
Electronic
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(11): 6820–6832.
DOI: 10.3934/era.2023344
Received: 25 June 2023
Revised: 16 October 2023
Accepted: 17 October 2023
Published: 20 October 2023

Research article

Meet-in-the-middle differential fault analysis on Midori

Chunyan An1,2,∗, Wei Bai1,2 and Donglei Zhang1,2

1 State Grid Smart Grid Research Institute Co., Ltd., Beijing 102209, China
2 Electric Power Intelligent Sensing Technology Laboratory of State Grid Corporation, Beijing

102209, China

* Correspondence: Email: anchunyan@geiri.sgcc.com.cn.

Abstract: Midori is a lightweight block cipher designed by Banik et al. and presented at the ASI-
ACRYPT 2015 conference. According to the block size, it consists of two algorithms, denoted as
Midori-64 and Midori-128. Midori generates 8-bit S-Boxes from 4-bit S-Boxes and applies almost
MDS matrices instead of MDS matrices. In this paper, we introduce the meet-in-the-middle fault at-
tack model in the 4-round cell-oriented fault propagation trail and reduce the key space in the last
round by 245.71 and 239.86 for Midori-64 and Midori-128, respectively. For Midori-64, we reduce the
time complexity from 280 to 228, 232 and 256 for the different single fault injection approaches. For
Midori-128, we provide a 4-round fault attack method, which slightly increases the complexity com-
pared to previous attacks. Our results indicate that the first and last four rounds of Midori must be
protected to achieve its security.

Keywords: meet-in-the-middle attack; differential fault analysis; Midori; fault attack

1. Introduction

Internet of Things (IoT) devices are often limited by storage, computing and energy consumption,
and cannot run high-strength encryption algorithms and protocols. Lightweight algorithms and pro-
tocols have emerged to ensure device security while saving resource consumption. However, these
devices always generate, process, transmit and store private information. The security of these devices
is receiving increasing attention and the cryptographic technology is the key to ensuring these security
requirements. Therefore, the widespread use of resource constrained devices has attracted attention to
lightweight cryptographic ciphers, such as Ascon [1], CLEFIA [2] , HIGHT [3], KATAN [4], LED [5],
Midori [6], Piccolo [7], PRESENT [8], PRINCE [9] and so on.

Lightweight block cipher Midori is designed by Banik et al. [6] and presented at the ASIACRYPT
2015 conference. It can be divided into two variants, Midori-64 and Midori-128, depending on the

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023344

6821

block size. In order to reduce energy consumption during algorithm execution, the optimization part of
Midori includes replacing 8-bit S-Boxes with 4-bit S-Boxes and replacing maximum separable distance
(MDS) matrices with almost MDS binary matrices. With these optimizations, Midori seems to achieve
lower latency while maintaining a smaller area. However, the security (including both theoretical and
practical security) of lightweight ciphers is a key factor in protecting security sensitive data within
the chip from attackers. The theoretical analysis results of Midori include differential analysis [6],
linear analysis [6], truncated differential and related-key differential attacks [10], meet-in-middle at-
tack [11] and impossible differential analysi [12–14]. In fact, the practical attacks are more important
for lightweight ciphers, but for Midori, such cryptanalysis [15–18] are not adequate.

Differential fault analysis (DFA) is a typical cryptanalysis technique used to attack cryptographic
implementations and devices. It was introduced by Biham and Shamir [19] against DES like cryp-
tographic systems. Up to now, a large number of cryptographic algorithms are threatened by the
differential fault analysis, such as AES [20, 21], DES [22] and SM4 [23] (also called SMS4). The
countermeasures against fault attacks can be divided into two categories. The first type detects fault
injection by adding hardware sensors. The main drawback of this attack is that the fault detection
technique targets exact fault injection methods and cannot prevent all fault injection methods. The sec-
ond category requires increasing hardware surfaces and number of operations to protect the hardware
implementation from fault attacks. A more effective approach is to have a trade-off between efficiency
and protection. This type of countermeasure typically protects the hardware implementation by re-
sisting the state-of-the-art fault attacks. The same countermeasures have been applied to AES [24],
DES [25], etc.

In [15], Cheng et al. introduced a 3-round fault propagation property of single fault. Based on the
vulnerability caused by the almost MDS matrix, they analyzed distinct patterns of nonzero differentials
in the ciphertexts and found that the fault injection position could be inferred only using correct and
faulty ciphertext. By retrieving the related subkeys, the secret key search space is reduced from 2128

to 280 for Midori-64 and from 2128 to 232 for Midori-128, respectively. In [16], Wang et al. extended
the differential propagation trail to 4 rounds and evaluated the remained key entropy of Midori. Based
on the 4-round fault propagation path, the key entropy of Midori-64 and Midori-128 decreased to
99.72 and 71.98 bits, respectively. The key recovery process requires a 3-round manual differential
analysis and/or algebraic fault analysis, and the entropy of Midori-128 was ultimately reduced to 68.47
bits. In [17], Nozaki et al. injected faults in the last 2 rounds and proposed a 2 stages statistical fault
analysis to analyze the 128-bit key of Midori. For Midori-64, the whitening key WK is recovered by
injecting 16 different faults in the last round. Subsequently, they used the whitening key to decrypt 1
round and obtained the output of the 15-th round. Then some new faults are injected into the 15-th
round, so that they can guess 65,536 keys for one column at a time. In [18], Li et al. proposed a
ciphertext-only fault analysis with 6 different distinguishers to break Midori. They encrypt the same
plaintext under the same key and inject faults in the penultimate round to obtain enough ciphertexts.
Then, a differential analysis process is executed column by column to recover the secret key used in the
last 2 rounds. Their work also indicates that the hamming weight distinguisher works best, requiring
280 and 132 ciphertexts for Midori-64 and Midori-128, respectively. In Table 1, we compare our works
with previous fault attacks on Midori.

Using the meet-in-the-middle fault attack [26], 7 conditions can be attached to 4-round cell-oriented
fault propagation trail, which allows us to reduce key space of the last round. Comparison with the

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

6822

work of [16], the key space is reduced from 299.72 to 254.01 for Midori-64 and from 271.98 to 232.12 for
Midori-128. In addition, using the 4-round fault trail, the complexity of the secret key recovery for
Midori-64 is reduced from the previous 280 to 228, 232 and 256 for the different cases. Our results
indicate that the first and last four rounds of Midori must be protected to maintain the security.

Table 1. Comparison of this work with previous fault attacks on Midori.

Algorithm Attacks Rounds Number of faults Complexity Ref.
Midori-64 Statistical fault analysis 2 64 219 [17]
Midori-64 Ciphertext-only fault analysis 2 280 220.13 [18]
Midori-64 Differential fault analysis 3 2 280 [15]
Midori-64 Algebraic fault analysis 4 2 215.35 [16]
Midori-64 Differential fault analysis 4 6 228 Ours
Midori-128 Statistical fault analysis 2 64 218 [17]
Midori-128 Ciphertext-only fault analysis 2 132 231.05 [18]
Midori-128 Differential fault analysis 3 2 232 [15]
Midori-128 Algebraic fault analysis 4 2 224.69 [16]
Midori-128 Differential fault analysis 4 6 232.12 Ours

The structure of the remaining part of the paper is as follows. Section 2 gives a brief description of
Midori and provides some notations. Section 3 studies the 4-round fault propagation trail. Section 4
introduces the key recovery approach and experimental results, and Section 5 summarizes the article.

2. Description of Midori and notations

Midori is an SPN structure block cipher with a key size of 128 bits. Its state is represented by a 4 by
4 matrix and is defined in Eq (2.1), where si ∈ {0, 1}m and the length m of each cell is 4 (for Midori-64)
or 8 (for Midori-128).

S =


s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

 (2.1)

The number of rounds to be performed during the execution of the algorithm is dependent on the
block size n. The number of rounds is represented by R, where R = 16 and R = 20 when n = 64 and n
= 128, respectively.

2.1. SBoxes and matrices

Midori contains 2 bijective 4-bit S-Boxes, Sb0 and Sb1. The 8-bit S-Boxes of Midori-128 are
generated by Sb1, as detailed in [6]. For Midori-64, Sb0 is applied to each cell of state S : si =

Sb0(si), 0 ≤ i ≤ 15. Similarly, for Midori-128, 4 8-bit S-Boxes SSb0, SSb1, SSb2 and SSb3 are utilized,
please see the design document [6] for details. The matrix M of Midori is defined in Eq (2.2) and the
4 m-bit values (x0, x1, x2, x3) are updated by Eq (2.3).

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

6823

M =


0 1 1 0
1 0 1 0
1 1 0 0
1 1 1 1

 (2.2)

(x0, x1, x2, x3)T = M · (x0, x1, x2, x3)T (2.3)

2.2. Round function

Midori’s round function consists of four steps, namely S-layer SubCell, P-layer ShuffleCell and
MixColumn, and key-addition layer KeyAdd. The n-bit state is updated at each layer as follows.

SubCell(S): For Midori-64, Sb0 is applied to every 4-bit cell, i.e., si = Sb0(si), where 0 ≤ i ≤ 15.
For Midori-128, si = SSbi mod 4(si), where 0 ≤ i ≤ 15.

ShuffleCell(S): Each cell of the state is permuted as follows: (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, s12, s13, s14) = (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).

MixColumn(S): The matrix M is used for updating each column of S , i.e., (si, si+1, si+2, si+3)T =

M · (si, si+1, si+2, si+3)T , where i = 0, 4, 8, 12.
KeyAdd(S ,RKi): The i-th n-bit round key RKi is XORed to the state S .

2.3. Ciphers

For encryption, Midori uses a round function that is composed of four different cell-oriented trans-
formations including SubCell, ShuffleCell, MixColumn and KeyAdd. The plaintext or ciphertext is
loaded into the state. After an initial whitening key addition, the state is transformed by implementing
a round function 16 or 20 times, with the final round differing slightly from the first R − 1 rounds. The
round function is parameterized using a key schedule and the overall structure of encryption is depicted
in Figure 1. For decryption, the inverse round function consists of SubCell, MixColumn, InvShuffle-
Cell and KeyAdd. The permutation of InvShuffleCell is defined as follows: (s0, s1, s2, s3, s4, s5, s6, s7,
s8, s9, s10, s11, s12, s13, s14) = (s0, s7, s14, s9, s5, s2, s11, s12, s15, s8, s1, s6, s10, s13, s3, s4). The round
key used by KeyAdd of the inverse round function is performs the following operations: L−1(RKi) =

InvShuffleCell ·MixColumn(RKi). Then, L−1(RKi) is XORed to the state S .

2.4. Key schedule

For Midori-64, the 128-bit master key is divided into 2 64-bit values K0 and K1. The whitening key
WK = K0 ⊕ K1 and the round key RKi = Ki mod 2 ⊕ αi, where 0 ≤ i ≤ 14. For Midori128, WK = K and
RKi = K ⊕ βi, where 0 ≤ i ≤ 19. The specific values of constants αi and βi can be found in [6]. In our
attack process, Midori-128 relies on the last round to recover the secret key K, while Midori-64 needs
to utilize the last two rounds to obtain the 128-bit K.

2.5. Notations

DFA applies key recovery attacks using the relationship between the secret key and behavior infor-
mation under the faults in the intermediate state. It derives information about the secret key through the

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

6824

difference between correct and faulty ciphertext (using the same plaintext). For the sake of description,
some symbols are introduced in this part.

1) Xi represents the input of the i-th round, where 0 ≤ i ≤ R, X0 is the plaintext and XR is the
ciphertext.

2) Xi[j] denotes the j-th cell of Xi , where 0 ≤ j ≤ 15.
3) RKi is the round key for the the i-th round, where 1 ≤ i < R and RK0 = RKR = WK.
4) ∆X is the XOR difference of 2 states X and X′, i.e., ∆X = X ⊕ X′.
5) δx is the XOR difference of 2 cells x and x′, i.e., δx = x ⊕ x′.

Plaintext

WK

Round FunctionRK0

...

Round FunctionRKi

...

Round FunctionRKR-2

SubCell

ShuffleCell

MixColumn

RKi

SubCell

WK

Ciphertext

Figure 1. The overall encryption structure of Midori.

3. Fault Propagation and properties of Midori

3.1. Fault Propagation in the last 4 rounds

For the sake of simplicity, we assume that the fault occurred in the first cell. As shown in Figure 2,
the falut F introduced in the (R-3)-th round is converted to F1 after SubCell and ShuffleCell. Due to
the influence of MixColumn layer, the difference of the other three cells belonging to the same column
becomes F1, and the KeyAdd step has no effect on the difference of S . The output difference of the
(R-2)-th round is ∆S R−2 = {δs4 = δs5 = δs6 = F2, δs8 = δs10 = δs11 = F3, δs12 = δs13 = δs15 = F3}.
The output differential values after the (R-1)-th round is ∆S R−1 = {δs0 = F5, δs1 = F6, δs2 = F7, δs3 =

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

6825

F8, δs4 = δs7 = F9, δs5 = F4c, δs6 = F2a, δs8 = δs9 = F10, δs10 = F2c, δs11 = F3a, δs12 = δs14 =

F11, δs13 = F4a, δs15 = F3b}. Here, F6 ⊕ F7 ⊕ F8 = 0, F9 = F4c ⊕ F2a, F10 = F2c ⊕ F3a, F11 = F4a ⊕ F3b.
For any ciphertext C and C′, by defining OD(WK[i]) = Subcell(C[i] ⊕ WK[i]) ⊕ Subcell(C′[i] ⊕

WK[i]), the equation system (3.1) will be obtained. If the attacker knows which byte injected a fault,
combining equation system (3.1), the 15m bits of WK will be recovered. There are two forms of
equations in system (3.1), the first satisfying OD(WK[i]) = OD(WK[j]) and the second conforming
to OD(WK[i]) ⊕ OD(WK[j]) = OD(WK[k]). The method in [26] will be applied to recover the
corresponding key with a complexity of 2m and 22m, respectively.

SubCell

SubCell

F1

F1

F1

KeyAddSubCell

F F1

ShuffleCell

F1

F1

F1

F1

MixColumn

F2

F4

F3

KeyAddSubCell F2

F3

F4

ShuffleCell

F2

F2

F2

F4

F4

F4

F3

F3

F3

MixColumnF1

F1

F1

F2

F2

F2

F4

F4

F4

F3

F3

F3

F4b

F2b

F3c

F2a

F4c F3a

F2c

F3b

F4a

KeyAdd

F2a

F2b

F2c

F4a

F4b

F4c

F3a

F3b

F3c

ShuffleCell F6

F5 F9

F4c

F2a

F9

F10

F10

F2c

F3a

F11

F4a

F11

F3b

F7

F8

MixColumn

F2

F2

F2

F4

F4

F4

F3

F3

F3

F6

F5 F9

F4c

F2a

F9

F10

F10

F2c

F3a

F11

F4a

F11

F3b

F7

F8

F6

F5 F9

F4c

F2a

F9

F10

F10

F2c

F3a

F11

F4a

F11

F3b

F7

F8

F13

F14

F15

F16

F17

F18

F19

F20

F21

F22

F23

F24

F25

F26

F27

F12

KeyAdd F13

F14

F15

F16

F17

F18

F19

F20

F21

F22

F23

F24

F25

F26

F27

F12

Round R 3

Round R 2

Round R 1

Round R

Figure 2. Fault Propagation in last four rounds.

After WK is recovered, we will obtain S R−1 and S ′R−1 by decrypting C and C′. For state S R−1 and
S ′R−1, assuming S ID(RKR−1[i],RKR−1[j],RKR−1[k]) = Subcell(S R−1[i]⊕ S R−1[j]⊕ S R−1[k]⊕RKR−1[i]⊕
RKR−1[j] ⊕ RKR−1[k]) ⊕ Subcell(S ′R−1[i] ⊕ S ′R−1[j] ⊕ S ′R−1[k] ⊕ RKR−1[i] ⊕ RKR−1[j] ⊕ RKR−1[k]), the
equation system (3.2) will be acquired. For Midori-64, the 64-bit RK14 will be obtain with complexity

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

6826

of 23m and the details are provided in Section 4.1.

OD(WK[4]) ⊕ OD(WK[7]) = 0
OD(WK[8]) ⊕ OD(WK[9]) = 0
OD(WK[12]) ⊕ OD(WK[14]) = 0
OD(WK[1]) ⊕ OD(WK[2]) ⊕ OD(WK[3]) = 0
OD(WK[4]) ⊕ OD(WK[5]) ⊕ OD(WK[6]) = 0
OD(WK[9]) ⊕ OD(WK[10]) ⊕ OD(WK[11]) = 0
OD(WK[12]) ⊕ OD(WK[13]) ⊕ OD(WK[15]) = 0

(3.1)



S ID(RK14[4],RK14[5],RK14[6]) ⊕ S ID(RK14[0],RK14[1],RK14[3]) = 0
S ID(RK14[4],RK14[5],RK14[6]) ⊕ S ID(RK14[8],RK14[9],RK14[10]) = 0
S ID(RK14[12],RK14[13],RK14[14]) ⊕ S ID(RK14[0],RK14[2],RK14[3]) = 0
S ID(RK14[12],RK14[13],RK14[14]) ⊕ S ID(RK14[4],RK14[5],RK14[7]) = 0
S ID(RK14[8],RK14[9],RK14[11]) ⊕ S ID(RK14[12],RK14[14],RK14[15]) = 0
S ID(RK14[8],RK14[9],RK14[11]) ⊕ S ID(RK14[0],RK14[1],RK14[2]) = 0

(3.2)

From here until the end of the paper, we assume that t represents the number of pairs used for the
attack. There are 16 different single-cell fault injection positions and each form corresponds to a set of
equations similar to the equation systems (3.1) and (3.2). Meanwhile, we should consider 3 different
fault injection approaches. In the first case, we know the exact location of the fault injection, but it may
not necessarily be in the same location. The specific equation systems that match the fault ciphertext
pairs will be used for the key recovery process. In the second scenario, we inject faults using the same
method at the same time, i.e., fault occurs in the same cell. In the third case, which is the worst case, we
do not impose any constraints on the falut injection location. Here, for all correct and faulty ciphertext
pairs, we need to calculate each of the 16 intermediate states and this requires an additional 24t(= 16t)
time complexity.

3.2. Characteristics of SBoxes

For x, y, z and the differences δx, δy, δz, the relationship of input differential and output differential
in the SubCell is defined as follows:

Nc2(δx, δy) = #{x, y ∈ F2m |OD(x, δx) = OD(y, δy)} (3.3)

Nc3(δx, δy, δz) = #{x, y, z ∈ F2m |OD(x, δx) = OD(y, δy) ⊕ OD(z, δz)} (3.4)

When only 1 cell-oriented fault is injected and tested 224 times for Midori-64, the positions of
the faults satisfy the uniform distribution and the maximum probability of Eqs (3.3) and (3.4) are
2−2 = 64/256. Equations (3.3) and (3.4) only involve 2 and 3 key calculations, and only 4 and 6
pairs of ciphertexts are needed to reduce the size of the candidate key set to 1. All equations in (3.2)
require guessing the keys of 6 cells, and the size of the candidate key set obtained using 6 ciphertext
pairs is 212 = 24×6 × 2−2×6. We need an additional 6 pairs of ciphertext to filter 212 candidate keys.
Fortunately, the equations in (3.2) can provide an additional 3 filtering conditions, each of which can

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

6827

filter 212 keys. For example, the filtering condition corresponding to the first two equations in (3.2) is
S ID(RK14[0],RK14[1],RK14[3]) = S ID(RK14[8],RK14[9],RK14[10]), which can reduce the size of the
candidate key set for the first two equations to 1. Thus, we only need 6 pairs of ciphertext to reduce
the number of candidate key sets to an acceptable level. In the following sections, we will provide the
corresponding experimental results to recover the 128-bit key of Midori.

Algorithm 1 2-cell key recovery procedure
Input: a pair of correct and/or faulty ciphertexts (C, C′), cell number i and j.
Output: candidate key list Li, j.

1: for k = 0 to 2m − 1 do {2m time and memory}
2: Set WK[i] = k.
3: Calculate OD(WK[i]) and store (OD(WK[i]),WK[i]) in Hash Table L1.
4: end for
5: for k = 0 to 2m − 1 do {2m time and 1 memory}
6: Set WK[j] = k.
7: Calculate OD(WK[j]) and look in L1 corresponding to OD(WK[i]).
8: if OD(WK[i]) = OD(WK[j]) then
9: Add (WK[i],WK[j]) to the candidate key list Li, j.

10: end if
11: end for

Algorithm 2 3-cell key recovery procedure
Input: a pair of correct and/or faulty ciphertexts (C, C′), cell number i, j and k.
Output: candidate key list Li, j,k.

1: for x = 0 to 2m − 1 do {2m time and memory}
2: Set WK[i] = x.
3: Calculate OD(WK[i]) and store (OD(WK[i]),WK[i]) in Hash Table L1.
4: end for
5: for all (WK[j],WK[k]) ∈ F2m × F2m do {22m time and 1 memory}
6: Calculate Temp = OD(WK[j]) ⊕ OD(WK[k]) and look in L1 corresponding to OD(WK[i]).
7: if Temp = OD(WK[i]) then
8: Add (WK[i],WK[j],WK[k]) to the candidate key list Li, j,k.
9: end if

10: end for

4. Key recovery and experiment

4.1. Key recovery of Midori

In our attack, we implement a 1-byte fault injection between the MixColumn of the (R-4)-th round
and the MixColumn of the (R-3)-th round on Midori. Assuming our fault attack approach requires t
correct and/or faulty ciphertext pairs, denoted as (Ci,C′i)(1 ≤ i ≤ 6), we can use the same method as

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

6828

in Section 3.1 to derive 16 different fault propagation patterns (the work of Cheng et al. also induced
fault propagation patterns). Based on the fault injection way, we will propose 3 different key recovery
attacks, i.e., 2-cell key recovery procedure, 3-cell key recovery procedure and 6-cell key recovery
procedure, please see the Algorithms 1–3 for details.

If a fault is fixed in the first cell which corresponds to the first case of Section 3.1, the following
technique allows us to recover 15m bits of WK in time 6 × 22m and memory 6 × 2m for Midori, see
also Algorithm 4. In this algorithm, the time complexity and memory usage of steps 2 to 7 are 2m. The
time complexity of steps 8 to 15 is 22m, and the memory consumption is 2m. Thus, the key recovery
process need 6 × 22m time and 6 × 2m memory. In fact, the memory usage of Algorithm 4 can be
reduced to 2m. By guessing all the values of WK[0], the 128 bits WK will be recovered for Midori-
128. However, for Midori-64, we can use equation system (3.2) to recover 64-bit RK14. With the help
of the key generation algorithm, the 128 bits key of Midori-64 can be recovered with 6 × 24m time and
6 × 23m memory.

When the faults occur in an unknown specific cell, which corresponds to the second scenario, we
need to traverse all the 16 patterns one by one, and the time complexity of the attack requires an
additional 16, i.e., 6× 25m for Midori-64 and 6× 23m for Midori-128. For random single-cell faults, the
time complexity of our attack is 6 × 25m × 24t for Midori-64 and 6 × 23m × 24t for Midori-128.

Algorithm 3 6-cell key recovery procedure
Input: a pair of correct and/or faulty ciphertexts (C, C′), cell number i, j, k, l, m and n.
Output: candidate key list Li, j,k,l,m,n.

1: for all (WK[i],WK[j],WK[k]) ∈ F2m × F2m × F2m do {23m time and memory}
2: Calculate ∆ = S ID(RK14[i], RK14[j], RK14[k]) and store (∆,RK14[i], RK14[j], RK14[k]) in Hash

Table L1.
3: end for
4: for all (WK[l],WK[m],WK[n]) ∈ F2m × F2m × F2m do {23m time and 1 memory}
5: Calculate Temp = OD(WK[l])⊕OD(WK[m]⊕OD(WK[n]) and look in L1 corresponding to ∆.

6: if Temp = ∆ then
7: Add (WK[i],WK[j],WK[k],WK[l],WK[m],WK[n]) to the candidate key list Li, j,k,l,m,n.
8: end if
9: end for

Table 2. Subkey recovery for WK[4] and WK[7].

Number of Ciphertexts Number of Candidate Keys Expected Value Proportion
1 45.3 64 90.7%
2 13.5 16 87.1%
3 7.3 4 80.1%
4 5.1 1 64.5%
5 4.8 1 71.4%
6 4.6 1 74.8%

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

6829

4.2. Experimental result

Our attacks implemented a PC using Visual Studio 2019 with Intel(R) Core(TM) i5-10210U CPU
and 16 GB memory. We use software simulation for the fault injection. Six simulated faults are
induced into the first cell of the (R-3)-th round. We tested the first and fourth equations of (3.1) using
6 ciphertext pairs, and the experimental results are shown in Table 2. Furthermore, we tested the first
two equations of (3.2), and the results are shown in Table 3. Each test is measured 10,000 times, and
the average is taken as the final result.

Table 3. Subkey recovery for WK[1], WK[2] and WK[3].

Number of Ciphertexts Number of Candidate Keys Expected Value Proportion
1 332.4 1024 98.9%
2 36.1 256 99.1%
3 9.2 64 99.0%
4 3.8 16 98.8%
5 2.9 4 96.7%
6 2.7 1 92.5%

From the above tables, it can be seen that the differential propagation characteristics of Midori are
much worse than expected. As shown in Table 2, the fault propagation deviates from the expected
value by 1/4, which will increase the time complexity by 13.3 = (0.75−3)3. The complexity of 3.4 has
increased by 13.3 = 0.75−9. The fault propagation in 3 deviates from the expected value by 0.075 and
the time complexity increase by 3.49 = (0.925−4)4. For Midori-64, the key space of the last round is
reduced to 254.01 = 24 × 45.33 × 332.44 using the single fault injection. The time complexity of the
attack is reduced from 280 to 228 = 6 × 216 × 13.3 × 13.3 × 3.49, 232 and 256. Tor Midori-128, the time
complexity is slightly increased from 232 to 232.12 = 6 × 224 × 13.3 × 3.49.

5. Conclusions

In this paper, we present a 4-round cell-oriented fault propagation trail and categorize the single
fault injection approachs into 3 types, i.e., exactly known the fault injuction location, faults occurred in
an unknown specific cell and injucted random single-cell faults. When the faults occur in the specific
cells, we reduced the key space of the last round by 245.71 and 239.86 for Midori-64 and Midori-128.
For Midori-64, the complexity of key recovery is reduced from 280 to 228. In the second type of fault
injection style, the time complexity is decreased to 232 for Midori-64. For random single-cell faults,
the time complexity of our attack is 256 for Midori-64. Moreover, we have also demonstrated that 4
rounds of Midori must be protection to achieve its security.

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

6830

Algorithm 4 Key Recovery of WK
Input: pairs of correct and/or faulty ciphertexts (Ci, C′i)((1 ≤ i ≤ 6)).
Output: candidate key list L.

1: for 1 ≤ i ≤ 6 do
2: Call Algorithm 1 with Parameters (Ci,C′i), 4, 7 and obtain temporary list Li.
3: Search the intersection of Li and store them as candidate keys of WK[4] and WK[7].
4: Call Algorithm 1 with Parameters (Ci,C′i), 8, 9 and obtain temporary list Li.
5: Search the intersection of Li and store them as candidate keys of WK[8] and WK[9].
6: Call Algorithm 1 with Parameters (Ci,C′i), 12, 14 and obtain temporary list Li.
7: Search the intersection of Li and store them as candidate keys of WK[12] and WK[14].
8: Call Algorithm 2 with Parameters (Ci,C′i), 1, 2, 3 and obtain temporary list Li.
9: Search the intersection of Li and store them as candidate keys of WK[1], WK[2] and WK[3].

10: Call Algorithm 2 with Parameters (Ci,C′i), 4, 5, 6 and obtain temporary list Li.
11: Search the intersection of Li and store them as candidate keys of WK[4], WK[5] and WK[6].
12: Call Algorithm 2 with Parameters (Ci,C′i), 9, 10, 11 and obtain temporary list Li.
13: Search the intersection of Li and store them as candidate keys of WK[9], WK[10] and WK[11].
14: Call Algorithm 2 with Parameters (Ci,C′i), 12, 13, 15 and obtain temporary list Li.
15: Search the intersection of Li and store them as candidate keys of WK[12], WK[13] and WK[15].
16: end for

Use of AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Acknowledgments

This work was supported by Science and Technology Projects of State Grid Corporation of China
(Research on Lightweight Secure Connection Technologies for Electric Low Power Wireless Sensor
Network with both Wide-band and Narrow-band Terminals, No. 5500-202158416A-0-0-00).

Conflict of interest

The authors declare that there are no conflicts of interest.

References

1. C. Dobraunig, M. Eichlseder, F. Mendel, M. Schläffer, Ascon v1.2: lightweight authenticated
encryption and hashing, J. Cryptology, 34 (2021), 1–42. https://doi.org/10.1007/s00145-021-
09398-9

2. T. Shirai, K. Shibutani, T. Akishita, S. Moriai, T. Iwata, The 128-bit blockcipher CLEFIA (ex-
tended abstract), in Fast Software Encryption (eds. A. Biryukov), Springer, (2007), 181–195.
https://doi.org/10.1007/978-3-540-74619-5 12

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

http://dx.doi.org/https://doi.org/10.1007/s00145-021-09398-9
http://dx.doi.org/https://doi.org/10.1007/s00145-021-09398-9
http://dx.doi.org/https://doi.org/10.1007/978-3-540-74619-5_12

6831

3. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, et al., HIGHT: a new block cipher suitable
for low-resource device, in Cryptographic Hardware and Embedded Systems (eds. L. Goubin, M.
Matsui), Springer, (2006), 46–59. https://doi.org/10.1007/11894063 4

4. C. Cannière, O. Dunkelman, M. Knežević, KATAN and KTANTAN - a family of small and
efficient hardware-oriented block ciphers, in Cryptographic Hardware and Embedded Systems
(eds. C. Clavier, K. Gaj), Springer, (2009), 272–288. https://doi.org/10.1007/978-3-642-04138-
9 20

5. J. Guo, T. Peyrin, A. Poschmann, M. Robshaw, The LED block cipher, in Cryptographic
Hardware and Embedded Systems (eds. B. Preneel, T. Takagi), Springer, (2011), 326–341.
https://doi.org/10.1007/978-3-642-23951-9 22

6. S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, et al., Midori: a
block cipher for low energy, in International Conference on the Theory and Application of
Cryptology and Information Security (eds. T. Iwata, J. H. Cheon), Springer, (2015), 411–436.
https://doi.org/10.1007/978-3-662-48800-3 17

7. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, T. Shirai, Piccolo: an ultra-
lightweight blockcipher, in Cryptographic Hardware and Embedded Systems (eds. B. Preneel,
T. Takagi), Springer, (2011), 342–357. https://doi.org/10.1007/978-3-642-23951-9 23

8. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, et al.,
PRESENT: an ultra-lightweight block cipher, in Cryptographic Hardware and Embedded Systems
(eds. P. Paillier, I. Verbauwhede), Springer, (2007), 450–466. https://doi.org/10.1007/978-3-540-
74735-2 31

9. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen, et al., PRINCE
- a low-latency block cipher for pervasive computing applications, in International Conference
on the Theory and Application of Cryptology and Information Security (eds. X. Wang, K. Sako),
Springer, (2012), 208–225. https://doi.org/10.1007/978-3-642-34961-4 14

10. X. Dong, Y. Shen, Cryptanalysis of reduced-round Midori64 block cipher, preprint. Available
from: https://eprint.iacr.org/2016/676.

11. L. Lin, W. Wu, Meet-in-the-middle attacks on reduced-round Midori-64, IACR Trans. Symmetric
Cryptology, 2017 (2017), 215–239. https://doi.org/10.13154/tosc.v2017.i1.215-239

12. Z. Chen, H. Chen, X. Wang, Cryptanalysis of Midori128 using impossible differential tech-
niques, in Information Security Practice and Experience (eds. F. Bao, L. Chen, R. Deng, G.
Wang), Springer, (2016), 1–12. https://doi.org/10.1007/978-3-319-49151-6 1

13. M. Tolba, A. Abdelkhalek, A. M. Youssef, Improved multiple impossible differential cryptanal-
ysis of Midori128, in IEICE Transactions on Fundamentals of Electronics, Communications and
Computer, E100-A (2017), 1733–1737. https://doi.org/10.1587/transfun.E100.A.1733

14. A. R. Shahmirzadi, S. A. Azimi, M. Salmasizadeh, J. Mohajeri, M. R. Aref, Impossible differential
cryptanalysis of reduced-round Midori64 block cipher, ISC Int. J. Inf. Secur., 10 (2018), 3–13.
https://doi.org/10.22042/isecure.2018.110672.399

15. W. Cheng, Y. Zhou, L. Sauvage, Differential fault analysis on Midori, in Information and Commu-
nications Security (eds. K. Y. Lam, C. H. Chi, S. Qing), Springer, (2016), 307–317. https://doi.org/

10.1007/978-3-319-50011-9 24

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

http://dx.doi.org/https://doi.org/10.1007/11894063_4
http://dx.doi.org/https://doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/https://doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/https://doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/https://doi.org/10.1007/978-3-662-48800-3_17
http://dx.doi.org/https://doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/https://doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/https://doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/https://doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/https://doi.org/10.13154/tosc.v2017.i1.215-239
http://dx.doi.org/https://doi.org/10.1007/978-3-319-49151-6_1
http://dx.doi.org/https://doi.org/10.1587/transfun.E100.A.1733
http://dx.doi.org/https://doi.org/10.22042/isecure.2018.110672.399
http://dx.doi.org/https://doi.org/ 10.1007/978-3-319-50011-9_24
http://dx.doi.org/https://doi.org/ 10.1007/978-3-319-50011-9_24

6832

16. Y. Wang, X. Zhao, F. Zhang, S. Guo, L. Wu, W. Li, et al., Security evaluation for
fault attacks on lightweight block cipher Midori, J. Cryptologic Res., 4 (2017), 58–78.
https://doi.org/10.13868/j.cnki.jcr.000163

17. Y. Nozaki, Y. Ikezaki, M. Yoshikawa, Two stages statistical fault analysis method for Midori and
its evaluation, Electron. Commun. Jpn., 101 (2018), 3–11. https://doi.org/ 10.1002/ecj.12057

18. W. Li, L. Liao, D. Gu, S. Cao, Y. Wu, J. Li, et al., Ciphertext-only fault analysis on the Midori
lightweight cryptosystem, Sci. China Inf. Sci., 63 (2020), 139112. https://doi.org/10.1007/s11432-
018-9522-6

19. E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, in Conference on the
Theory and Application of Cryptography (eds. A. J. Menezes, S. A. Vanstone), Springer, (1990),
2–21. https://doi.org/10.1007/3-540-38424-3 1

20. C. Giraud, DFA on AES, in International Conference on Advanced Encryption Standard (eds. H.
Dobbertin, V. Rijmen, A. Sowa), Springer, (2004), 27–41. https://doi.org/10.1007/11506447 4

21. M. Tunstall, D. Mukhopadhyay, S. Ali, Differential fault analysis of the advanced encryption
standard using a single fault, in Information Security Theory and Practice (eds. C. A. Ardagna, J.
Zhou), Springer, (2011), 224–233. https://doi.org/10.1007/978-3-642-21040-2 15

22. L. Hemme, A differential fault attack against early rounds of (triple-)DES, in Cryptographic
Hardware and Embedded Systems (eds. M. Joye, J. J. Quisquater), Springer, (2004), 254–267.
https://doi.org/10.1007/978-3-540-28632-5 19

23. R. Li, B. Sun, C. Li, J. You, Differential Fault Analysis on SMS4 using a single fault, Inf. Process.
Lett., 111 (2011), 156–163. https://doi.org/10.1016/j.ipl.2010.11.011

24. C. Clavier, B. Feix, G. Gagnerot, M. Roussellet, Passive and active combined attacks on AES
combining fault attacks and side channel analysis, in 2010 Workshop on Fault Diagnosis and
Tolerance in Cryptography, (2010), 10–19. https://doi.org/10.1109/FDTC.2010.17

25. M. Rivain, Differential fault analysis on DES middle rounds, in Cryptographic Hardware and Em-
bedded Systems (eds. C. Clavier, K. Gaj), Springer, (2009), 457–469. https://doi.org/10.1007/978-
3-642-04138-9 32

26. P. Derbez, P. A. Fouque, D. Leresteux, Meet-in-the-middle and impossible differential fault anal-
ysis on AES, in Cryptographic Hardware and Embedded Systems (eds. B. Preneel, T. Takagi),
Springer, (2011), 274–291. https://doi.org/10.1007/978-3-642-23951-9 19

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 31, Issue 11, 6820–6832.

http://dx.doi.org/https://doi.org/10.13868/j.cnki.jcr.000163
http://dx.doi.org/https://doi.org/ 10.1002/ecj.12057
http://dx.doi.org/https://doi.org/10.1007/s11432-018-9522-6
http://dx.doi.org/https://doi.org/10.1007/s11432-018-9522-6
http://dx.doi.org/https://doi.org/10.1007/3-540-38424-3_1
http://dx.doi.org/https://doi.org/10.1007/11506447_4
http://dx.doi.org/https://doi.org/10.1007/978-3-642-21040-2_15
http://dx.doi.org/https://doi.org/10.1007/978-3-540-28632-5_19
http://dx.doi.org/https://doi.org/10.1016/j.ipl.2010.11.011
http://dx.doi.org/https://doi.org/10.1109/FDTC.2010.17
http://dx.doi.org/https://doi.org/10.1007/978-3-642-04138-9_32
http://dx.doi.org/https://doi.org/10.1007/978-3-642-04138-9_32
http://dx.doi.org/https://doi.org/10.1007/978-3-642-23951-9_19
http://creativecommons.org/licenses/by/4.0

	Introduction
	Description of Midori and notations
	SBoxes and matrices
	Round function
	Ciphers
	Key schedule
	Notations

	Fault Propagation and properties of Midori
	Fault Propagation in the last 4 rounds
	Characteristics of SBoxes

	Key recovery and experiment
	Key recovery of Midori
	Experimental result

	Conclusions

