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Abstract: By using the Riccati-Bernoulli (RB) subsidiary ordinary differential equation method, we
proposed to solve kink-type envelope solitary solutions, periodical wave solutions and exact traveling
wave solutions for the coupled Higgs field (CHF) equation. We get many solutions by applying the
Bicklund transformations of the CHF equation. The proposed method is simple and efficient. In
fact, we can deal with some other classes of nonlinear partial differential equations (NLPDEs) in this
manner.
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1. Introduction

As we all know, nonlinear partial differential equations (NLPDEs) can describe various phenomena
in physics [1-3], biology [4], chemistry [5,6] and finance [7], as well as several other fields [8—10].
The study of exact solutions for NLPDEs plays a significant role in the research of nonlinear physical
phenomena. In the recent decades, a good many of valuable approaches was used to obtain exact wave
solutions of NLPDE:s, such as the inverse scattering method [11,12], iterative technique [13-16], test
function method [17,18], Biacklund transformation method [2,19,20], the sub-equation method [21,22],
extended F-expansion method [22,23], Darboux transformation method [24], Hirota’s bilinear method
[25-28], the homogeneous balance method [29-31], the (G’/G)-expansion method [32,33], first in-
tegral method [34,35], tanh-sech method [36,37], extended homoclinic test method [38,39], Jacobi
elliptic function method [40,41] and the Riccati-Bernoulli (RB) subsidiary ordinary differential equa-
tion method [42—45]. On the other hand, to obtain further information about natural phenomena, some
analytical techniques and methods have also been developed for solving diverse differential equations,
such as the fixed point theorem [9,46], upper and lower method [3,13,47] and dual approach [48]. In
addition, due to the ability to better explain natural phenomena, many researchers have recently be-
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come interested in fractional order partial differential equations [1,9,13]. In this paper, we study the
following the coupled Higgs field (CHF) equation [49]

Uy — U — QU +ﬁ|u|2u —2uv =0, (1a)

v+ vee = B(1uf) =0, (1b)
2y _ u _ &

where u;; = 667, Upe = 53, Vi = 575 Vax = %, a > 0 and 8 > 0 are known constants and |u| denotes the
modulus of the u.

Equation (1) is a coupled NLPDE, which describe the interactions between conserved scalar nucle-
ons and neutral scalar mesons. Here, v (x, r) stands for a complex scalar nucleon field and u (x, r) stands
for a real scalar meson field. For @ < 0, 8 < 0, Eq (1) is called the coupled nonlinear Klein-Gordon
equation. Hu et al. constructed analytic expressions of homoclinic orbits for Eq (1) by the Hirota’s bi-
linear method [50]. Based on the first integral method [51], Taghizadeh et al. obtained exact solutions
for Eq (1), and by applying an algebraic method [52], Hon et al. obtained exact solitary wave solutions
for Eq (1).

Yang et al. first proposed the RB method to obtain the exact solutions of complex NLPDEs [42].
This method provided efficient and simple math tools for solving some NLPDEs in mathematical
physics. We choose the RB method to solve Eq (1). This paper is organized as follows: Section two
briefly describes the RB method. In section three, we apply the RB method to Eq (1). In section four,
we give the Béacklund transformations of Eq (1). Finally, some available conclusions are obtained and
summarized in section five.

2. Description of the RB method

Next, we consider the following NLPDE
F(Qa Qx’ Qtanx’ an' : ) = Oa (2)

where F' is usually a polynomial function, Q (x,?) is assumed to be a solution of Eq (2) and the sub-
scripts denote the partial derivatives. Below, the main steps for the RB method are provided.
Step 1. Introduce a new variable 7 as follows:

n=pulx+a), (3)

where p is a constant and A stands for speed of localized wave. Then, Q (x,?) is transformed into
univariate functions
Q(x, 1) =Q(n). 4)

We can convert Eq (2) to an ordinary differential equation by using Eqs (3) and (4)
F(Q,Q,Q0",Q",.--)=0, 5)

where Q' denotes %.
Step 2. Supposing Eq (5) is a solution of the following equation

Q' =aQ’ ™"+ bQ + Q' (6)
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where a, b, ¢ and n are constants that can be determined subsequently, taking the derivative of 1 on
both sides of the Eq (6) , we get

Q= (a Q-nQ"" + cenQ¥ ! + b) Q. (7)

An-2)2n=-3)Q""+ab(n-3)(n-2)Q'" "+
-1 2+ ben(n+ HQ + (2ac + b2)

Remark 1. To avoid introducing new terminology, Eq (6) is called the RB equation. Clearly, if
n = 0 and ac # 0, Eq (6) reduces to the Riccati equation. If n # 1, a # 0 and ¢ = 0, Eq (6) reduces to
the Bernoulli equation. Thus, Eq (6) includes the Riccati equation and the Bernoulli equation.

We present solutions of Eq (6) as follows:

Case 1. If n = 1, Eq (6) has the following solution

1244

Q. ®)

Q) = Cye, ©)

where C; = Ce“*?* and C is an arbitrary constant.
Case 2. If n # 1 and a = b = 0, Eq (6) has the following solution

Q) = (1 =n) @+ C)™. (10)

Case3. If n #1,a =0and b # 0, Eq (6) has the following solution

1

Q) = (—g ; Ce-b<"-‘>'7)‘”. 11

Case4.If n #1,a # 0 and A < 0, Eq (6) has the following solution

1
“b+ V=Atan (=52 + 0)))

Q) = > , (12)
a
where
A = b* - 4ac. (13)
Case 5. If n # 1,a # 0 and A > 0, Eq (6) has the following solution
1
QG = VA b+ VA" (14
= a(l — Cg’](l—ﬂ)‘/g) 2a ’
Case 6. If n # 1,a # 0 and A = 0, Eq (6) has the following solution
1 b\
Qn)=l—- - —1 . 15
m (a(n—l)n+C 2a) (1)

Step 3. First, we substitute the derivatives of Q into Eq (5) and compare each coefficient of &', and
then we yield a set of algebraic equations for n, a, b, ¢ and A. Second we solve the algebraic equations
and substitute n, a, b, c, A and Eq (3) into Egs (9)—(15), then we can get exact traveling wave solutions
of Eq (2).
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3. Solutions of the CHF equation

To verify the effectiveness of the RB method, we use it to solve Eq (1) in this section. We applied
the traveling wave transformation

u(x,t) = h(n) o, (16)
Equation (1) became the following equations
@2 (1= ) +2iu(y = )W + (20— 9> + 6> + @) h— ph* = 0, (17)
2 (2 +v" = p(n?)") =0, (18)
where u, A, y, d are constants that can be determined subsequently, and A4, /', h”, v denote h (), %}'7),
d;’:](z"), v (1), respectively.
If we take
Y =064, (19)
Eq (17) becomes
@2 (1= )R + (=" + 6° + 2v + @) h - Bi* = 0. (20)

To avoid generating trivial solution, let u # 0. Integrating Eq (18) twice and setting the first inte-
gration to zero, we have

V= 'Glhj_—-;f, (21)
where A is the second integration constant. We substitute Eq (21) into (20), then we have
@ (1= 20" + (=02 + @l + 8 + 24 + @) h+ B (1 - 1) h* = 0. (22)
Case I. When A = +1 from Eq (22), setting the coeflicient of / to zero, we get
A=—a. (23)

From Eqgs (22) and (23), an arbitrary function & = k() is the solution of Eq (22). According to Eqgs
(15), (16), (19), (21) and (22), we have exact solutions

u(x, 1) = h(n) 0+, (24a)
2

V(x,1) = w (24b)

n=ux+x1), (24¢)

where p, ¢ are arbitrary constants and 4 = h () is an arbitrary function.
Case II. When A # +1, suppose Eq (22) is the solution of following equation

W =ah®>" + bh + ch", (25)

where a, b and n are constants that are calculated subsequently.
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By Eq (25), we have

W' =(nc?h? =@ (n=2) " + be (n+ 1) "™ = ab (n = 3)h'™ + b* + 2ac) h.

Substituting Eq (26) into (22), we get
(nc?h**? = @® (n = 2) B + be (n+ 1) "™ = ab (n = 3) '™ + b* + 2ac) hx
12 (1= %)+ (=0°2% + a2’ + 8 + 24 + @) h+ B (1 - ) i* = 0.
Setting n = 0, Eq (27) becomes
w2 (1= 2*) (3abh? + 2a°h° + be + (2ac + b*) h) +
(-2 + 2l + & + 24+ a)h+ p(1 - 22) i’ = 0.
Setting Eq (28) and each coefficient of 4'(i = 0, 1, 2, 3) to zero, we get
(1= %) be =0,
e (1 - /14) (b2 + 2ac) + (—62/14 +al>+6+24 + a) =0,
37 (1- %) ab =0,
2l (1-2%)a +p(1-2%) =0.
Solving Eq (29), we have

b =0,
P —al? -2 -2A -«
ac = s
22 (1-2%)
=1L
Vou N1+

(26)

(27)

(28)

(29a)

(29b)
(29¢)
(29d)

(30a)

(30b)

(30c)

Case II-1. When ac > 0, substituting Eq (30) and n = 0 into Eq (11), the solution of Eq (22) is

—PH+al2+62+2A+a
h(n) =+

B(1-2)
1 [ +al2+82+2A+«
t - B)|,

where A(4 # 1), B, u, 6 and A are arbitrary constants. Then, we have

-+ al2+6%2+2A +«
u(lx,t) ==+
B(1-2%)

. —CWH+al2+82+2A +«
an
2(24-1)

-

(x+ At + B)] £+

(31

(32a)
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Pl +al’P+2+2A+a

1) =
Ve -2
W+ al2+82+2A +« . A
t 2 +/lt+ B 216(/lx+t) + _
an [\/ 24— 1) (x e 1+

where A(1 # 1), A, B and ¢ are arbitrary constants.
Case II-2. If ac < 0, substituting Eq (30) and n = 0 into Eq (12), the solution of Eq (22) is

2pn

h) =+ —52/l4+a/12+62+2A+aX1+Ce7
v BB =T e
1-Ce

where A(1 # 1), C, u, A and ¢ are arbitrary real constants and

+\/—62/l4+a/12+62+2A+a
p==

2(1- 2%

Then, we have

2p(x+A
w(ri) =+ —SPl+al+ 2 +2A+a y 1 + Ce?tx+tn s
[)’(/12 _ 1) 1 _ Cez;)(x+,lt)

2
bt P a2+ +24+a (1 + CeZP(“’”)) i, A

/14 _ 1 1 _ CeZp(x+,{r) T/p’
where A(1 # =1), A, C, u and ¢ are arbitrary constants. By taking C > 0, Eq (35) becomes

PV +al2+62+2A+ )
noon = \/ ; (Z-1) = coth (p (x + 1 + B)) e,
- +al’++2A+a  _, Jis A
= i0(Ax+1)
v(x, 1) = o1 coth(p(x+ At + B))e + +—1+/12,

where A(4 # =1), A, B, u and ¢ are arbitrary constants. If we choose C < 0, Eq (35) becomes

tanh (o (x + At + B)) e+,

()= P+ al2+82+2A +«
u(x,t) ==+
B2 1)

Pl +al>+8+2A+a
At =1
where A(A # 1), A, B, u and ¢ are arbitrary constants.
Case II-3. If ac = 0, substituting Eq (30) and n = 0 into Eq (13), the solution of Eq (22) is

v(x,1) = tanh” (o (x + At + B)) e +

1+ 4%

1

[ B ’
i; —mn+c

h(n) =

(32b)

(33)

(34)

(35a)

(35b)

(36a)

(36b)

(37a)

(37b)

(38)
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where A(A # 1), C and yu are arbitrary constants. Then, we have

1 .
u(x,t) = O (39a)
+ ’_2(1I‘+/12)(x+/lt)+c
_ (A2 -1)-«a
vix,t) = P zeZ’W"“) —( 5 ) , (39b)
(1+ 22 (i —2(1’%2) (x + A) + C)

where A(1 # x1), C, A and ¢ are arbitrary constants. Eqgs (24), (35) and (39) are a new type of exact
traveling wave solutions to Eq (1). Egs (36) and (37) are a new kind of envelope solitary solutions
to Eq (1). Eq (32) is a new type of exact periodical wave solution to Eq (1). The solutions (24) and
(39) could not be obtained by the method presented in [25,26]. The solutions (32) and (35)—(37) are
identical to the results presented in [25].

4. Bicklund transformation of the CHF equation

If n = 0, Eq (25) 1s the Riccati equation
W =ah®+bh +c. (40)
Supposing that the solution of Eq (40) is the form
hy = hy + ho, (41)

where hy = hg (1) is a given solution of Eq (40) and h; = h; (1) is a function to be determined later. For
this reason, substituting Eq (41) into (40) yields

h' = ah? + (b + 2ahy) h,. 42)

Solving Bernoulli equation Eq (42), we get h,, then we get h,. Thus, we have a Bicklund transforma-
tion of Eq (40) as follows:
h2 = l’Ll + ho,

hy' = ahi + (b + 2ahy) h.

Using the Bicklund transformation in section three, infinitely new solutions of Eq (1) can be ob-
tained. For example, choosing

PP+ al2+82+2A+ «
ho=ho(n)=\/ X

B(1-4%)

(43)
1 |-+ al2+82+2A+«
tan| —
u 2% -1)
and applying Eqs (41) and (42) to Case II-1, we get
sec’E
=) = —T (44)
C - ftanEn
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where

1 , /6 1 p 294 2 2
- — _—,E—_ - n= + At , =001 +al°+6"+2A +
a (1 2) (1 4) n ,Lt(X ) P (0% 04

and u, 9, A and A are arbitrary constants. Then, we obtain a new solution of Eq (40)

hy = hy () = % + %tan En. (45)
From Eq (21), we obtain
) 2
”mzlfﬂcjiihm+§m£"+1fﬁ' (46)
Then, we obtain new solutions; that is,
u(x,t) = hy (17) €2, (47a)
vix,t) =v(n). (47b)

Similar to the above discussions, choosing

2(1+ %) 1
ho:hom):u\/%; (48)

and applying Eqs (41) and (42) to Case II-3, we obtain
3

hi=h =t
1 1 () C—ar

(49)

where a = 1 /_2(1’#2)’ n = pu(x+ At) and u, A are arbitrary constants. Then, we obtain a new solution

U

of Eq (40)
hy = hy(n) =

+ —. (50)

From Eq (21), we get

2
B 3’ 1 A
= +—| +—, S1
Y= rE\esar ) T oD
where u, A and A are arbitrary constants. Then, we have new solutions; that is,
u(x,1) = hy (17) €2, (52a)
vix,t)=v(m). (52b)

Similar to the above discussions, we can obtain a Backlund transformation of Eq (40) as follows:

hinsa = Byt + By, (53a)
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W = ah?, | + (b + 2ah,) by, (53b)

where m = 1,2, 3, ..., h,, = h,, (7) is a given solution of Eq (40) and A,,.1 = h,,11 (1) is a function to be
determined later. Solving Eq (53b), we get h,,., thus, we get h,,,,, which is a new solution of Eq (40).
Therefore, we get the Bicklund transformations of Eq (1)

W = ah?, | + (b +2ah,) by, (54a)
hm+2 = hm+1 + hm’ (54b)

u(x, 1) = hy (17) €24, (54c)
vix,t) =v(n), (544d)

where h,, = h,, () is a given solution of Eq (40).
Remark 2. In general, we can get the Bicklund transformations of Eq (5) as follows:

Wi = hy ", (55a)

W = =n) (aw,znﬂ + (b + 2aw,,) wm+1) , (55b)
W2 = Witl + Wi, (55¢)

e = WET, (55d)

where w,,, Wyui1, Wii2, B and hy,,,q are functions of n. Suppose that &, = h,, () is a given solution of
Eq (5). From Eq (55a), we can get w,,. Solving Eq (55b), we obtain w,,,;. According to Eq (55¢) and
(55d), we obtain a new solution of Eq (5).

S. Conclusions
In this paper, we established exact traveling wave solutions of the CHF equation by using the RB

method. Many new solutions of the CHF equation were obtained using the Bécklund transformations.
Many well-known NLPDESs can be processed in this way. We used computer software like Maple and
Mathematica to facilitate the tedious algebraic calculations. Therefore, the RB method was a standard
and computerizable approach. At the same time, the performance of this method was also found to be
simple and efficient.
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