the reduced features. With each feature reduction, we kept the rest of the features and compared the 
performance metrics between the current model and our model. This step allows for an explicit analysis 
of the features that more significantly impact mode detection. 

The accuracy decreases by 0.07 when the velocity of the COM is ignored. The second important 
feature is the acceleration of the COM, which decreases the accuracy by 0.04. The results directly 
indicate that the two mobility features introduced in this study play crucial roles in mode detection. 
Additionally, there is a relationship between transport mode and gyration radius, indicating that travel 
distance influences the choice of transport mode. Thus, individual mobility features are the most 
critical features that improve the detection performance, enhancing accuracy by 0.14. Furthermore, the 
land use mix improves the accuracy of detection by 0.01, implying little correlation between the urban 
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land use mix and the choice of transport modes. The potential reason may be that the dataset of our 
study includes weekdays and the effect of the land use mix is restricted [69]. 

Table 5. Results of the ablation experiment. 

Features Performance metrics 

mc


  gr  cv  ca  ENT  OMS Accuracy Precision Recall F1-Measure 

Ours 0.82 0.82 0.70 0.74 
     √ -0.02 -0.02 - -0.01 
    √  -0.01 -0.02 -0.01 -0.01 
   √   -0.04 -0.03 -0.05 -0.04 
  √    -0.07 -0.04 -0.06 -0.06 
 √     -0.01 -0.01 -0.02 -0.02 
√      -0.02 -0.02 -0.02 -0.02 

In summary, our proposed model exhibits several advantages. Firstly, the DF model has 
demonstrated exceptional performance in accurately detecting between seven different transport 
modes, exhibiting a superior performance compared to alternative models. The high detection 
performance of the DF model emphasizes the model’s robustness in effectively detecting various 
transport modes. Additionally, the DF model performs well in terms of interpretability, providing 
valuable insights into the factors that influence individuals’ mode choices. However, the model also 
has some disadvantages. Specifically, the model faces challenges when it comes to detecting public 
transport modes, particularly those involving transfers. Furthermore, the influence of land use mix on 
the detection of the model is relatively modest. In conclusion, there is the potential for further research 
in the future. 

4.4. Managerial implications 

Precisely detecting various transport modes of individuals provides valuable insights for 
transportation management authorities. Tailored policies can be formulated to encourage the adoption 
of sustainable and low-carbon transportation modes for groups with specific transport modes, such as 
public transit, cycling and walking. This proactive approach helps address growing urban 
transportation challenges. For example, managers can adjust transportation policies, including fare 
structures, service frequencies and accessibility to offer more appealing public transportation options. 
This approach can help reduce urban traffic emissions, relieve congestion issues and promote the 
overall sustainability of cities. 

Meanwhile, recent research has witnessed a surge in the development of innovative approaches 
for data collection, especially Global Positioning System (GPS) loggers or smartphone travel surveys. 
Once we detect individual transport modes through our proposed method, these approaches eliminate 
the necessity for extensive follow-up surveys or direct participant interactions, making data collection 
more efficient. Moreover, these data collection approaches emphasize the potential of smartphone and 
GPS travel surveys in providing highly precise transport mode data while preserving participant 
privacy. Managers can actively embrace these innovative data collection methods to better understand 
individuals' travel behavior, guide policy formulation and inform transportation planning. 
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5. Conclusions 

Analysis of transport mode choice is a crucial element in developing and evaluating planning 
policies. Though many kinds of factors influence the transport mode choice of the individual, many of 
these factors involve the privacy of individuals. Meanwhile, detection models of transport modes 
widely use discrete choice models. In order to improve the limitations of existing discrete choice 
models, we propose an interpretable machine learning model for detecting transport modes by multi-
source data. The mobility features of individuals, which innovatively introduce the velocity and 
acceleration of the center of mass (COM), are considered in the detection model. We combine these 
features with multi-source data as detection features and apply machine learning models to detect 
transport modes at the fine-grained level, which were divided into seven categories.  

Four performance metrics are calculated through the classification results, including accuracy, 
recall, precision and F1-measure. The results show that the deep forest algorithm exhibits the best 
detection performance, achieving a detection accuracy of 0.82 in the test dataset. Meanwhile, recall, 
precision and F1-measure also achieved optimal performance. The evaluation shows that the detection 
performance for other transport modes is excellent apart from public transport detection. Compared to 
previous work, this study is a significant step forward in terms of granularity and detection 
performance. To address the issue of non-interpretability of machine learning models, we also perform 
t-distributed stochastic neighbor embedding (t-SNE) and ablation experiments and rank the importance 
of features. These experiments demonstrate a weak correlation between the land use mix and the choice 
of transportation modes. Moreover, the most critical features are the individual mobility features in the 
study, and the accuracy improves by 0.13.  

Meanwhile, recent research has witnessed a surge in the development of innovative approaches 
for data collection, especially Global Positioning System (GPS) loggers or smartphone travel surveys. 
They leverage these travel surveys to collect accurate travel behavior details without involving the 
collection of individual and household attribute data. Our proposed approach enhances the potential of 
these data collection methods in maintaining privacy protection for survey participants without the 
need for extensive follow-up surveys. On the other hand, if individual travel modes can be accurately 
detected, transportation government agencies can intervene by targeting specific groups with specific 
transport modes and effectively promote sustainable and low-carbon transportation options. The results 
of the study can guide government transportation agencies in formulating effective policies to achieve 
long-term sustainable and efficient urban transportation goals. 

In future research, the utilization of multi-source data will be further expanded to enhance the 
performance and applicability of the proposed model. The expansion may involve incorporating 
additional data, such as real-time traffic information, weather conditions or other factors that can 
influence transport mode choice. The objective is to continuously improve the accuracy and reliability 
of the model in detecting transport modes, and its effectiveness in guiding transportation policies and 
addressing urban transportation challenges. 
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