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Abstract: This paper investigates a delayed shallow water fluid model that has not been studied
in previous literature. Applying geometric singular perturbation theory, we prove the existence of
traveling wave solutions for the model with a nonlocal weak delay kernel and local strong delay
convolution kernel, respectively. When the convection term contains a nonlocal weak generic delay
kernel, the desired heteroclinic orbit is obtained by using Fredholm theory and linear chain trick to
prove the existence of two kink wave solutions under certain parametric conditions. When the model
contains local strong delay convolution kernel and weak backward diffusion, under the same parametric
conditions to the previous case, the corresponding traveling wave system can be reduced to a near-
Hamiltonian system. The existence of a unique periodic wave solution is established by proving the
uniqueness of zero of the Melnikov function. Uniqueness is proved by utilizing the monotonicity of
the ratio of two Abelian integrals.
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1. Introduction

Traveling waves in nonlinear wave equations can explain nonlinear complex phenomena in many
subjects, such as chemistry, physics, biology, optics and mechanics. The well-known KdV equation is
extremely important in modeling the motion of shallow water, which is given by

ut + αuux + βuxxx = 0. (1.1)

It was first proposed by Korteweg and de Vries in 1895 and is usually used as a model to govern
the one-dimensional propagation of small-amplitude, weakly dispersive waves [1]. In (1.1), the first
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two terms cause the classic overtaking phenomenon, while the last term prevents the formation of
discontinuities. It is worth mentioning that the balance between the nonlinear convection term uux

and the dispersion effect term uxxx in Eq (1.1) gives rise to solitons [2, 3]. Some unusual nonlinear
interactions among solitary wave pulses propagating in nonlinear dispersive media were observed
in the numerical solutions. According to the important role in nonlinear models, there are a lot of
investigations on finding the traveling wave solutions for KdV (1.1) and its generalized forms. In
1993, Derks and Gils [4] discussed the uniqueness of traveling waves in a perturbed KdV equation

ut + uux + uxxx + ε(uxx + uxxxx) = 0, (1.2)

where ε is a positive parameter. Ogawa [5] studied the existence of solitary waves and periodic waves
of (1.2) and gave the relationship between the amplitude and the wavelength. With a higher degree
in convection term and by using the geometric singular perturbation theory, Yan et al. [6] proved the
existence of solitary wave solutions and periodic wave solutions for a perturbed modified KdV equation

ut + unux + uxxx + ε(uxx + uxxxx) = 0.

Moreover, the KdV-mKdV equation

ut + uux ± u2ux + uxxx = 0

describes the internal solitary waves in shallow seas [7], which have been studied by the various
methods [8–17]. Some new exact explicit solutions for a combined KdV-mKdV equation were obtained
by means of the Bäcklund transformation [18] and the exact solutions for a new fractal unsteady KdV
model with the non-smooth boundary by means of the sub-equation method were studied [19]. More
precisely, Song [20] considered the diffusive single species model with Allee effect and distributed
delay time, proving the existence of traveling wavefront solutions for the model with local strong and
nonlocal weak generic delay kernels. Sun [21, 22] studied a dispersive-dissipative solid model with
weakly external dissipation and provided a rigorous proof for the existence of a unique periodic wave
as well as investigated the following KdV equation with three perturbed terms

ut + λ1uqux + λ3uxxx + ε(λ2uxx + λ4uxxxx + λ5(uux)x) = 0

with q = 1, 2. They proved the model possesses periodic waves with a range of wave speed and
gave the explicit amplitude. Du [23] studied the existence of solitary wave solutions for the following
generalized KdV-mKdV equation with local weak generic kernel delay

ut + αux + β( f ∗ u)up−1ux + uxxx + γuxx = 0 (1.3)

by applying the geometric singular perturbation theory. Here, f ∗ u represents a convolution as a
spatial-temporal variable. When τ→ 0, (1.3) reduces to a non-delayed model

ut + αux + βupux + uxxx + γuxx = 0. (1.4)

Xu [24] established the existence of traveling wave solutions for (1.3)p=1. The parametric condition
on the traveling wave fronts persisted was given. Now, we are interested in the wave motion
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model containing a special generic delay kernel in convection term. Consequently, in this paper, we
investigate the following delay convecting shallow water fluid model

ut + αux + β(( f ∗ u)u)x + u2ux + ((1 − q)τ − q)uxx + uxxx = 0, (1.5)

where (α, β) ∈ R2, q = {0, 1}, τ > 0 is a small parameter and f ∗ u represents a convolution in the
spatial-temporal variable in (1.5); that is, there is a time delay in the lower order convection term. uxx

is backward diffusion effect. When q = 0, τ → 0, (1.5) reduces to (1.4)p=1,γ=1. To our knowledge,
no literature has considered the traveling wave solutions for when q = 1. Therefore, the existence
of traveling waves for the (1.5) is unknown. When the model contains different delay convolution
kernels, are the traveling wave solutions persisted or vanished? If traveling wave solutions persisted,
what is the type? What is the number? To solve these questions, we discuss the corresponding
ordinary differential equation for (1.5) with a nonlocal weak and local strong delay convolution kernel,
respectively. Geometric singular perturbation theory is utilized to reduce the singular perturbed system
to regular perturbed system. The existence of traveling wave solutions is proved by different techniques
in two cases: q = 1 and q = 0.

The rest of this paper is organized as follows.In section two, we introduce the geometric singular
perturbation theory, which is a key to deal with the delayed equations. In section three, the delay
convecting shallow water fluid model (1.5) in the case q = 1 without delay is analyzed by qualitative
theory. We prove that there are two heteroclinic orbits between the unstable node and saddles. For (1.5)
in the case q = 1 with a nonlocal weak generic delay kernel, the existence of locally invariant manifold
in a small neighborhood of critical manifold is obtained, which reducing the singular perturbed system
into a regular perturbed system. The existence of kink wave solutions for (1.5) in the case of q = 1
is proved by the Fredholm theory and the linear chain trick. In Section 4, (1.5) in the case q = 0
with local strong delay and the weak backward diffusion effect is considered. The singular perturbed
system is reduced into regular perturbed system, which is a near-Hamiltonian system. We discuss the
existence of periodic waves on certain parametric conditions by analyzing the monotonicity of ratio of
two Abelian integrals in the Melnikov function. Section five is a simplified conclusion.

2. Preliminaries

We first introduce the following results on invariant manifolds according to [25, 26]. The basic
equations considered are of the form 

dx
dt
= f (x, y, ε),

dy
dt
= εg(x, y, ε),

(2.1)

where x = (x1, x2, . . . , xk)T ∈ Rk, y = (y1, y2, . . . , yl)T ∈ Rl and 0 < ε ≪ 1 is a real parameter. Functions
f , g are C∞ on the set U × V , where U ⊂ Rk+l and V is an open interval containing zero.

With a change of time scaling z = εt, (2.1) can be written as
ε

dx
dz
= f (x, y, ε),

dy
dz
= g(x, y, ε),

(2.2)
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then z is called the slow time scale and t is the fast time scale. Clearly, when ε , 0, (2.1) and (2.2) are
equivalent. System (2.1) is called the fast system, while (2.2) is called the slow system. At the limit
ε→ 0, system (2.1) reduces to a layer systemx′(t) = f (x, y, 0),

y′(t) = 0,
(2.3)

and x is called the fast variable, whereas y is called the slow variable. When ε → 0, the limit system
of (2.2) is given by  f (x, y, 0) = 0,

ẏ = g(x, y, 0),
(2.4)

which is called a reduced system. Assume that for ε = 0, the system has a compact, normally
hyperbolic manifold of critical manifold M0, which is contained in the set { f (x, y, 0) = 0}.

Definition 2.1. The manifold M0 is normally hyperbolic if the linearization of (2.1) at each point in
M0 has exactly l eigenvalues with zero real part, where l is the dimension of the slow variable y.

Definition 2.2. A set M is locally invariant under the flow from (2.1) if it has neighborhood V so that
no trajectory can leave M without also leaving V. In other words, it is locally invariant if for all x ∈ M,
x · [0, t] ⊂ V implies that x · [0, t] ⊂ M, where the notation x · t is used to denote the application of a
flow after time t to the initial condition x. Similarly with [0, t] replaced by [t, 0], when t < 0.

Under the previous hypotheses, the statement holds.

Lemma 2.1. If M0 is compact and normally hyperbolic, then, for any 0 < r < +∞, if ε > 0 is
sufficiently small, there exists a manifold Mε, satisfying
(i) which is locally invariant under the flow of (2.1);
(ii) which is Cr in x, y and ε;
(iii) Mε = {(x, y) : x = hε(y)} for some Cr function hε(y) and y in some compact K;
(iv) there exists locally invariant stable and unstable manifolds W s(Mε) and Wu(Mε) that lie within
O(ε), and are diffeomorphic to W s(M0) and Wu(M0), respectively.

Geometric singular perturbation theory is a powerful tool for analyzing high-dimensional systems
and exploiting a differential equation’s geometric structures, such as its slow (center) manifolds and
their fast stable and unstable fibers [27–31].

3. Kink wave solution for (1.5) in the case q = 1

In this section, the delayed convecting shallow water fluid model (1.5) in the case q = 1 is analyzed.
We discuss the existence of heteroclinic orbits connecting an unstable node to a saddle when (1.5)
is without delay. For (1.5) in the case q = 1 with a nonlocal weak generic delay kernel, a locally
invariant manifold in a small neighborhood of a normal hyperbolic critical manifold is established,
then a singular perturbed system is reduced to a regular perturbed system. The existence of kink wave
solutions is proved by Fredholm theory and the linear chain trick.
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3.1. The model without delay

According to the property of f when τ→ 0, (1.5) is the non-delay. In the case q = 1, (1.5) reduces
to

ut + αux + βu2
x + u2ux − uxx + uxxx = 0. (3.1)

For a given wave speed c > 0, substituting u(x, t) = u(x + ct) = ϕ(ξ) into (3.1), the following traveling
wave equation is obtained

(c + α)ϕ′ + β(ϕ2)′ + ϕ2ϕ′ − ϕ′′ + ϕ′′′ = 0, (3.2)

where ′ = d
dξ . Integrating (3.2) once and neglecting the integration constant, it can be simplified to

(c + α)ϕ + βϕ2 +
ϕ3

3
− ϕ′ + ϕ′′ = 0, (3.3)

which is equivalent to a two-dimensional first-order system
ϕ′ = y,

y′ = −(c + α)ϕ − βϕ2 −
ϕ3

3
+ y.

(3.4)

Clearly, (3.4) is a non-Hamiltonian system. Assume that 0 < β <
√

3
3 and 0 < c + α < 3β2

4 . Denote
∆ := β2−

4(c+α)
3 . When ∆ > 0, it is easy to find that (3.4) has three equilibria, E0(0, 0), E1( 3

2 (−β+
√
∆), 0)

and E2( 3
2 (−β −

√
∆), 0). E0 is an unstable node and E1 and E2 are saddles. Now the existence of

heteroclinic orbits between E0 and E1 is discussed. For a suitable value δ > 0, there is a negative
invariant triangular set

D := {(ϕ, y) : 0 ≤ ϕ ≤
3(−β +

√
∆)

2
, 0 ≤ y ≤ δϕ}.

Let −→m be the vector defined by the righthand side of (3.4) and −→n = (−δ, 1) be the outward normal
vector on the boundary of D. On the side of y = δϕ, we have

−→m · −→n =
(
y,−(c + α)ϕ − βϕ2 −

ϕ3

3
+ y

)
· (−δ, 1) |(ϕ,δϕ)

= −δ2ϕ − (c + α)ϕ − βϕ2 −
ϕ3

3
+ δϕ

≤ ϕ(−δ2 + δ − (c + α)).

(3.5)

It is clear that −δ2 + δ − (c + α) = 0 has two positive roots, δ1 =
1−
√

1−4(c+α)
2 and δ2 =

1+
√

1−4(c+α)
2 .

Therefore, when choosing δ ≤ δ1 or δ ≥ δ2, it has −→m · −→n ≤ 0. Thus, one branch of the unstable
manifold at E0(0, 0) always stays in the region D and joins the saddle E1(3(−β+

√
∆)

2 , 0), which deduces
the desired heteroclinic orbit that exists.

Similarly, the existence of a heteroclinic orbit between E0 and E2 can be proved. Therefore, from
the relation between heteroclinic orbit and kink wave solution, the following statement holds.
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Theorem 3.1. When 0 < β <
√

3
3 and 0 < c + α < 3β2

4 , there is a heteroclinic orbit connecting

the unstable node E0(0, 0) to the saddle E1( 3(−β+
√
∆)

2 , 0) for (3.4). There is another heteroclinic orbit

connecting the unstable node E0(0, 0) to the saddle E2( 3(−β−
√
∆)

2 , 0). Further, there are two kink wave

solutions, u1(x + ct) = ϕ1(ξ) and u2(x + ct) = ϕ2(ξ), which satisfy that ϕ1(−∞) = 0, ϕ1(+∞) = 3(−β+
√
∆)

2

and ϕ2(−∞) = 0, ϕ2(+∞) = 3(−β−
√
∆)

2 with c as the wave speed.

3.2. The model (1.5) in the case q = 1 with nonlocal delay

From Section 3.1, when 0 < β <
√

3
3 and 0 < c+α < 3β2

4 , there are two heteroclinic orbits connecting

the unstable node E0(0, 0) to the saddle E1(3(−β+
√
∆)

2 , 0) and connecting E0(0, 0) to E2(3(−β−
√
∆)

2 , 0),
respectively, so we shall verify the heteroclinic orbit persists when the model contains the nonlocal
delay. Due to the diffusion, the delay needs to be incorporated in a way that allows for associated
spatial averaging. Based on the idea first introduced by Britton [32], the system is changed into a slow
system. By geometric singular perturbation theory, the existence of locally invariant manifold in a
small neighborhood of critical manifold is obtained, which reduces the singular perturbed system to a
regular perturbed system. The existence of kink wave solutions for (1.5) is proved by the Fredholm
theory and linear chain trick. The convolution f ∗ u is denoted by

( f ∗ u)(x, t) =
∫ t

−∞

∫ ∞

−∞

f (x − y, t − s)u(y, s)dyds.

The kernel function f (x, t) satisfies the normalization condition

f : [0,+∞) × [0,+∞)→ [0,+∞) and
∫ ∞

0

∫ ∞

−∞

f (x, t)dxdt = 1,

so that the kernel does not affect the spatially uniform steady-state. Particularly, the nonlocal weak
generic delay kernel is defined as follows

f (x, t) =
1
√

4πt
e−

x2
4t

1
τ

e−
t
τ ,

where the parameter τ > 0 measures the average time delay. Denote that

η(x, t) = ( f ∗ u)(x, t) =
∫ t

−∞

∫ ∞

−∞

1
√

4π(t − s)
e−

(x−y)2
4(t−s)

1
τ

e−
t−s
τ u(y, s)dyds.

By direct computation, we obtain

ηt = ηxx +
1
τ

(u − η).

Thus, (1.5) in the case q = 1 is equivalent to a two-dimensional system as the form
ut + αux + β(ηu)x + u2ux − uxx + uxxx = 0,

ηt = ηxx +
1
τ

(u − η).
(3.6)
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To find the traveling wave solution of (3.6), the transformations u(x, t) = ϕ(ξ), η(x, t) = φ(ξ), ξ =
x + ct are taken and we obtain a traveling wave system satisfying the boundary conditions ϕ(−∞) = 0,
ϕ(+∞) = 3(−β+

√
∆)

2 and ϕ′(±∞) = 0, which is given by
(c + α)ϕ′ + β(φϕ)′ + ϕ2ϕ′ − ϕ′′ + ϕ′′′ = 0,

cφ′ − φ′′ −
1
τ

(ϕ − φ) = 0,
(3.7)

where ′ = d
dξ . Integrating the first equation of (3.7) once, it obtains

(c + α)ϕ + βφϕ +
ϕ3

3
− ϕ′ + ϕ′′ = 0,

then (3.7) changes to the following second order ordinary differential equation
(c + α)ϕ + βφϕ +

ϕ3

3
− ϕ′ + ϕ′′ = 0,

cφ′ − φ′′ −
1
τ

(ϕ − φ) = 0.
(3.8)

The small parameter τ > 0 represents the delay in the original system, which is regarded as the
perturbed parameter. By defining new variables ϕ′ = y, φ′ = ω, (3.8) is reformulated as a four-
dimensional system 

ϕ′ = y,

y′ = −(c + α)ϕ − βφϕ −
ϕ3

3
+ y,

φ′ = ω,

ω′ = cω −
1
τ

(ϕ − φ).

(3.9)

Setting that τ = ε2 and defining a new variable µ = εφ′, (3.9) is rewritten as a four-dimensional singular
perturbed system 

ϕ′ = y,

y′ = −(c + α)ϕ − βφϕ −
ϕ3

3
+ y,

εφ′ = µ,

εµ′ = cεµ − ϕ + φ.

(3.10)

Undoubtedly, (3.10) is a slow system. When ε → 0, (3.9) reduces to (3.4). From Theorem 3.1, we
know that (3.10) possesses a heteroclinic orbit connecting E0 to E1. Notice that when ε , 0, it does
not define a dynamic in R4. Therefore, by the transformation ξ = εz, we change (3.10) into the form

ϕ̇ = εy,

ẏ = ε
(
−(c + α)ϕ − βφϕ −

ϕ3

3
+ y

)
,

φ̇ = µ,

µ̇ = εcµ − ϕ + φ,

(3.11)
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where ˙ is the derivative respect to z. System (3.11) is the fast system. Systems (3.10) and (3.11) are
equivalent when ε > 0. When ε = 0, the slow system defines a set

M0 =
{
(ϕ, y, φ, µ) ∈ R4 : µ = 0, φ = ϕ

}
,

which is an invariant manifold of (3.10) with ε = 0. Since the linearized matrix of (3.11) restricted to
M0 is 

0 0 0 0
0 0 0 0
0 0 0 1
−1 0 1 0

 ,
it is easy to obtain that the eigenvalues are 0, 0, 1, 1, the number of the eigenvalues with a zero
real part are equal to dimM0 and the other eigenvalues are hyperbolic. Thus, the slow manifold M0

is normally hyperbolic. From geometric singular perturbation theory presented in section two, for
sufficiently small ε > 0, there exists a locally invariant manifold Mε in a small neighborhood of M0 of
the perturbed system (3.10), which is expressed as

Mε =
{
(ϕ, y, φ, µ) ∈ R4 : µ = g(ϕ, y, ε), φ = ϕ + h(ϕ, y, ε)

}
,

where g(ϕ, y, ε), h(ϕ, y, ε) are smooth functions and satisfy g(ϕ, y, 0) = 0, h(ϕ, y, 0) = 0. Thus the
functions g(ϕ, y, ε) and h(ϕ, y, ε) can be expanded into a Taylor series as follows

g(ϕ, y, ε) = εg1(ϕ, y) + ε2g2(ϕ, y) + O(ε3),
h(ϕ, y, ε) = εh1(ϕ, y) + ε2h2(ϕ, y) + O(ε3).

Substituting φ = ϕ + h(ϕ, y, ε), µ = g(ϕ, y, ε) into the slow system (3.10), we have

cε
{
∂g1

∂ϕ
y +
∂g2

∂y

(
−(c + α)ϕ − βφϕ −

ϕ3

3
+ y

)}
+ O(ε3) = cε2g1 + εh1 + ε

2h2 + O(ε3),

cε
{

y + ε
(
∂h1

∂ϕ
y +
∂h1

∂y

(
−(c + α)ϕ − βφϕ −

ϕ3

3
+ y

))}
+ O(ε3) = εg1 + ε

2g2 + +O(ε3).

By comparing coefficients of ε and ε2, we obtain

g1(ϕ, y) = y, g2(ϕ, y) = 0, h1(ϕ, y) = 0, h2(ϕ, y) = −(c + α)ϕ − βϕ2 −
ϕ3

3
− (c − 1)y.

Thus, the dynamics of (3.10) on Mε is determined by the following regular perturbed system
ϕ′ = y,

y′ = −(c + α)ϕ − βϕ2 −
ϕ3

3
+ y + ε2K(ϕ, y) + O(ε3),

(3.12)

where K(ϕ, y) = β(c + α)ϕ2 + β2ϕ3 +
βϕ4

3 + (c − 1)βϕy. Clearly, when ε = 0, (3.12) reduces to (3.4).
Denote the equilibria of (3.12) are Eε0, Eε1 and Eε2, which lying in a small neighborhood of E0, E1 and
E2, respectively. In order to prove the existence of kink wave solutions of (1.5), we aim to establish the
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two heteroclinic orbits connecting Eε0 to Eε1, and another connecting Eε0 to Eε2, respectively. From
Lemma 2.1, we know that such two heteroclinic orbits exist when ε = 0.

Let (ϕ, y) and (u0, v0) be the solutions of (3.12) and (3.4), respectively. For ε > 0, note that

ϕ = u0 + ε
2u1 + O(ε3), y = v0 + ε

2v1 + O(ε3). (3.13)

Substitute ϕ and y in (3.13) into (3.12) and compare the coefficients of ε and ε2, then u1 and v1 satisfy
the following differential equation system

d
dξ

(
u1

v1

)
+


0 −1

c + α + 2βu0 + u2
0 −1


(

u1

v1

)
=

 0

β(c + α)u2
0 + β

2u3
0 +

βu4
0

3

 . (3.14)

Notice that our goal is finding the traveling wave solution satisfying (3.14) and u1(±∞) = 0, v1(±∞) =
0. Denote L2 as the space of square integrable functions with inner production, that is

⟨u1(ξ), v1(ξ)⟩ =
∫ +∞

−∞

(u1(ξ), v1(ξ))dξ,

where ⟨·, ·⟩ is the Euclidean inner product on R2. From the Fredholm theory, 3.14 has a solution if and
only if the following integral equation is satisfied∫ +∞

−∞

u1(ξ),
 0

β(c + α)u2
0 + β

2u3
0 +

βu4
0

3

 dξ = 0,

for all functions u1(ξ) in the kernel of the adjoint of operator L defined by the left-hand side of (3.14).
Denote L∗ as the adjoint of operator L, then

L∗ = −
d
dξ
+

(
0 c + α + 2βu0 + u2

0
−1 −1

)
.

Implying that for all u1(ξ) ∈ KerL∗, it has

du1(ξ)
dξ

=

(
0 c + α + 2βu0 + u2

0
−1 −1

)
u1(ξ). (3.15)

Since the matrix in (3.15) is a variable coefficient matrix, the general solution is difficult to derive.
Therefore, we aim to prove that only the zero solution satisfies u0(±∞) = 0 and we deduce the
existence of homoclinic orbit. Even if the exact expression can not be found, u0(ξ) is a solution for
the unperturbed system and satisfies the boundary condition u0(−∞) = 0. Thus on the limit status
ξ → −∞, the matrix in (3.15) approaches to a constant coefficient matrix(

0 c + α
−1 −1

)
.

Clearly, the corresponding eigenvalues are determined by λ2 + λ + c + α = 0. Since 0 < c + α < 1
4 ,

there are two real negative eigenvalues λ1,2 =
−1±
√

1−4(c+α)
2 < 0. Hence, when ξ → −∞, the solution

of (3.15) must be decreasing exponentially with respect to ξ, except for the zero solution. Therefore,
the solution satisfying u1(±∞) = 0 must be a zero solution, then the Fredholm orthogonality condition
holds trivially, implying that such solutions of (3.15) exist and satisfy ϕ(−∞) = 0 and y(±∞) = 0.
Consequently, we conclude that for sufficiently small ε > 0, there exists two heteroclinic orbits
of (3.15): One connects Eε0 to Eε1, and the other connects Eε0 to Eε2.

Electronic Research Archive Volume 31, Issue 11, 6803–6819.



6812

Theorem 3.2. In the case q = 1, when 0 < β <
√

3
3 and 0 < c + α < 3β2

4 , for τ > 0 is sufficiently small,
the delayed convecting shallow water fluid model (1.5) with the nonlocal weak generic kernel

( f ∗ u)(x, t) =
∫ t

−∞

∫ ∞

−∞

1
√

4π(t − s)
e−

(x−y)2
4(t−s)

1
τ

e−
t−s
τ u(y, s)dyds

possesses two kink wave solutions u1(x, t) = ϕ1(ξ) and u2(x, t) = ϕ2(ξ), where ϕ1,2(ξ) satisfy ϕ1(−∞) =
0, ϕ1(+∞) = 3(−β+

√
∆)

2 and ϕ2(−∞) = 0, ϕ2(+∞) = 3(−β−
√
∆)

2 . Here, c is the wave speed.

Remark 3.1. In the previous references [20, 24], only one heteroclinic orbit was obtained. In our
results, two heteroclinic orbits are proved under certain parametric conditions since there are three
equilibria for the system.

4. The model (1.5) in the case q = 0 with local delay

In this section, we consider the traveling wave solution for Eq (1.5) in the case q = 0 with local
delay, that is, f (t) = t

τ2
e−

t
τ , t ∈ [0,+∞). Similar to the case q = 1, making a traveling wave

transformation ξ = x + ct to (1.5) in the case q = 0 and integrating once, we obtain the traveling
wave system

(c + α)ϕ + βϕω +
ϕ3

3
+ ϕ′′ + τϕ′ = 0, (4.1)

where

ω =

∫ +∞

0

s
τ2 e−

s
τϕ(ξ − cs)ds.

By direct calculation, we obtain that

dω
dξ
=

1
cτ

(ζ − ω),
dζ
dξ
=

1
cτ

(ϕ − ζ), (4.2)

where

ζ =

∫ +∞

0

1
τ

e−
s
τϕ(ξ − cs)ds.

Introducing new variable ϕ′ = y and combining with (4.2), (4.1) is changed to the following four-
dimensional system 

ϕ′ = y,

y′ = −
(
(c + α)ϕ + βϕω +

ϕ3

3
+ τy

)
,

cτω′ = ζ − ω,

cτζ′ = ϕ − ζ,

(4.3)
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where ′ is derivative respect to ξ. System (4.3) is the slow system. When τ , 0, a time scale
transformation ξ = τs is considered to change the slow system (4.3) into a fast system

ϕ̇ = τy,

ẏ = −τ
(
(c + α)ϕ + βϕω +

ϕ3

3
+ τy

)
,

cω̇ = ζ − ω,

cζ̇ = ϕ − ζ,

(4.4)

where˙is derivative respect to s. Systems (4.3) and (4.4) are equivalent when τ > 0. The two different
time scales correspond to two different limiting systems. When τ→ 0, (4.4) tends to the layer system

ϕ̇ = 0,
ẏ = 0,
cω̇ = ζ − ω,

cζ̇ = ϕ − ζ,

(4.5)

and (4.3) tends to the reduced system

ϕ′ = y,

y′ = −
(
(c + α)ϕ + βϕω +

ϕ3

3
+ τy

)
,

0 = ζ − ω,
0 = ϕ − ζ.

(4.6)

Similarly, the critical manifold is given by

M0 = {(ϕ, y, ω, φ) ∈ R4 : ω = ϕ, ζ = ϕ},

which is a slow invariant manifold. The linearized matrix of (4.5) is given as the form
0 0 0 0
0 0 0 0
0 0 − 1

c
1
c

1
c 0 0 − 1

c

 .
It is not difficult to verify that the number of the eigenvalues with zero real part equals to dimM0 and
the other eigenvalues are hyperbolic, then M0 is normally hyperbolic. Similarly, there exists a manifold
Mτ for (4.3) with sufficiently small τ > 0, which is locally invariant and diffeomorphic to M0 under the
flow of (4.3). Then, Mτ can be expressed by

Mτ = {(ϕ, y, ω, ζ) ∈ R4 : ω = ϕ + k(ϕ, y, τ), ζ = ϕ + l(ϕ, y, τ)},

where k(ϕ, y, τ), l(ϕ, y, τ) are smooth functions and satisfy k(ϕ, y, 0) = 0, l(ϕ, y, 0) = 0. Thus
k(ϕ, y, τ), l(ϕ, y, τ) can be expanded into Taylor series

k(ϕ, y, τ) = τk1(ϕ, y) + O(τ2), l(ϕ, y, τ) = τl1(ϕ, y) + O(τ2).
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Figure 1. Phase portrait of (4.3) with c + α > 0, β2 > 4
3 (c + α).

Substituting ω = ϕ + k(ϕ, y, τ), ζ = ϕ + l(ϕ, y, τ) into the last equation of slow system (4.3), we have

cτ(y + O(τ)) = τ(l1 − k1) + O(τ2), cτ(y + O(τ)) = −τl1 + O(τ2).

By comparing the coefficients of τ, we get k1(ϕ, y) = −2cy, l1(ϕ, y) = −cy. Thus, the slow system (4.3)
restricted on Mτ reduces into a regular perturbed system

ϕ′ = y,

y′ = −(c + α)ϕ − βϕ2 −
ϕ3

3
+ τ(2βcϕy − y) + O(τ2),

(4.7)

which is a near-Hamiltonian system. When τ→ 0, (4.7) reduces to a Hamiltonian system
ϕ′ = y,

y′ = −(c + α)ϕ − βϕ2 −
ϕ3

3
,

(4.8)

with the Hamiltonian function is given by

H(ϕ, y) =
y2

2
+

c + α
2
ϕ2 +

β

3
ϕ3 +

1
12
ϕ4. (4.9)

Notice that ∆ = β2 −
4(c+α)

3 . When ∆ > 0, there are three equilibria E0(0, 0), E1( 3
2 (−β +

√
∆), 0) and

E2(3
2 (−β −

√
∆), 0). When c + α > 0, E0 is a center, E1 and E2 are saddles. The corresponding energy

function values are H(0, 0) = 0, h1 := H( 3
2 (−β +

√
∆), 0) and h2 := H(3

2 (−β −
√
∆), 0), respectively.

Since we discuss the traveling wave for two models under the same parametric condition from the
analysis in Section 3.1, we do not consider the case ∆ = 0. With the help of the energy function H(ϕ, y)
on parametric conditions c + α > 0, β2 > 4

3 (c + α), we give the phase portrait of (4.8) in Figure 1.
Suppose that there exists a closed orbit Γh of (4.8) surrounding E0. A(h) ∈ Γh is the rightmost point

on the positive ϕ-axis. For 0 < |hτ − h| ≪ 1, let Γhτ de a piece of the orbit of the perturbed (4.7)
starting from A(h) to the next intersection point B(hτ) with the positive ϕ-axis. Then, the displacement
function [33] is given by

d(h, τ) =
∫

ÂB
dH = τ(M(h) + O(τ)),
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where
M(h) =

∮
Γh

(2βcϕy − y)dϕ

= 2βcJ1(h) − J0(h)

= 2βcJ0(h)
(

J1(h)
J0(h)

−
1

2βc

)
,

which is called the Melnikov function with J1(h) =
∮
Γh
ϕydϕ and J0(h) =

∮
Γh

ydϕ =
!

intΓh
dϕdy > 0.

We shall show that the Abelian integral ratio P(h) := J1(h)
J0(h) is strictly monotonic with respect to h, and

further prove there exists a unique periodic wave solution for (1.5) in the case q = 0. The following
lemma provides a simple criterion to verify the monotonic of P(h).

Lemma 4.1. ( [34]) Assume that the Hamiltonian function H(ϕ, y) can be written as y2

2 + Φ(ϕ),
satisfying

Φ′(ϕ)(ϕ − a) > 0, for ϕ ∈ (γ, A),

then U′(h) > 0 (or U′(h) < 0) in (h1, h2) implies P′(h) > 0 (or P′(h) < 0) in (h1, h2). Here,

U(h) := µ(h) + ν(h), P(h) :=

∮
Γh
ϕydϕ∮
Γh

ydϕ
,

µ(h) and ν(h) are the inverse functions of the corresponding maps Φ: (γ, a) 7→ (h1, h2) and (a, A) 7→
(h1, h2), then it has γ < µ(h) < a < ν(h) < A and

Φ(µ(h)) ≡ Φ(ν(h)) ≡ h, h1 < h < h2.

For (1.5) in the case q = 0, we have the following results.

Theorem 4.1. In the case q = 0, for any sufficient small τ > 0, there exist some suitable c, α, β that
satisfy 0 < β <

√
3

3 and 0 < c+ α < 3β2

4 , such that (1.5) has two isolated periodic wave solutions locatd

at two sides of ϕ = 3
2 (−β +

√
β2 −

4(c+α)
3 ) with c > 0 as the wave speed.

Proof. According to the previous analysis, we discuss existence of periodic orbit near the family of
closed orbits surrounding E0. Existence of periodic orbit near the family of closed orbits surrounding
E2 can be proved similarly. Let Γh := {(ϕ, y) : H(ϕ, y) = h}, which corresponds closed orbits of
(4.8) for each h ∈ (0, h1) and bounded in a homoclinic loop connecting the saddle point E1. Then,
Φ(ϕ) := c+α

2 ϕ
2 +

β

3ϕ
3 + 1

12ϕ
4 is analytic in the interval (0, A) and satisfying that Φ(0) = Φ(A), where A

is the rightmost intersection point between the homoclinic loop and positive ϕ-axis. For c + α > 0 and
3
2 (−β +

√
∆) < ϕ < A, it has

Φ′(ϕ)ϕ =
ϕ2

3

(
3(c + α) + 3βϕ + ϕ2

)
> 0

implying that Φ(ϕ) has a minimum at ϕ = 0 and is strictly monotonic on ( 3
2 (−β +

√
∆), 0) and (0, A),

respectively. Let µ(h) and ν(h) be inverse functions of Φ(ϕ) on these two intervals, respectively, and
3
2 (−β +

√
∆) < µ(h) < 0 < ν(h) < A. Define two functions

w(h) :=
µ(h) + ν(h)

2
, z(h) :=

ν(h) − µ(h)
2

.
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Then, the criterion function in s ∈ [0, z(h)] is given by

G(s) := Φ(w(h) + s) − Φ(w(h) − s) =
2s
3

((β + w)s2 + 3βw2 + w3 + 3(c + α)w).

Since 0, z(h) and −z(h) are the real roots of G(s), we can rewrite G(s) as

G(s) =
2s(β + w)

3
(s2 − z(h)2) < 0

for s ∈ (0, z(h)).
On the following, we prove U(h) is monotonic for h ∈ (0, h1) by contradiction argument. Assume

that there exists h̃ and h̄ in (0, h1), h̃ < h̄, such that U(h̃) = U(h̄), then it has w(h̃) = w(h̄) and z(h̃) < z(h̄).
Setting that h = h̄, it yields

G(s) = Φ(w(h̄) + s) − Φ(w(h̄) − s) < 0, s ∈ (0, z(h)).

Letting s = z(h̃) and h = h̄ in G(s), we have

G(s) = Φ(w(h̄) + z(h̃)) − Φ(w(h̄) − z(h̃))
= Φ(w(h̃) + z(h̃)) − Φ(w(h̃) − z(h̃))
= Φ(µ(h̃)) − Φ(ν(h̃)) = 0,

which contradicts to G(s) < 0 for all s ∈ (0, z(h)). Therefore, U(h) is strictly monotonic for h ∈ (0, h1).
From Lemma 4.1, it has P(h) as strictly monotonic, which means there exists at most one h∗ ∈ (0, h1)
such that M(h∗) = 0 and M′(h∗) , 0. By the implicit function theorem for sufficiently small τ > 0,
there exists at most one h = h∗ +O(τ) such that d(h, τ) = 0, then there exists at most one periodic wave
for (1.5) in the case q = 0.

Similarly, the existence of a unique periodic waves near the family of closed orbits surrounding E2

can be proved. The proof of Theorem 4.1 is completed.

5. Conclusions

This paper mainly discussed a convecting a shallow water fluid model in two cases with different
generic delay kernels under ceratin parametric conditions. The existence of traveling waves for the
model were given by different techniques. By applying the geometric singular perturbation theory, the
existence of locally invariant manifold in a small neighborhood of critical manifold was obtained and
the desired orbit was established. According to the relationship between traveling wave solution and
orbit on a phase plane of the associated ordinary differential equation, the existence of traveling wave
solution was proved. For the model in the case q = 1 with nonlocal weak delay kernel, the heteroclinic
orbit was established by the Fredholm theory and linear chain trick, which was an effective method to
deal with physical models of delay. If the nonlocal weak delay kernel in presented paper was replaced
by another delay kernel, the Fredholm theory and linear chain trick was also valid to establish the
desired orbits for the corresponding traveling wave system. For the case q = 0, (1.5) contained a local
strong delay convolution kernel and a weak backward diffusion effect. It can be reduced to a near-
Hamiltonian system, then to the existence of periodic wave solutions by investigating the monotonicity
of ratio of two Abelian integrals in the Melnikov function. It is worth pointing out that no literature has
considered both near-Hamiltonian and non-near-Hamiltonian cases of a delayed model. Consequently,
it is an interesting work to be further researched in the future.
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