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Abstract: This paper is concerned with the following planar Schrödinger-Poisson equations

−∆u + V(x)u + (ln | · | ∗ |u|p) |u|p−2u = f (x, u), x ∈ R2,

where p ≥ 2 is a constant, and V(x) and f (x, u) are continuous, mirror symmetric or rotationally
periodic functions. The nonlinear term f (x, u) satisfies a certain monotonicity condition and has critical
exponential growth in the Trudinger-Moser sense. We adopted a version of mountain pass theorem by
constructing a Cerami sequence, which in turn leads to a ground state solution. Our method has two
new insights. First, we observed that the integral

∫
R2

∫
R2 ln (|x − y|)|u(x)|p|u(y)|pdxdy is always negative

if u belongs to a suitable space. Second, we built a new Moser type function to ensure the boundedness
of the Cerami sequence, which further guarantees its compactness. In particular, by replacing the
monotonicity condition with the Ambrosetti–Rabinowitz condition, our approach works also for the
subcritical growth case.

Keywords: planar Schrödinger-Poisson equation; Cerami sequence; critical exponential growth;
mirror symmetry/rotationally periodicity; nonlinear equations

1. Introduction

The present paper is concerned with the existence of solution to the planar Schrödinger-Poisson
equations

−∆u + V(x)u + (ln | · | ∗ |u|p) |u|p−2u = f (x, u), x ∈ R2, (1.1)

where p ≥ 2, V, f are continuous, mirror symmetric or rotationally periodic functions, and f (x, t) has
exponential critical growth in the Trudinger-Moser sense ( [1] ).

In last decades, considerable attention has been paid to the following Schrödinger-Poisson
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equations: −∆u + V(x)u + K(x)ϕ(x)|u|p−2u = f (x, u), x ∈ R3,

−∆ϕ = K(x)|u|p, x ∈ R3
(1.2)

with various conditions on the parameters p,N and functions V,K, f . These kinds of equations arise in
many contexts of physics, such as, in quantum mechanics [2–4] and semiconductor theory [5–8]. In [5],
Eq (1.2) was introduced as a model describing solitary waves for nonlinear stationary equations of
Schrödinger type interacting with an electrostatic field where the unknown functions u and ϕ wave
function for particles and potential, respectively. Let p ∈ (1, 6] and K ∈ L∞(R3). For each u ∈ H1(R3),
the second equation in (1.2) determines the Newton potential ϕu in D1,2(R3), i.e.,

ϕu(x) :=
1

4π

∫
R3

K(y)|u(y)|p

|x − y|
dy.

Many minimization techniques, such as minimizing on a constraint set [9, 10] and the Mountain
Pass Theorem [11–15], were used in the Eq (1.2).

When K(x) ≡ 0, Eq (1.2) becomes the Schrödinger equation. In this case, there are many results
to Eq (1.2) with the dual method if V and f satisfy some certain conditions, such as a positive lower
bound on V or a monotonicity condition on f (see [16–20] and references therein).

In the following, let us focus on the two-dimensional case. Stubbe [21] considered the equations−∆u + λu + ϕ(x)u = 0, x ∈ R2,

∆ϕ = u2, x ∈ R2,
(1.3)

where λ ∈ R is a constant. They set up a variational framework for Eq (1.3) with a subspace Z of
H1(R2):

Z :=
{

u ∈ H1(R2) :
∫
R2

ln(1 + |x|)u2dx < ∞
}
.

They proved that there exists a unique radial ground state solution for any λ ≥ 0. In addition,
they proved that there exists a negative number λ∗, such that for any λ ∈ (λ∗, 0) there are two radial
ground states with different L2 norms. Cigolani and Weth [22] considered Eq (1.1) with p = 2 and
f (x, u) = b|u|σ−2u. Specifically, V ∈ C(R2, (0,∞)) is Z2 periodic. Using the concentration-compactness
theory, they proved that Eq (1.1) has a ground state u ∈ X2 and a solution sequence {un}n ⊂ X2, such
that limn→∞ J(un) = ∞. Here,

X2 :=
{

u ∈ H1(R2) :
∫
R2

[
|∇u|2 + V(x)u2 + ln(1 + |x|)u2

]
dx < ∞

}
and J are the energy functionals associated with Eq (1.1).

Chen and Tang [23] considered Eq (1.1) with p = 2, i.e.,−∆u + V(x)u + ϕ(x)u = f (x, u), x ∈ R2,

∆ϕ = u2, x ∈ R2,
(1.4)

where V ∈ C(R2, [0,∞)) is axially symmetrical and f ∈ C(R2 × R) is of subcritical or critical
exponential growth in the sense of Trudinger-Moser. More precisely, we say that f (x, t) has
subcritical exponential growth at t = ±∞ if it verifies
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(F1’) For every A > 0,
sup

x∈R2,|s|≤A
| f (x, s)| < +∞ (1.5)

and
lim
|t|→∞

| f (x, t)|
eαt2

= 0, uniformly in R2, (1.6)

for any α > 0;

and the function f (x, t) is said to have the critical exponential growth at t = ±∞ if it verifies

(F1) The nonlinearity f satisfies (1.5) and there exists α0 > 0 such that, for any α > α0, (1.6) holds but

lim
|t|→∞

| f (x, t)|
eαt2

= +∞, uniformly in R2 for all α < α0.

This notion of criticality can be referred to [24].
For the critical growth case, Chen and Tang [23] established the existence of a ground state solution

for Eq (1.4) by assuming following conditions on V and f :

(V0) V ∈ C(R, [0,∞)) and lim inf |x|→∞ V(x) > 0;

(CF1) V(x) := V(x1, x2) = V(|x1|, |x2|) for all x ∈ R2, f (x, t) := f (x1, x2, t) = f (|x1|, |x2|, t) for all
(x, t) ∈ R2 × R;

(CF2) f (x, t)t > 0 for all (x, t) ∈ R2 × R\{0}, and there exists M0 > 0 and t0 > 0 such that

F(x, t) ≤ M0| f (x, t)|, ∀ x ∈ R2, |t| ≥ t0,

where F(x, t) :=
∫ t

0
f (x, s)ds;

(CF3) lim inf |t|→∞
t2F(x,t)

eα0t2
> 2

α2
0ρ

2 uniformly on x ∈ R2, where ρ ∈ (0, 1/2) satisfying ρ2 max|x|≤ρ V(x) ≤ 1;

(CF4) f (x,t)−V(x)t
|t|3 is non-decreasing on t ∈ R\{0}.

Recently, Cao et al. [25] considered the equations

−∆u + V(x)u + (ln | · | ∗ |u|p) |u|p−2u = b|u|σ−2u, x ∈ R2, (1.7)

where σ ≥ 2p, b ≥ 0 and V ∈ C(R2, (0,∞)) are Z2 periodic. With a similar method in [22], they
obtained the existence of a positive ground state solution of Eq (1.7) in Xp, where

Xp :=
{

u ∈ H1(R2) :
∫
R2

[
|∇u|2 + V(x)u2 + ln(1 + |x|)|u|p

]
dx < ∞

}
.

Here, we will prove the existence of a nontrivial solution to Eq (1.1), not only for all p ≥ 2, but also
for general nonlinearities f and potentials V .

To describe our main results, we introduce the following notations: Let us view R2 as C, let k ∈
N, k ≥ 2 and we say that v ∈ Pk if v(ze2πi/k) = v(z) over C. We define

Ek,p := Xp ∩ Pk, Vk,1 := C(C) ∩ Pk
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Fk,1 := { f ∈ C(C × R) : f (·, t) ∈ Pk,∀ t ∈ R}.

We say that v is mirror symmetric denoted by v ∈ M if v(z) = v(z) in C. Let

Tk,p := Ek,p ∩M, Vk,2 := Vk,1 ∩M,

Fk,2 := { f ∈ Fk,1 : f (·, t) ∈ M,∀ t ∈ R}.

Finally, we write the associated functional of Eq (1.1) in the following form

Φ(u) =
1
2
∥u∥2 +

1
4pπ

∫
R2

∫
R2

ln (|x − y|)|u(x)|p|u(y)|pdxdy −
∫
R2

F(x, u)dx, (1.8)

and the associated Nehari manifold of the functional (1.8) is

N1 := {u ∈ Ek,p\{0} : ⟨Φ′(u), u⟩ = 0},
N2 := {u ∈ Tk,p\{0} : ⟨Φ′(u), u⟩ = 0}.

(1.9)

Our main result is stated as follows.

Theorem 1.1. Let p ≥ 2, V and f satisfy (V0), (F1) and the following conditions

(VF) V ∈ Vk,1 and f ∈ Fk,1 with k ≥ 4 or V ∈ Vk,2 and f ∈ Fk,2 with k ≥ 2;

(F2) f (x, t)t ≥ 0 for all (x, t) ∈ R2 × R\{0}, and there exists M0 > 0 and t0 > 0 such that F(x, t) ≤
M0| f (x, t)| for x ∈ R2, |t| ≥ t0;

(F3) There exists q ∈ R such that lim inf |t|→∞
|t|qF(x,t)

eα0t2
= +∞;

(F4) gp(x, t) is non-decreasing on t ∈ (−∞, 0) and t ∈ (0,∞), where

gp(x, t) :=

 f (x,t)−V(x)t
|t|2p−1 , p = 2,

f (x,t)−µV(x)t
|t|2p−1 , p > 2

for some µ < 1.

(F5) If p = 2, f (x, t) = o(t) as t → 0 uniformly on R2; and if p > 2, f (x, t) = O(ts0) with s0 > 1 as
t → 0 uniformly on R2.

Then, Eq (1.1) has a nontrivial solution ū. Moreover, if V ∈ Vk,1 and f ∈ Fk,1, then ū ∈ Ek,p satisfies

Φ(ū) = min
N1
Φ;

if V ∈ Vk,2 and f ∈ Fk,2, then ū ∈ Tk,p satisfies

Φ(ū) = min
N2
Φ.

Remark 1.2. Comparing to [23, Theorem 4], we have weakened the assumptions (CF1)–(CF3) to (VF)
and (F2)–(F3), respectively. More precisely,

• (CF1) means V ∈ V2,2 and f ∈ F2,2, hence, it is a special case of (VF);
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• The condition (F3) is less restrictive than (CF3) for the behavior of f at infinity;

• (F2) improves slightly (CF2) where f (x, t)t > 0 is replaced by f (x, t)t ≥ 0;

Here is an example of f , which satisfies (VF) and (F1)–(F5), but not (CF3). Let θ > 0, p0 ≥ p, q0 > 2
and

f0(x, t) =


θeα0t2 (2α0t2−q0)

tq0+1 , t ≥
√

p0+q0
α0

,

θ
ep0+q0 (2p0+q0)αp0+q0/2

0
(p0+q0)p0+q0/2

t2p0−1, 0 ≤ t <
√

p0+q0
α0

with odd extension to t < 0. Finally, it seems that [23] used implicitly f (t) = o(t) as t → 0 with p = 2
in (F5) (see the proof of Lemma 2.6 there).

Our approach works also for the subcritical case.

Theorem 1.3. Let p ≥ 2, V and f satisfy (V0), (VF), (F1’), (F5) and the following condition:

(F4’) f (x, t)t > 0 for all (x, t) ∈ R2 × (R\{0}) and there exists ν ∈ (2,∞), t1 ∈ (0,∞) such that

f (x, t)t ≥ νF(x, t), ∀ x ∈ R2, |t| ≥ t1;

Furthermore, if p > 2, we assume that

Mt1 <

(
1
2
−

1
µ

)
γ2,

where

Mt1 = sup
(x,t)∈R2×[−t1,t1]\{0}

F(x, t)
t2 and γ = inf

u∈Xp

∥u∥
∥u∥H1(R2)

> 0.

Then, Eq (1.1) has a nontrivial solution ū. Moreover, ū ∈ Ek,p if V ∈ Vk,1 and f ∈ Fk,1, and ū ∈ Tk,p

if V ∈ Vk,2 and f ∈ Fk,2.

This paper is organized as follows: In Section 2, we present some basic results; in particular we
show that the energy functional corresponding to the nonlocal term is non positive, which is our key
observation and different from the available results, see Lemma 2.3. In Section 3, we prove a mountain
pass type theorem using a new test function, see Lemma 3.2 below. In Sections 4 and 5, we give the
proof of Theorems 1.1 and 1.3, respectively.

2. Preliminaries

In this section, we will give some preliminary definitions and basic facts about inequalities, such as
the Moser-Trudinger inequality, the energy estimate of the nonlocal term. In the following, the letter C
denotes generic positive constants and ∥ · ∥q denotes the standard norm in Lq(R2).

The function space Xp is a Banach space equipped with the norm

∥u∥Xp := ∥u∥ + ∥u∥∗, (2.1)
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where

∥u∥∗ :=
(∫
R2

ln(1 + |x|)|u|pdx
) 1

p

; (2.2)

while

∥u∥ :=
(∫
R2

[
|∇u|2 + V(x)u2

]
dx

) 1
2

(2.3)

is induced by the scalar product

⟨u, v⟩ :=
∫
R2

(∇u · ∇v + V(x)uv)dx. (2.4)

We will use the following bilinear functionals (see [21]):

A1(u, v) :=
∫
R2

∫
R2

ln(1 + |x − y|)u(x)v(y)dxdy; (2.5)

A2(u, v) :=
∫
R2

∫
R2

ln
(
1 +

1
|x − y|

)
u(x)v(y)dxdy; (2.6)

A0(u, v) := A1(u, v) − A2(u, v) =
∫
R2

∫
R2

ln(|x − y|)u(x)v(y)dxdy. (2.7)

By the Hardy-Littlewood-Sobolev inequality (see [26]), there exists C > 0 such that for any u, v ∈
L4/3(R2),

|A2(u, v)| ≤
∫
R2

∫
R2

1
|x − y|

u(x)v(y)dxdy ≤ C∥u∥ 4
3
∥v∥ 4

3
. (2.8)

Corresponding to (2.5)–(2.7), we define

Ii(u) := Ai(|u|p, |u|p), i = 0, 1, 2. (2.9)

The following bound for I2(u) is a direct consequence of (2.8):

|I2(u)| ≤ C∥u∥2p
4p
3

, ∀ u ∈ L
4p
3 (R2), ∀ p ≥ 1. (2.10)

We can rewrite the associated functional of Eq (1.1) in the following form

Φ(u) =
1
2
∥u∥2 +

1
4pπ

I0(u) −
∫
R2

F(x, u)dx. (2.11)

Next, we state several lemmas.

Lemma 2.1. (i) Let u ∈ H1(R2), then for any α > 0,∫
R2

(
eαu2
− 1

)
dx < ∞.

(ii) Given M > 0, α ∈ (0, 4π), there exists a constant C(M, α) such that for all u ∈ H1(R2) satisfying
∥∇u∥2 ≤ 1, ∥u∥2 ≤ M, there holds ∫

R2

(
eαu2
− 1

)
dx < C(M, α).

Electronic Research Archive Volume 31, Issue 11, 6763–6789.



6769

The statements (i) and (ii) of the above lemma were first established by [27, Lemma 1] and [1,
Lemma 2.1], respectively (see also [28, 29]).

Lemma 2.2. Assume that V and f satisfy (V0), (F1)(or (F1’)), (F5). Then, Ii,Φ ∈ C1(Xp,R) and

⟨I′i (u), v⟩ = 2pAi(|u|p, |u|p−2uv), i = 1, 2

⟨Φ′(u), v⟩ = ⟨u, v⟩ +
1

2π
A0(|u|p, |u|p−2uv) −

∫
R2

f (x, u)vdx.
(2.12)

For the sake of completeness, we present a proof of Lemma 2.2 in the appendix. The following
lemma is our first key observation.

Lemma 2.3. For any u ∈ Xp, we have I0(u) ≤ 0.

Proof. First, let u ∈ C∞0 (R2) with supp(u) ⊂ B 1
2
(0). Then

I0(u) =
∫

B 1
2

(0)

∫
B 1

2
(0)

ln(|x − y|)|u(x)|p|u(y)|pdxdy ≤ 0.

Consider now u ∈ C∞0 (R2,R). Take R > 0 such that supp(u) ⊂ BR(0) and let w(x) = u(2Rx), so
supp(w) ⊂ B 1

2
(0) and ϕw(x) := 1

4R2ϕu(2Rx). Hence,

1
2π

I0(u) =
∫

BR(0)

∫
BR(0)

ln(|x − y|)|u(x)|p|u(y)|pdxdy

=16R4
∫

B 1
2

(0)

∫
B 1

2
(0)

ln(|x − y|)|w(x)|p|w(y)|pdxdy ≤ 0.

We conclude by the density argument. For any R > 0, let φR(r) be a C∞0 cut-off function such
that 0 ≤ φ ≤ 1, φR ≡ 1 on [0,R] and φR ≡ 0 on [R + 1,∞). Let η be the standard mollifier and
ηδ(x) := 1

δ2η( x
δ
), where δ > 0. Given ϵ > 0, since

√
Vu ∈ L2(R2), [ln(1 + | · |)]1/pu ∈ Lp(R2), [30, Pages

264 and 714], we can choose δ small enough such that∥∥∥∥φ 1
δ
(| · |)u − u

∥∥∥∥
Xp
< ϵ,

∥∥∥∥ηδ ∗ [φ 1
δ
(| · |)u

]
− φ 1

δ
(| · |)u

∥∥∥∥
Xp
< ϵ.

Therefore, for any u ∈ Xp, there exists {un}n ⊂ C∞0 (R2) such that limn→∞ ∥un − u∥Xp = 0. By the fact
I0 = I1 − I2 and Lemma 2.2, we conclude that I0(u) ≤ 0.

Corollary 2.4. Assume that V and f satisfy (V0) and (F1)(or (F4’)). Then

lim
t→∞
Φ(tω) = −∞, ∀ ω ∈ Xp\{0}.

Proof. For any ω ∈ Xp\{0}, there exists δ > 0 such that m{|ω(x)| ≥ δ} > 0. For a critical case, by
Lemma 2.3 and (F1), one has

Φ(tω) =
t2

2
∥ω∥2 +

t4

4pπ
I0(ω) −

∫
R2

F(x, tω)dx
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≤
t2

2
∥ω∥2 −C

∫
{|ω(x)|≥δ}

eα0δ
2t2/2dx→ −∞, as t → ∞.

For a subcritical case, we choose large enough R > 0 such that m(G) > 0, where

G := {|ω(x)| ≥ δ} ∩ BR(0).

By (F4’) and choosing M := ∥ω∥
2

m(G) > 0, there exists tM > 0 such that

|F(x, tw)| ≥ Mt2, ∀x ∈ G, |t| ≥ tM,

which together with Lemma 2.3 implies

Φ(tω) =
t2

2
∥ω∥2 +

t4

4pπ
I0(ω) −

∫
R2

F(x, tω)dx

≤
t2

2
∥ω∥2 − t2Mm(G) = −

t2

2
∥ω∥2 → −∞

as t → ∞, and we complete the proof.

The following lemma is inspired by [31, Lemma 2.2].

Lemma 2.5. Assume that V and f satisfy (V0) and (VF). Then there exists Ck > 0 such that

A1(|u|p, |v|p) ≥ Ck∥u∥p∗∥v∥
p
p, ∀ u, v ∈ Ek,p. (2.13)

In particular, since Tk,p ⊂ Ek,p, (2.13) holds for u, v ∈ Tk,p.

Proof. Let Ω1 := {(x1, x2) ∈ R2 : xi ≥ 0}, Ω2 = −Ω1. For any x ∈ Ω1 and y ∈ Ω2, one has

|x − y|2 = |x|2 + |y|2 − 2x · y ≥ |x|2 + |y|2.

Then, it follows from the definition of Ek,p and k ≥ 4 that

A1(|u|p, |v|p) =
∫
R2

∫
R2

ln(1 + |x − y|)|u(x)|p|v(y)|pdxdy

≥

∫
Ω2

|v(y)|pdy
∫
Ω1

ln(1 + |x − y|)|u(x)|pdx

≥

∫
Ω2

|v(y)|pdy
∫
Ω1

ln(1 + |x|)|u(x)|pdx

≥
1
k2

∫
R2
|v(y)|pdy

∫
R2

ln(1 + |x|)|u(x)|pdx

≥ Ck∥u∥p∗∥v∥
p
p, ∀ u, v ∈ Ek,p,

so we obtain (2.13).
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3. Variational framework

In this section, we will quote a version of Mountain Pass Theorem and prepare the proof of
Theorems 1.1 and 1.3.

Lemma 3.1. Let Y be a real Banach space and I ∈ C1(Y,R). Let S be a closed subset of Y, which
disconnects Y into distinct connected Y1 and Y2. Suppose further that I(0) = 0 and
(i) 0 ∈ Y1, and there exists α > 0 such that I|S ≥ α,
(ii) There is e ∈ Y2 such that I(e) ≤ 0.

Then, I possesses a Cerami sequence with c ≥ α > 0 given by

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e},

and a Cerami sequence means a sequence {un} ⊂ X such that

I(un)→ c, ∥I′(un)∥Y′(1 + ∥un∥Y)→ 0.

The proof of the above lemma can be found in [32, Theorem 3]. We state another result that serves
as a bridge between the mountain pass structure (see Lemma 3.3) and Theorem 1.1.

Lemma 3.2. Assume that V and f satisfy (V0), (F1) and (F3)–(F5). Then there exists n0 ∈ N such that

max
t≥0
Φ(tωn0) <

2π
α0
, (3.1)

where

ωn(x) =


√

ln n
√

2π
−

q ln (ln n)
2
√

2π ln n
, 0 ≤ |x| ≤ (ln n)q/2/n;

ln(1/|x|)
√

2π ln n
, (ln n)q/2/n ≤ |x| ≤ 1;

0, |x| ≥ 1.

Proof. Without loss of generality, we can fix q ≥ 2. Direct computation yields

∥ωn∥
2 ≤

∫
B1

|∇ωn|
2dx + V1

∫
B1

ω2
ndx

=1 −
q ln (ln n)

2 ln n
+ δn,

(3.2)

where δn = O( 1
ln n ) as n→ ∞. By (F3), there exists t0 > 0 such that

|t|qF(x, t)
eα0t2

≥ 1, ∀ |t| ≥ t0. (3.3)

There are three cases for the value of t.
Case (i): 0 ≤ t ≤

√
3π
α0

. For large n, then it follows from (3.2) and Lemma 2.3 that

Φ(tωn) =
t2

2
∥ωn∥

2 +
t2p

2p
I0(ωn) −

∫
R2

F(x, tωn)dx ≤
1 + δn

2
t2 ≤

7π
4α0

. (3.4)
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Case (ii):
√

3π
α0
≤ t ≤

√
8π
α0

. For large n, we have tωn(x) ≥ t0 for x ∈ B(ln n)q/2/n. Then it follows
from (3.2), (3.3) and Lemma 2.3 that

Φ(tωn) =
t2

2
∥ωn∥

2 +
t2p

2p
I0(ωn) −

∫
R2

F(x, tωn)dx

≤
1 + δn

2
t2 −

q ln(ln n)
4 ln n

t2 −
2q/2π1+q/2(ln n)q

n2tqT q/2
n

e
α0
2π t2Tn

≤
1 + δn

2
t2 −

q ln(ln n)
4 ln n

t2 −
α

q/2
0 π(ln n)q

2qn2T q/2
n

e
α0
2π t2Tn =: φn(t),

(3.5)

where

Tn := ln n − q ln(ln n) +
q2 ln2(ln n)

4 ln n
.

Let tn > 0 be the unique maximum of φn in R+, then (as n→ ∞)

t2
n =

4π
α0

[
1 +

(q − 1) ln(ln n)
2 ln n

+ O
(

1
ln n

)]
(3.6)

and

φn(t) ≤ φn(tn) =
1 + δn

2
t2
n −

q ln(ln n)
4 ln n

t2
n + O

(
1

ln n

)
. (3.7)

Combining (3.5)–(3.7), one has

Φ(tωn) ≤ φn(tn) =
2π
α0
−

ln(ln n)
2 ln n

+ O
(

1
ln n

)
. (3.8)

Case (iii): t ≥
√

8π
α0

. As in the above case (ii), we have

Φ(tωn) ≤
1 + δn

2
t2 −

2q/2π1+q/2(ln n)q

n2tqT q/2
n

e
α0
2π t2Tn

≤
1 + δn

2
t2 −

2q/2π1+q/2(ln n)q

tqT q/2
n

exp
[
2
(
α0

4π
t2 − 1

)
Tn

]
≤

4π(1 + δn)
α0

−
α

q/2
0 π(ln n)q/2

2q n2

≤ 0

(3.9)

for large n. To get the third inequality, we used the fact that the function

1 + δn

2
t2 −

2q/2π1+q/2(ln n)q

tqT q/2
n

exp
[
2
(
α0

4π
t2 − 1

)
Tn

]
is decreasing on t ≥

√
8π
α0

when n is large enough. Combining the conclusions for cases (i)–(iii), the
proof is completed.

Now we show the existence of the Cerami sequence.
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Lemma 3.3. Assume that V and f satisfy (V0), (VF), (F1)(or (F1’) and (F4’)) and (F5). Then there
exists a constant c̃ ∈ (0, supt≥0Φ(tωn0)] and a Cerami sequence {un} ⊂ Ek,p such that

Φ(un)→ c̃, ∥Φ′(un)∥X′p(1 + ∥un∥Xp)→ 0. (3.10)

Proof. Applying the Sobolev embedding theorem for given s ∈ [2,∞), there exists γs > 0 such that

∥u∥s ≤ γs∥u∥, ∀ u ∈ Xp. (3.11)

By (F1) (or (F1’)) and (F5) for any ϵ > 0, there exists some constant Cϵ > 0 such that

|F(x, t)| ≤ ϵt2 +Cϵ(e3α0t2/2 − 1)|t|3, ∀ (x, t) ∈ R2 × R. (3.12)

On the other hand, in view of Lemma 2.1, one has∫
R2

(
e3α0u2

− 1
)

dx ≤ C, ∀ ∥u∥ ≤
√

π

α0
. (3.13)

Let ϵ = 1
4γ2

2
from (3.11)–(3.13), and there holds

∫
R2

F(x, u)dx ≤
1
4
∥u∥2 +C3∥u∥3, ∀ ∥u∥ ≤

√
π

α0
. (3.14)

Hence, it follows from (2.11) and (3.14) that if ∥u∥ ≤
√

π
α0

,

Φ(u) =
1
2
∥u∥2 +

1
4pπ

(I1(u) − I2(u)) −
∫
R2

F(x, u)dx

≥
1
4
∥u∥2 −C3∥u∥3 −C4∥u∥2p.

(3.15)

Therefore, there exists κ0 > 0 and 0 < ρ <
√

π
α0

such that

Φ(u) ≥ κ0, ∀ u ∈ S := {u ∈ Ek,p : ∥u∥ = ρ}. (3.16)

By (V0), (F1) (or (F4’)) and Corollary 2.4, we have limt→∞Φ(tωn0) = −∞, and then we can choose
t∗ > 0 such that e = t∗ωn0 ∈ Y2 := {u ∈ Ek,p : ∥u∥ > ρ} andΦ(e) < 0. Let Y1 := {u ∈ Ek,p : ∥u∥ ≤ ρ}, then
in view of Lemma 3.1, one deduces that there exists c̃ ∈ [κ0, supt≥0Φ(tωn0)] and a Cerami sequence
{un} ⊂ Ek,p satisfying (3.10).

4. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the following lemmas. As in Lemma 2.5, we only consider
the Ek,p case.

Lemma 4.1. Assume that V and f satisfy (V0), (VF), (F1), (F4) and (F5), then we have
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(i) Let m1 := infN1 Φ(u), then there exists a constant c∗ ∈ (0,m1] and a sequence {un} ⊂ Ek,p satisfying

Φ(un)→ c∗, ∥Φ′(un)∥X′p(1 + ∥un∥Xp)→ 0. (4.1)

(ii) For any u ∈ Ek,p\{0}, there exists a unique tu > 0 such that tuu ∈ N1. Moreover, we have

m1 = inf
Ek,p\{0}

max
t≥0
Φ(tu).

Proof. We will prove that
Φ(u) = max

t≥0
Φ(tu), ∀ u ∈ N1 (4.2)

and then we can get the statement (i). Indeed, if (4.2) holds the same as [33, Lemma 3.2], we can
choose vk ∈ N1 such that

m1 ≤ Φ(vk) ≤ m1 +
1
k
, k ∈ N.

For any vk, similarly to Lemma 3.3, we can obtain a Cerami sequence {uk,n}n ⊂ Ek,p such that

Φ(uk,n)→ ck, ∥Φ′(uk,n)∥X′p(1 + ∥un∥Xp)→ 0, ∀ k ∈ N

with ck ∈ (0, supt≥0Φ(tvk)]. By (4.2) and the diagonal rule, we can verify (4.1), and now we prove
(4.2). By (2.11) and (2.12), one has

Φ(u) − Φ(tu) =
1 − t2

2
∥u∥2 +

1 − t2p

4pπ
I0(u) +

∫
R2

[F(x, tu) − F(x, u)]dx

=
1 − t2p

2p
⟨Φ′(u), u⟩ +

t2p − pt2 + p − 1
2p

∥u∥2

+

∫
R2

[
1 − t2p

2p
f (x, u)u + F(x, tu) − F(x, u)

]
dx

=
1 − t2p

2p
⟨Φ′(u), u⟩ +

t2p − pt2 + p − 1
2p

∥u∥2

+

∫
R2

∫ 1

t

[
f (x, u) − V(x)u
|u|2p−1 −

f (x, su) − V(x)su
|su|2p−1

]
s2p−1|u|2p−1udsdx

≥
1 − t2p

2p
⟨Φ′(u), u⟩ +

t2p − pt2 + p − 1
2p

∥u∥2.

(4.3)

According to the fact u ∈ N1 and mint≥0(t2p − pt2 + p − 1) attained at t = 1, then (4.2) holds.

Next, we consider statement (ii). Let u ∈ Ek,p\{0} be fixed and ζ(t) := Φ(tu) on [0,∞). By the
definition (2.11),

ζ′(t) = 0 ⇐⇒ t2∥u∥2 +
t2p

2π
I0(u) −

∫
R2

f (x, tu)tudx = 0 ⇐⇒ tu ∈ N1.

Using (3.15), (F1) and Lemma 2.3, one has ζ(0) = 0, ζ(t) > 0 for t > 0 small and ζ(t) < 0 for t
large. Therefore maxt∈(0,∞) ζ(t) is achieved at some tu > 0 so that ζ′(tu) = 0 and tuu ∈ N1. Now, we
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claim that tu is unique. In fact, for any given u ∈ Ek,p\{0}, let t1, t2 > 0 such that ζ′(t1) = ζ′(t2) = 0.
By (4.3), taking t = t2

t1
and t = t1

t2
respectively, it implies

Φ(t1u) ≥ Φ(t2u) +
t2
1g(t2/t1)

2p
∥u∥2 and Φ(t2u) ≥ Φ(t1u) +

t2
2g(t1/t2)

2p
∥u∥2,

where g(t) := t2p − pt2 + p − 1. Therefore, we must have t1 = t2, since g(s) > 0 for any s > 0, s , 1.

Lemma 4.2. Assume that V and f satisfy (V0), (VF), (F1), (F4) and (F5). Then any sequence satisfying
(4.1) is bounded w.r.t. ∥ · ∥.

Proof. We only consider the case p > 2. The case p = 2 is obtained by [23, Lemma 2.11]. First, we
prove that

1
2p

f (x, t)t − F(x, t) ≥
µ(1 − p)

2p
V(x)t2, ∀ t ∈ R. (4.4)

Indeed, by (F4), there holds

F(x, t) −
µ

2
V(x)t2 =

∫ t

0
[ f (x, τ) − µV(x)τ]dτ

≤

∫ t

0

f (x, t) − µV(x)t
|t|2p−1 |τ|2p−2τdτ

=
f (x, t)t − µV(x)t2

2p
.

By (4.4), one has

c∗ + o(1) = Φ(un) −
1

2p
⟨Φ′(un), un⟩

=

(
1
2
−

1
2p

)
∥un∥

2 +

∫
R2

(
1

2p
f (x, un)un − F(x, un)

)
dx

≥

(
1
2
−

1
2p

)
∥un∥

2 −

(
1
2
−

1
2p

)
µ

∫
R2

V(x)u2
ndx

≥
(p − 1)(1 − µ)

2p
∥un∥

2. (4.5)

Here, we also used (2.11), (2.12) and (4.1). Therefore, we complete the proof.

Proof of Theorem 1.1 completed. Applying Lemmas 4.1 and 4.2, we deduce that there exists a
sequence {un} ⊂ Ek,p satisfying (4.1) and ∥un∥ ≤ C < ∞. Now, we prove∫

R2
f (x, un)undx ≤ C. (4.6)

Indeed, let p ≥ 2, and by (2.11), (2.12) and (4.1) there holds

c∗ + o(1) = Φ(un) −
p + µ(1 − p)

2p
⟨Φ′(un), un⟩
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≥
(p − 1)µ

2p
∥un∥

2 −
(p − 1)µ

2p

∫
R2

V(x)u2
ndx +

(1 − p)(1 − µ)
4pπ

I0(un)

+
(p − 1)(1 − µ)

2p

∫
R2

f (x, un)undx

≥
(p − 1)(1 − µ)

2p

∫
R2

f (x, un)undx,

hence (4.6) holds true. Next, we complete the proof of Theorem 1.1 in three steps.

Step 1: {un} is bounded in Ek,p.
We first prove that δ0 := lim supn→∞ ∥un∥p > 0. Suppose the contrary δ0 = 0, then from the

Gagliardo-Nirenberg inequality (see [34, Page 125]):

∥un∥
s
s ≤ Cs∥un∥

θ
p∥∇un∥

1−θ
2 , (4.7)

where 2 ≤ p < t < ∞, θ = p
t . Hence, un → 0 in Lη(R2) for η ∈ (2,+∞). Given any ε ∈ (0,M0C10/t2),

we choose Mε > M0C10/ε, then it follows from (F2) and (4.6) that∫
|un |≥Mε

F(x, un)dx ≤ M0

∫
|un |≥Mε

| f (x, un)|dx

≤
M0

Mε

∫
|un |≥Mε

f (x, un)undx < ε.
(4.8)

Applying (F5), one has∫
|un |≤Mε

F(x, un)dx ≤

Cε∥un∥
2
2 = o(1), p = 2,

Cε∥un∥
s+1
s+1 = o(1), p > 2

(4.9)

and ∫
|un |≤1

f (x, un)undx ≤

C∥un∥
2
2 = o(1), p = 2,

C∥un∥
s+1
s+1 = o(1), p > 2.

(4.10)

By the arbitrariness of ε > 0, we deduce from (F2), (4.8) and (4.9) that∫
R2

F(x, un)dx = o(1). (4.11)

Hence, by (2.10) we have
0 ≤ I2(un) ≤ C∥un∥

2p
4p
3

= o(1). (4.12)

By Lemmas 3.2 and 3.3, we know that ε̄ := 1
3 (1 − α0c̃

2π ) > 0, which together with (2.11), (3.10),
(4.11), (4.12) and the fact I1(un) ≥ 0 implies

∥un∥
2 = 2c̃ −

1
2pπ

I1(un) +
1

2pπ
I2(un) + o(1) ≤ 2c̃ + o(1) =

4π
α0

(1 − 3ε̄) + o(1). (4.13)

Now, let d ∈ (1, p
p−1 ) satisfy

(1 + ε̄)(1 − 3ε̄)d
1 − ε̄

< 1. (4.14)
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By (F1), there exists C > 0 such that

| f (x, t)|d ≤ C
[
eα0(1+ε̄)dt2 − 1

]
, ∀ x ∈ R2, |t| ≥ 1. (4.15)

It follows from (4.13)–(4.15) and Lemma 2.1 that∫
|un |≥1
| f (x, un)|ddx ≤ C

∫
R2

[
eα0(1+ε̄)du2

n − 1
]

dx

= C
∫
R2

[
eα0(1+ε̄)d∥un∥

2(un/∥un∥)2
− 1

]
dx ≤ C. (4.16)

As d′ = d
d−1 > p, using (4.16) there holds∫

|un |≥1
f (x, un)undx ≤

[∫
|un |≥1
| f (x, un)|qdx

]1/d

∥un∥d′ = o(1). (4.17)

Combining (2.10)–(2.12), (3.10), (4.10) and (4.17), we arrive at

c̃ + o(1) = Φ(un) −
1
2
⟨Φ′(un), un⟩

= −

(
1

4π
−

1
4pπ

)
I1(un) +

(
1

4π
−

1
4pπ

)
I2(un)

+

∫
R2

[
1
2

f (x, un)un − F(x, un)
]

dx

≤ o(1).

(4.18)

This contradiction shows that δ0 > 0. Now, from (2.10), (4.5) and Lemma 2.3, one has

I1(un) ≤ I2(un) ≤ C,

which, together with Lemma 2.5, implies that ∥un∥∗ is bounded and {un} is bounded in Ek,p.

Step 2: Φ′(ū) = 0 in E′k,p and Φ(ū) = m1.
We can assume by [25, Lemma 2.3] and passing to a subsequence again if necessary, that un ⇀ ū

in Ek,p, un → ū a.e. on R2 and
un → ū in Ls(R2),

where s ∈ [2,∞) if p = 2 and s ∈ (2,∞) if p > 2. First, we need prove that

lim
n→∞

∫
R2

F(x, un)dx =
∫
R2

F(x, ū)dx and lim
n→∞

∫
R2

f (x, un)ūdx =
∫
R2

f (x, ū)ūdx. (4.19)

Since (4.6) and the condition (F1), (F2) and (F5) hold the same as [23, Assertions 2 and 3], (4.19)
still holds. Next, we prove that

lim
n→∞

I2(un) = I2(ū). (4.20)

Indeed, noting that un → ū in L
4p
3 (R2) by [35, Lemma A.1], there exists w0 ∈ L

4p
3 (R2) such that

|un(x)| ≤ w0(x) and |ū(x)| ≤ w0(x),
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a.e., for a subsequence if necessary, which together with the Lebesgue dominated convergence theorem
and Hardy-Littlewood-Sobolev inequality implies

|I2(un) − I2(ū)| ≤
∣∣∣A2

(
|un|

p, |un|
p − |ū|p

)∣∣∣ + ∣∣∣A2
(
|un|

p − |ū|p, |ū|p
)∣∣∣ = o(1) (4.21)

as n→ ∞ and (4.20) is proved. Now, we claim that

Φ(ū) = m1, ⟨Φ′(ū), ū⟩⟨X′p,Xp⟩ = 0. (4.22)

Indeed, similar as (4.20), we also have

A2(|un|
p, |un|

punū) − A2(|ū|p, |ū|p) = o(1). (4.23)

By [25, Lemma 3.3], one has

A1(|un|
p, |un|

p−2ū(un − ū)) = o(1),

which together with (3.10), (4.19) and Fatou’s Lemma implies

o(1) =⟨Φ′(un), ū⟩⟨X′p,Xp⟩

=⟨un, ū⟩ +
1

2π
A1(|un|

p, |un|
p−2unū) −

1
2π

A2(|un|
p, |un|

p−2ū2) −
∫
R2

f (x, un)ūdx + o(1)

≥⟨Φ′(ū), ū⟩⟨X′p,Xp⟩ + o(1).

(4.24)

Hence, we can obtain
⟨Φ′(ū), ū⟩⟨X′p,Xp⟩ ≤ 0. (4.25)

Since ū , 0, by Lemma 4.1 there exists t̄ ∈ (0, 1] such that t̄ū ∈ N1. By (3.10), (4.4) and (4.25), the
weak lower semi-continuity of norm, Lemma 4.1, the condition (F4) and Fatou’s Lemma, we have

m1 ≥ c∗ = lim
n→∞

[
Φ(un) −

1
2p
⟨Φ′(un), un⟩⟨X′p,Xp⟩

]
= lim

n→∞

{(
1
2
−

1
2p

)
∥∇un∥

2
2 +

∫
R2

[
1

2p
f (x, un)un − F(x, un) +

p − 1
2p

V(x)u2
n

]
dx

}
≥

(
1
2
−

1
2p

)
∥∇ū∥22 +

∫
R2

[
1

2p
f (x, ū)ū − F(x, ū) +

p − 1
2p

V(x)ū2
]

dx

=Φ(ū) −
1

2p
⟨Φ′(ū), ū⟩⟨X′p,Xp⟩

≥Φ(t̄ū) −
t̄2p

2p
⟨Φ′(ū), ū⟩⟨X′p,Xp⟩

≥m1 −
t̄2p

2p
⟨Φ′(ū), ū⟩⟨X′p,Xp⟩ ≥ m1, (4.26)

which implies (4.22) and
lim
n→∞
Φ(un) = m1. (4.27)
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By (4.19), (4.20), (4.22) and (4.27) and the weak lower semi-continuity of norm and Fatou’s
Lemma, one has

o(1) = Φ(un) − Φ(ū) = ∥un∥
2 − ∥ū∥2 +

1
4pπ

[I1(un) − I1(ū)] + o(1), (4.28)

which implies
lim
n→∞
∥un − ū∥ = 0 and lim

n→∞
I1(un) = I1(ū). (4.29)

Hereafter, we claim that
A1(|un|

p, |vn|
p)→ 0, as n→ ∞, (4.30)

where |vn|
p := |un|

p−2|un − ū|2. Indeed, we have

A1(|un|
p, |vn|

p) = I1(un) − 2A1(|un|
p, |un|

p−2(un − ū)ū) − A1(|un|
p, |un|

p−2ū2).

Then, we estimate

|A1(|un|
p, |un|

p−2(un − ū)ū)| ≤∥un∥
p
p

∫
R2
|un|

p−2|un − ū||ū|dx

+ ∥un∥
p
∗∥un∥

p−2
p ∥un − ū∥p∥ū∥p

≤∥un∥
p
p

∫
R2
|un|

p−2|un − ū||ū| ln(1 + |x|)dx + on(1).

(4.31)

For any ϵ > 0, there exists Rϵ > 0 such that

h(Rϵ) :=
(∫
R2\BRϵ (0)

|ū|p ln(1 + |x|)dx
)1/p

< ϵ.

Now, we split ∫
R2
|un|

p−2|un − ū||ū| ln(1 + |x|)dx = dn(Rϵ) + en(Rϵ),

where
dn(Rϵ) :=

∫
BRϵ (0)

|un|
p−2|un − ū||ū| ln(1 + |x|)dx ≤ Rϵ∥un∥

p−2
p ∥un − ū∥p∥ū∥p ≤ ϵ

for large enough n and

en(Rϵ) :=
∫
R2\BRϵ (0)

|un|
p−2|un − ū||ū| ln(1 + |x|)dx

≤∥un − u∥∗∥un∥
p−2
∗

(∫
R2\BRϵ (0)

|ū|p ln(1 + |x|)dx
)1/p

≤Ch(Rϵ) ≤ Cϵ,

which together with (4.31) implies

lim
n→∞

A1(|un|
p, |un|

p−2(un − ū)u) = 0.
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Hence, by Fatou’s Lemma, we have

lim sup
n→∞

A1(|un|
p, |vn|

p) ≤ lim sup
n→∞

I1(un) − lim inf
n→∞

A1(|un|
p, |un|

p−2ū2) ≤ lim sup
n→∞

I1(un) − I1(ū).

Since I1(un) → I1(ū) and A1(|un|
p, |vn|

p) ≥ 0, we conclude with (4.30). Finally, by [25, Lemma 3.2]
we obtain ∥un − ū∥∗ → 0, which together with (4.27) and (4.29) implies

lim
n→∞
∥un − ū∥Xp = 0 and Φ(ū) = m1.

Step 3: Φ′(ū) = 0 in X′p.
By using the group action on the space Xp, we will conclude Φ′(ū) = 0. Let G ⊂ O(2) be a finite

group of transforms acting on Xp, where O(2) denotes the group of orthogonal transformations in R2.
The action of G on the space Xp is a continuous map (see [35, Definition 1.27]):

G × Xp → Xp : [τ, u]→ τ(u) = u ◦ τ.

Assume that φ ∈ C1(Xp,R) is invariant by G; that is, φ(w ◦ τ) = φ(w) for any τ ∈ G, w ∈ Xp. Let u
be a critical point of φ in Xp,G, where

Xp,G := {u ∈ Xp : τu = u, ∀ τ ∈ G}.

Then φ′(u) = 0 in X′p. In fact, given any v ∈ Xp, we define

v̄ =
1

#(G)

∑
τ∈G

τv,

where #(G) denotes the cardinal of G. For any τ0 ∈ G, since G ⊂ O(2), we have

τ0v̄ = τ0

 1
#(G)

∑
τ∈G

τv

 = 1
#(G)

∑
τ∈G

τ0τv = v̄,

which implies v̄ ∈ Xp,G. Therefore, one has

0 = ⟨φ′(u), v̄⟩ =
1

#(G)

∑
τ∈G

⟨φ′(u), τv⟩ =
1

#(G)

∑
τ∈G

⟨φ′(u) ◦ τ−1, v⟩

=
1

#(G)

∑
τ∈G

⟨φ′(u ◦ τ−1) ◦ τ−1, v⟩

= ⟨φ′(u), v⟩.

For the second line, we used the fact u ∈ Xp,G, so we have φ′(u) = 0 in X′p.
The two cases in Theorem 1.1 are direct consequences of the above discussion. Indeed, let G1 be

the subgroup of O(2) generated by z 7→ ze2πi/k, then Xp,G1 = Ek,p. If G2 is generated by z 7→ ze2πi/k and
z 7→ z̄, Xp,G2 = Tk,p, so Φ′(ū) = 0 in X′p.
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5. Proof of Theorem 1.3

We prove Theorem 1.3 in three steps for subcritical case and the Ambrosetti-Rabinowitz condition
(F4’). As in the proof of Theorem 1.1, we only consider the function space Ek,p.

Step 1: ∥un∥ is bounded.
We only consider the case p > 2. Same as critical case, the case p = 2 can be obtained by [23,

Lemma 2.11]. Applying Lemma 3.3 and (5.1), there exists a sequence {un} ⊂ Ek,p satisfying (3.10).
By (3.10) and (F4’), we can choose a constant λ0 ∈

(
1
ν
, 1

2 −
Mt1
γ2

)
and then we have

c̃ + o(1) = Φ(un) − λ0⟨Φ
′(un), un⟩

=

(
1
2
− λ0

)
∥un∥

2 +
1

2π

(
1

2p
− λ0

)
I0(un)

+

∫
R2

(λ0 f (x, un)un − F(x, un))dx

≥

(
1
2
− λ0

)
∥un∥

2 −

∫
{|un |<t1}

F(x, un)dx

+

(
λ0 −

1
ν

) ∫
∥un∥≥t1

f (x, un)undx

≥

(
1
2
−

Mt1

γ2 − λ0

)
∥un∥

2,

(5.1)

and then ∥un∥ is bounded.

Step 2: {un} is bounded in Ek,p.
As in the proof of the critical case, we first prove δ0 := lim supn→∞ ∥un∥p > 0. Suppose the contrary

δ0 = 0. Denoting M∗ := supn ∥un∥ and M∗∗ := supn ∥un∥2. By (F1’) and (F5), choosing α ∈ (0, p−1
pM2
∗

),
one has

| f (x, t)| ≤
c̃

2M2
∗∗

|t| +C
(
eαt2 − 1

)
, ∀ (x, t) ∈ R2 × R. (5.2)

By (5.2) and Lemma 2.1, we have∫
R2

f (x, un)undx ≤
c̃

2M2
∗∗

∥un∥
2
2 +C

∫
R2

(
eαu2

n − 1
)
|un|dx

≤
c̃
2
+C

[∫
R2

(
e

p
p−1αu2

n − 1
)

dx
] p−1

p

∥un∥p

=
c̃
2
+C

[∫
R2

(
e

p
p−1α∥un∥

2(u2
n/∥un∥

2)
− 1

)
dx

] p−1
p

∥un∥p

≤
c̃
2
+ o(1).

(5.3)
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Hence, by (5.3) and Lemma 3.3, we know

c̃ + o(1) = Φ(un) −
1
2
⟨Φ′(un), un⟩

= −
p − 1
4pπ

I1(un) +
p − 1
4pπ

I2(un) +
∫
R2

[
1
2

f (x, un)un − F(x, un)
]

dx

≤
c̃
2
+ o(1).

(5.4)

This contradiction shows that δ0 > 0. Now, from (2.10), (5.1) and Lemma 2.3, one has

I1(un) ≤ I2(un) ≤ C,

which, together with Lemma 2.5, implies that ∥un∥∗ is bounded and {un} is bounded in Ek,p.

Step 3: Φ′(ū) = 0 in X′p.
We may assume by [25, Lemma 2.3] and passing to a subsequence again if necessary, that un ⇀ ū

in Ek,p, un → ū, a.e., on R2 and

un → ū in Ls(R2),

where s ∈ [2,∞) if p = 2 and s ∈ (2,∞) if p > 2. Let M := supn ∥∇un∥2. By (F1’), we can choose α > 0
small enough such that M2 < 4π

α
. Therefore, there is β > p big enough such that M2β

β−1 < 4π
α

. Without
loss of generality, we may assume that s0 ∈ (1, 2) in (F5). Then, it follows (F5) and Lemma 2.1 that∫

R2
| f (x, un)(un − ū)|dx

≤

∫
{|un |<1}

| f (x, un)(un − ū)|dx +
∫
{|un |≥1}

| f (x, un)(un − ū)|dx

≤ C∥un∥2∥un − ū∥ 2
2−s0
+C∥un − ū∥β

= o(1). (5.5)

Similarly, one has ∫
R2
| f (x, ū)(un − ū)|dx = o(1). (5.6)

Furthermore, it follows from (2.9), (2.10) and the Hölder inequality that

A2(|un|
p, |un|

p−2un(un − ū)) = o(1), A2(|ū|p, |ū|p−2ū(un − ū)) = o(1). (5.7)

By [25, Lemma 3.3], we have

A1(|un|
p, |un|

p−2ū(un − ū)) = o(1), A1(|ū|p, |ū|p−2ū(un − ū)) = o(1). (5.8)
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Combining (2.11), (2.12), (3.10), and (5.5)–(5.8), there holds

o(1) = ⟨Φ′(un) − Φ′(ū), un − ū⟩⟨X′p,Xp⟩

= ∥un − ū∥2 +
1

2π
A1(|un|

p, |un|
p−2(un − ū)2)

+
1

2π
A1(|un|

p, |un|
p−2ū(un − ū)) −

1
2π

A1(|ū|p, |ū|p−2ū(un − ū))

+
1

2π
A2(|ū|p, |ū|p−2ū(un − ū)) −

1
2π

A2(|un|
p, |un|

p−2un(un − ū))

+

∫
R2

f (x, ū)(un − ū)dx −
∫
R2

f (x, un)(un − ū)dx + o(1)

≥ ∥un − ū∥2 + o(1).

(5.9)

By (2.10), (5.9) and Lemma 2.1, we have

A2(|un|
p, |vn|

p) = o(1), ⟨un, un − ū⟩ = o(1),
∫
R2

f (x, un)(un − ū)dx = o(1), (5.10)

where |vn|
p := |un|

p−2|un − ū|2 for every n ∈ N. By (3.10) and (5.10), one has

o(1) = ⟨Φ′(un), un − ū⟩⟨X′p,Xp⟩ =
1

2π
A1(|un|

p, |vn|
p) −

1
2π

A2(|un|
p, |vn|

p)

+ ⟨un, un − ū⟩ +
∫
R2

f (x, un)(un − ū)dx

=
1

2π
A1(|un|

p, |vn|
p) + o(1)

which, together with Lemma 2.5, implies

lim
n→∞

(∥vn∥p + ∥vn∥∗)→ 0. (5.11)

From (5.11) and [25, Lemma 3.3], one has

∥un − ū∥p∗ =
∫
R2

ln(1 + |x|)(|un − ū|p−2 − |un|
p−2)|un − ū|2dx + o(1)

≤
1
2
∥un − ū∥p∗ +C

∫
R2

ln(1 + |x|)|ū|p−2|un − ū|2dx + o(1)

=
1
2
∥un − ū∥p∗ + o(1),

(5.12)

where we used the following inequality∣∣∣|a + b|p−2 − |b|p−2
∣∣∣ ≤ 1

2
|b|p−2 +C|a|p−2,

and C is independent of a, b ∈ R. Combining with (5.9), we have un → ū in Ek,p. Hence, 0 < c̃ =
limn→∞Φ(un) = Φ(ū) and Φ′(ū) = 0 in E′k,p. We conclude that Φ′(ū) = 0 in X′p, as in the proof of step
3 of Theorem 1.1.
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Appendix

In this section, we give the proof of Lemma 2.2. For any u ∈ Xp, we denote Ψ(u) :=
∫
R2 F(x, u)dx.

In fact, we just need to prove Ψ ∈ C1(Xp,R), and the readers can refer to [25, Lemma 2.3] for the rest.
First, given any u, v ∈ Xp, for almost every x ∈ R2

lim
t→0

F(x, u(x) + tv(x)) − F(x, u(x))
t

= f (x, u(x))v(x).

On the other hand, we can choose a large enough number t1 > 0 such that

| f (x, t)| ≤ e(α0+1)t2 − 1, ∀ |t| ≥ t1.

By (F1), (F5) and Lemma 2.1, one has, for any u ∈ Xp,∫
R2
| f (x, u)|2dx =

∫
{|u|≤t1}

| f (x, u)|2dx +
∫
{|u|≥t1}

| f (x, u)|2dx

≤ C∥u∥22 +
∫
R2

(
e(α0+1)u2

− 1
)

dx
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≤ C.

Then, for any u ∈ Xp, f (x, u) ∈ L2(R2), it implies that the Gateaux derivative Ψ′g(u) exists and
Ψ′g(u) ∈ X′p.

Now let {un} ⊂ Xp, ∥un − ū∥Xp → 0. Hence, un → ū in H1(R2). Let us prove Ψ′(ū) = limn→∞Ψ
′(un).

It suffices to prove

lim
n→∞

sup
∥v∥Xp=1

∣∣∣∣∣∫
R2

[ f (x, un) − f (x, ū)]vdx
∣∣∣∣∣ = 0.

Define that M := supn ∥∇un∥2, then we prove this lemma in two cases.

Special case: M ≤
√

π
2α0

.
For any given ε ∈ (0, 1), we choose large enough Rε > 0 such that

∥v∥Lp(Bc
R) ≤ ∥v∥Lp(Bc

Rε
) ≤ ε[ln(1 + Rε)]1/p∥v∥Lp(Bc

Rε
) ≤ ε∥v∥Xp , ∀ R ≥ Rε

and
∥ū∥L2(Bc

R) ≤ ∥ū∥L2(Bc
Rε

) ≤ ε, ∀ R ≥ Rε.

By Lemma 2.1 and α0 ≤
π

2M2 , it is easy to verify that there is a C0 > 0 such that ∥u∥4 ≤ C0∥u∥Xp for
all u ∈ Xp and ∫

BRε

| f (x, un)|2dx +
∫

BRε

| f (x, un)|2|un|dx ≤ C, ∀ n.

Now, we claim that

lim sup
n→∞

{∥ f (x, un) − f (x, ū)∥2 + ∥un − ū∥2} ≤ Cε. (A1)

The proof of (A1) is in spirit of [36, Lemma 2.1]. As L2(BRε) is a Hilbert space, we need only to
prove

lim sup
n→∞

∫
BRε

(| f (x, un)|2 − | f (x, ū)|2)dx ≤ Cε

for the first part of (A1). Let M′ be large enough such that∫
{|un |≥M′}∩BRε

| f (x, un)|2dx =
∫
{|un |≥M′}∩BRε

| f (x, un)|2|un|

|un|
dx ≤

C0

M′
≤ ε.

By the dominated convergence theorem and Fatou’s Lemma, one has∣∣∣∣∣∣
∫

BRε

(| f (x, un)|2 − | f (x, ū)|2)

∣∣∣∣∣∣
≤

∫
{|un |≥M′}∩BRε

| f (x, un)|2|un|

M′
dx +

∫
{|u|≥M′}∩BRε

| f (x, un)|2|ū|
M′

dx

+

∫
BRε

hn(x)dx

= 2ε + on(1),
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where hn(x) :=
∣∣∣| f (x, un(x))|2χ{|un |<M′}∩BRε

− | f (x, ū(x))|2χ{|un |<M′}∩BRε

∣∣∣, and we use the fact

|hn(x)| ≤

| f (x, ū(x))|2, |un| ≥ M′,

sup{| f (x, t)| : x ∈ BRε , |t| < M′} + | f (x, ū(x))|2, |un| < M′.

Therefore, we get (A1). By (A1), for large n, one has∣∣∣∣∣∫
R2

[ f (x, un) − f (x, ū)]vdx
∣∣∣∣∣

≤

∫
BRε

| f (x, un) − f (x, ū)||v|dx +
∫

BRc
ε

| f (x, un) − f (x, ū)||v|dx

≤
1
γ
ε∥v∥Xp +

C
γ

(∥un − ū∥2 + 2∥ū∥L2(BRc
ε
))∥v∥Xp

+ 22/pC
(∫
R2

[
exp

(
p′αu2

n

)
− 1 + exp

(
p′αū2

)
− 1

]
dx

)1/p′

ε∥v∥Xp

≤Cε∥v∥Xp ,

where 1
p +

1
p′ = 1 and γ := infu∈X

∥u∥
∥u∥H1(R2)

> 0 (see [31, Lemma 2.1]).

General case: M > 0.
For any R > 0, let φR(r) be a C∞0 cut-off function such that 0 ≤ φ ≤ 1, φR ≡ 1 on [0,R] and φR ≡ 0

on [R + 1,∞). Let δ > 0 (to be determined later), we can choose large enough bounded domain BR(0)
and its bounded open coverage {Ωℓ}ℓ≤Nc which has a partition of unity wℓ (1 ≤ ℓ ≤ Nc) such that

∥φR−1(|x|)ū(x) − ū(x)∥ ≤ δ;

BR(0) ⊂
⋃

1≤ℓ≤Nc

Ωℓ,

Nc∑
ℓ=1

wℓ(x) = 1, ∀ x ∈ BR(0);

wℓ ∈ C1
c (Ωℓ), |∇wℓ| ≤ C, ∀ ℓ;∫

Ωℓ

|ψℓ|
2dx ≤ δ,

∫
Ωℓ

|ψℓ,n|
2dx ≤ δ, ∀ n, ℓ;∫

Ωℓ

|∇ψℓ|
2dx ≤ δ,

∫
Ωℓ

|∇ψℓ,n|
2dx ≤ δ, ∀ n, ℓ;

where
ψℓ(x) = φR(|x|)wℓū, ψℓ,n(x) = φR(|x|)wℓun.

Choosing δ > 0 small enough and repeating now the proof of the special case, we can prove∫
Bc

R(0)

∣∣∣[ f (x, un) − f (x, ū)]v
∣∣∣dx ≤ Cε∥v∥X

and ∫
Ωℓ

|[ f (x, un) − f (x, ū)]v| dx ≤ Cε∥v∥X, ∀ ℓ.
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Therefore, one has∣∣∣∣∣∫
R2

[ f (x, un) − f (x, ū)]vdx
∣∣∣∣∣

≤

∫
Bc

R(0)
|( f (x, un) − f (x, ū))v| dx +

Nc∑
ℓ=1

∫
Ωi

|( f (x, un) − f (x, ū))v| dx

≤(Nc + 1)Cε∥v∥X.

So we obtain Lemma 2.2.
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