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Abstract: Adversarial examples have been shown to easily mislead neural networks, and many
strategies have been proposed to defend them. To address the problem that most transformation-
based defense strategies will degrade the accuracy of clean images, we proposed an Enhanced Image
Transformation Generative Adversarial Network (EITGAN). Positive perturbations were employed
in the EITGAN to counteract adversarial effects while enhancing the classified performance of the
samples. We also used the image super-resolution method to mitigate the effect of adversarial
perturbations. The proposed method does not require modification or retraining of the classifier.
Extensive experiments demonstrated that the enhanced samples generated by the EITGAN effectively
defended against adversarial attacks without compromising human visual recognition, and their
classification performance was superior to that of clean images.
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1. Introduction

Convolutional Neural Networks (CNNs) have been successfully applied to a wide range of computer
vision tasks, including image clasification [1], object detection [2], and semantic segmentation [3].
However, recent studies have shown that CNNs can be deceived by images with meticulously designed
small perturbations that are imperceptible to human vision [4, 5]. These perturbations that cause
the CNN to misclassify an image into a different class are called adversarial perturbations, and the
perturbed images are called adversarial examples. Adversarial examples pose a significant security
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threat to the further adoption of advanced computer vision systems. Thus, addressing the influence of
adversarial examples remains a challenging problem.

Many research have proposed strategies to defend against adversarial attacks [6, 7]. At present,
adversarial defenses are mainly divided into two categories: Partial defense, which conducts early
defense by only detecting adversarial examples [8], and complete defense. Complete defense is
divided into model-specific and model-agnostic, resisting adversarial attacks by modifying classifiers
or adversarial examples. Model-specific methods aim to regularize a specific model’s parameters
through adversarial training or parameter smoothing [9]. Such methods often require differentiable
transformations, which not only consume high computation, but are also vulnerable to further attacks.
Model-agnostic methods aim to remove adversarial perturbations from the input image domain by
applying various transformations. These methods include Joint Photographic Experts Group (JPEG)
compression [10], random image resizing & padding [11], total variance minimization [12], random
Pixel Deflection (PD) [13], and image Super-Resolution (SR) [14]. Compared to model-specific
methods, model-agnostic methods are simpler, faster, and more favorable. However, most
model-agnostic methods lose part of the image information while removing adversarial perturbations,
which decreases their classification performance on clean images.

In this study, we propose the Enhanced Image Transformation Generative Adversarial Network
(EITGAN), an improved model-agnostic defense mechanism designed to generate enhanced samples
that demonstrate superior classification performance compared to the original clean images. The
defensive efficacy of the proposed EITGAN is not limited to image classification models. It can also
be employed for adversarial defense and performance enhancement in other domains of image
processing, such as medical image analysis models [15]. For example, Optical Coherence
Tomography (OCT) images are frequently affected by noise and speckle [16,17]. These types of noise
are similar to adversarial noise, and EITGAN can help improve the performance of convolutional
neural networks used in OCT image analysis.

Positive perturbation

=+

“Monkey” 
Adversarial example

“Bird” 
Enhanced sample

Figure 1. Example of an enhanced sample on the adversarial example.

Figure 1 illustrates an example of an enhanced sample on an adversarial example. The proposed
EITGAN is used to generate enhanced samples with positive perturbations that can transform the
labels of adversarial examples to the correct class. The generator of EITGAN consists of a
super-resolution network and a noise network. The super-resolution network is used to generate
super-resolution images to mitigate the effect of adversarial perturbations, and the noise network is
used to generate positive perturbations to offset the influence of adversarial perturbations. We prove
that the adversarial examples exhibit better performance than clean images after adding positive
perturbations. Our main contributions are summarized as follows:

Electronic Research Archive Volume 31, Issue 11, 6634–6656.



6636

• A positive perturbation is employed to guide the attention of classifiers toward distinctive regions
in the images that correspond to the correct class labels, rather than background regions.
• We propose the EITGAN to generate enhanced samples with positive perturbations, which can

effectively resist adversarial attacks without affecting human vision recognition, and enhance the
classification performance on transformed images higher than that of clean images.
• The proposed method is a model-agnostic defense that does not require modification or retraining

of the target classifier. This can easily surpass other model-specific defenses.

The remainder of this paper is organized as follows. In Section 2, we present the related adversarial
attacks and defense works that will be used in our work. In Section 3, the proposed EITGAN is
introduced in detail, and the experimental results and analysis are presented in Section 4. Finally, the
conclusion of this paper is provided in Section 5.

2. Related works

Here, we introduce several well-known adversarial attacks and defenses proposed in the literature
that form the basis for our experiments. We only study model-agnostic defenses against non-targeted
adversarial examples for image classification, although the same can be applied to other computer
vision tasks.

2.1. Adversarial attack

Given a target classifier F(·) and a clean image x, y represents the ground-truth label corresponding
to x. Untargeted attacks imply modifying a sample that was initially correctly classified, causing
it to be randomly and inaccurately assigned to any erroneous category. For these attacks, the given
adversarial perturbation ρ will make the adversarial example x̂ = x + ρ look the same as the clean
image, but the corresponding label F(x̂) , y is incorrect. Targeted attacks are similar, but they require
to change the correct label into a specific incorrect label yt. They seek x̂ such that F(x̂) = yt and yt , y.

Next, we present a brief overview of several popular attacks against which we will evaluate
our method.

Fast Gradient Sign Method (FGSM) [18] is a single-step attack that uses the sign of the gradient
of the loss function ℓ w.r.t. the image to find the adversarial perturbation. For a given step size ϵ,
FGSM is defined as Eq (2.1):

x̂ = x + ϵ · sign(∇xℓ(x, y)) (2.1)

Projected Gradient Descent (PGD) [4] is a variant of Basic Iterative Method (BIM [19]: an
iterative version of FGSM) with uniform random noise as initialization, which is one of the most
powerful first-order attacks. PGD projects the adversarial examples learned from each iteration into
the Lp neighbor of clean images to constrain adversarial perturbation. The procedure of each iteration
is as Eq (2.2):

xt+1 = Πx+S (xt + αsign(∇xℓ(x, y))) (2.2)

where Πx+S represents projecting the updated adversarial examples into the range from x − S to x + S .
DeepFool (DF) [20] is an untargeted iterative attack that aims to minimize the L2 norm between

clean images and adversarial examples. This method approximates the classifier to a linear decision
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boundary, and then looks for the smallest perturbation until the image crosses the boundary and is
misclassified. The resulting perturbation is difficult for humans to detect.

Carlini and Wagner (C&W) [21] is an optimization-based attack that combines a differentiable
surrogate of the model with a relaxation term to solve the perturbation minimization problem. The
optimization is expressed as Eq (2.3):

∥x − x̂∥p + λmax(Z(x̂)y − max{Z(x̂)yt : yt , y},−k) (2.3)

where Z(x̂)yt denotes the logit value (the output before the softmax layer) corresponding to class yt, and
k is the margin parameter.

2.2. Adversarial defense

Given a target classifier F(·) and an image x̃, which may be a clean image x or adversarial example
x̂. Adversarial defense is a method that aims to make the prediction F(x̃) on image x̃ equal to the one
F(x) on clean image x. The model-specific defense mentioned earlier modifies the classifier as F′(·)
such that F′(x̃) = F(x), and the model-agnostic defense uses transformation G(·) to change the image
such that F(G(x̃)) = F(x). In this study, we focus on the study of the model-agnostic defense.

Recently, adversarial defenses against the input image transformation domain have been proposed.
Luo et al. [22] proposed a foveation-based mechanism, which crops the image around the object with
ground-truth coordinate data, then scales it back to the original size. The JPEG compression
defense [10] removes adversarial perturbations by compressing high-frequency noise information that
is invisible to the human eye. However, this method is effective only for very small perturbations.
Guo et al. [12] proposed image transformation using quilting and Total Variance Minimization
(TVM). Image quilting refers to replacing input image patches with similar patches drawn from a
bank of images. However, image quilting alone is often insufficient. Therefore, it is combined with
TVM, which minimizes the total variance by optimizing the construction of substitute images. Xie et
al. [11] performed image transformation by randomly resizing and padding the images. The
randomness property is also used in the work of Prakash et al. [13], which uses a wavelet-based pixel
deflection transform to denoise the perturbation. Based on this, Mustafa et al. [14] proposed a method
that combines the wavelet denoising and image super-resolution against adversarial attacks.

The main shortcoming facing most model-agnostic defenses is that the transformation degrades
the quality of clean images, which leads to the loss of important information and decreases the
classified performance.

3. EITGAN

This section presents the specific implementation details of the proposed enhanced model-agnostic
defense against adversarial attacks. In Subsection 3.1, we introduce the overall architecture of the
EITGAN and explain the implementation process in detail. In Subsection 3.2, we describe the design
of the generator, which is the core component of EITGAN. In Subsection 3.3, we briefly introduce
the design of the discriminator, which is also a part of EITGAN. Finally, we summarize the overall
algorithm design of the EITGAN in Subsection 3.4.
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3.1. Overview of EITGAN

In this work, EITGAN is used to transform adversarial examples and enhance them, and the same
can also be applied to clean images. The proposed method can effectively resist adversarial attacks
and improve the accuracy of the clean images. Figure 2 illustrates the overall architecture of EITGAN,
which is mainly composed of the generator (G), the discriminator (D), and the target classifier (F).
It should be noted that the target classifier is independent of EITGAN; therefore, the training process
does not involve modifying the parameters of the target model. The classifier utilized in EITGAN is
primarily employed to predict the label of the generated sample.

F

Lx
Norm

Ly

D
LGAN

Discriminator

Target classifier

Xadv

Xes

SR

Noise

+
conv

Xsr

Xpert

Generator

Figure 2. Overall architecture of the EITGAN.

As shown in Figure 2, the input of the model is the adversarial example Xadv and the output is the
corresponding enhanced sample Xes. The generator of the EITGAN consists of two parts, the image SR
network and a noise network (Noise). The SR network draws on the idea of Mustafa et al. [14], which
uses image SR technology to generate recovered adversarial examples Xsr. However, the difference is
that we do not just train an SR network, but also use it as a part of the generator and train it together
with the noise network. The image generated by the S R network is not a common SR image, but an
image of the same size as the input image. Keeping the output image size unchanged enables the image
to better merge with later images while saving training resources and time. The Noise network is used
to generate positive perturbations Xpert, which can offset the influence of adversarial perturbations and
enhance the performance of the classifier. Finally, the enhanced sample is generated by adding the SR
image Xsr with the positive perturbation Xpert in a specific ratio.

The generation of enhanced samples can be expressed as Eq (3.1):

Xes = G(Xadv)
= conv(αS R(Xadv) + βNoise(S R(Xadv)))
= conv(αXsr + βNoise(Xsr)))
= conv(αXsr + βXpert)

(3.1)
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where α and β represent the ratios of SR images and positive perturbations, respectively. In this work,
we set α = 0.6 and β = 0.4, which are empirical values. conv in Eq (3.1) represents a 1×1 convolution
layer. Because the features after simple addition exhibit relative independence, a 1 × 1 convolution is
employed to facilitate interaction between channels, enhancing the fitting of these features.

For a given clean image X and its corresponding ground-truth label Y , when the input is an
adversarial example, the sample enhanced by EITGAN can enable the target classifier to classify it
into the correct category (i.e., F(G(Xadv)) = Y and F(Xadv) , Y). When the input is a misclassified
clean image, EITGAN can also make it be classified correctly (i.e., F(G(X)) = Y and F(X) , Y). The
optimization loss LGAN , Lx, and Ly, as shown in Figure 2, will be introduced in Subsection 3.4.

3.2. Generator of EITGAN

As the core component of the EITGAN, the generator mainly consists of the S R and Noise
networks. Hence, we will provide a detailed introduction to the specific structures and parameters of
these two networks.

3.2.1. SR network

Inspired by enhanced deep SR (EDSR) network [23], we design the SR network as shown in
Figure 3. The SR network has twenty layers. The first layer is a down-sampling layer, the middle
seventeen layers are composed of eight residual blocks and one convolutional layer, and the last two
layers are up-sampling layers. In Figure 3, the solid line represents the implementation process of the
network, and the dashed line represents the specific structure of the corresponding module. The three
sets of data in the convolution brackets represent the input channel, output channel, and kernel size,
respectively. Here, the kernel size of all convolution layers is 3 × 3.
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Figure 3. Architecture of the S R network.
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The input samples are adversarial examples or clean images, which are sized 224 × 224 × 3.
Figure 3 shows that the input samples are first passed through the down-sampling layer, which halves
the sample size from 224 × 224 to 112 × 112. We use the method of down-sampling and then
up-sampling to avoid the convolution of high-resolution images, thereby reducing the computational
complexity. Subsequently, they are inputted into eight residual blocks and one convolutional layer,
which keeps the sample size and channels unchanged. The output is then added to the output of the
previous down-sampling and inputted into the up-sampling layer. We use pixelshuffle as the
up-sampling, which is adopted from the Efficient Sub-Pixel Convolutional Neural Network
(ESPCN) [24]. The pixelshuffle is mainly composed of a convolution layer and a shuffle operation.
Assuming that the channel of the input sample is C, the size is H ×W, and the upsampling factor is r,
the convolution operation reshapes the sample as (r2C, H, W), and the shuffle operation further
reshapes the sample as (C, rH, rH). In this work, we set the upsampling factor r = 2, doubling the
size of the sample and resulting in a sample size of 224 × 224. Finally we pass the output of
pixelshuffle into the deconvolution layer to reduce the number of channels from 64 to 3, thereby
obtaining an SR image with the same size as the input sample.

3.2.2. Noise network

The structure of the Noise network is shown in Figure 4, which is divided into three parts. The top,
middle, and bottom parts represent the encoder, residual block, and decoder, respectively. The Noise
network has sixteen layers. Both the encoder and decoder consist of four layers, while the middle
section incorporates four residual blocks, each comprising two layers.
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Figure 4. Architecture of the noise network.
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The input of the noise network is the output of the S R network, which has the same shape as the
original sample (224 × 224 × 3). As shown in Figure 4, the input samples are encoded first. The
encoder is composed of four convolutions, each followed by Instance Normalization (IN) and
Rectified Linear Unit (ReLU), and the convolution kernel size is 3 × 3. After the first and third
convolution layers, the sample size was reduced by half. The second layer reduces the sample size by
two pixels, and the fourth layer keeps the size unchanged. During encoding, the sample channels
increase exponentially, resulting in the encoded samples sizing at 55 × 55 × 256. Subsequently, the
encoded samples are inputted into four residual blocks for residual convolution, and each group of
residual blocks maintains the sample size and channels unchanged. It is worth mentioning that the
residual block differs from that in the S R network. Batch Normalization (BN) is used after each
convolution layer to accelerate the network convergence. The output of the residual convolution is
then inputted into the decoder for decoding. The decoder’s structure mirrors that of the encoder, each
comprising four convolutional layers. However, the decoder employs deconvolution, with the final
deconvolution layer being succeeded by the hyperbolic tangent function (Tanh). The kernel sizes of
the first and third layers of the decoder are both 4 × 4, and those of the second and fourth layers are
both 3 × 3. After the first and third deconvolution layers, the sample size is doubled, the second layer
increases the sample size by two pixels, and the fourth layer keeps the sample size unchanged. During
decoding, the sample’s channels decrease exponentially, resulting in positive perturbations that have
the same shape as the input samples of 224 × 224 × 3.

3.2.3. Generation of enhanced samples

It is not sufficient to only use SR images generated by the S R network or positive perturbations
generated by the Noise network. Therefore, the positive perturbations are added to the SR images.
The positive perturbations can neutralize adversarial perturbations in SR images and further enhance
their classification performance. In the EITGAN, SR images focus on improving the visual quality,
and positive perturbations focus on improving the classification performance. To avoid affecting the
visual quality of the enhanced samples after addition, the ratio of the SR image is set to 0.6, and the
ratio of the positive perturbation is set to 0.4. However, the features after simple addition are relatively
independent, so a layer of 1 × 1 convolution is used to make the features interact between channels,
thereby enhancing the expression of features and obtaining the final enhanced samples.

3.3. Discriminator of EITGAN

As a part of EITGAN, the main purpose of the discriminator is to conduct adversarial learning with
the generator, and to identify as accurately as possible whether or not the input sample is the original
sample. We refer to the encoder in the Noise network to design the discriminator, which has five layers,
including four convolutional layers and one fully connected layer, as shown in Figure 5. The upper part
of Figure 5 shows the output results of each convolutional layer, and the lower part shows the specific
structure of the convolutional network.

The inputs of the discriminator are the original samples and the corresponding enhanced samples.
As shown in Figure 5, after each convolutional layer, the sample size is reduced twice. Except for
the first layer, BN and LeakyReLU with a negative slope of 0.2 are performed after each convolution
layer. Finally, the output of the convolution is inputted into the fully connected layer to obtain the
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value of one neuron, and sigmoid activation is performed to constrain the value between 0 and 1. In
the discriminator, an output value of 0 is judged as fake, and the value of 1 is judged as real.

C
o
n
v
(3

,6
4
,(

4
×

4
))

L
ea

k
y
R

eL
U

(0
.2

)

C
o
n
v
(6

4
,1

2
8
,(

4
×

4
))

B
N

(e
p
s=

1
e-

5
)

L
ea

k
y
R

eL
U

(0
.2

)

C
o
n
v
(1

2
8
,1

2
8
,(

4
×

4
))

B
N

(e
p
s=

1
e-

5
)

L
ea

k
y
R

eL
U

(0
.2

)

C
o
n
v
(1

2
8
,2

5
6
,(

4
×

4
))

B
N

(e
p
s=

1
e-

5
)

L
ea

k
y
R

eL
U

(0
.2

)

0

1

fake

real

112×112×64

56×56×128

28×28×128

14×14×256

=

50176

.

.

. Sigmoid

224×224×3

Figure 5. Architecture of the discriminator.

3.4. Algorithm description

An algorithm description of the proposed enhanced defense scheme is provided in Algorithm 1.
As depicted in Algorithm 1, the implementation of EITGAN is mainly divided into two parts: The
generation process and the training process. The generation process has been introduced in
Subsection 3.2, so we only discuss the training process here. During the training process, when the
number of training epochs was set to 20, the results were better and more stable. Therefore, in order
to save training time, the training epoch is set to 20.

The overall optimization function for training the EITGAN is shown in Eq (3.2):

L(G,D, F) = LGAN + λLx + µLy (3.2)

where LGAN represents the GAN loss, which comprises of L(D) (line 9) and L(G) (line 11) in
Algorithm 1. Lx (line 12) and Ly (line 13) represent pixel loss and category loss, respectively. The λ
and µ in Eq (3.2) denotes the proportional coefficients corresponding to Lx and Ly. In this work, in
order to enhance the classified performance of samples, we set λ = 0.01 and µ = 100. The
optimization of LGAN can be described as Eq (3.3):

LGAN = min
G

max
D

L(D,G)

= EXadv[logD(Xadv) + log(1 − D(G(Xadv)))]
(3.3)
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The GAN loss LGAN makes D and G play the minimax game to ensure that the generator can generate
samples as realistically as possible, so that the discriminator cannot identify whether it is the original
sample. The pixel loss Lx uses the L2 norm to minimize the distance between the original sample and
the generated sample, so that the generated sample looks the same as the original sample. The category
loss Ly uses the cross-entropy loss lCE to minimize the distance between the target classifier’s predicted
label of the generated sample and the ground-truth label, so that the predicted label can be closer to
the ground-truth label. Undergoing 20 epochs training, we get the final generator that can generate the
enhanced samples to be classified correctly.

Algorithm 1 Implementation of EITGAN
Input: The adversarial examples Xadv

Output: The enhanced samples Xes

1: Given clean image X and ground-truth label Y;
2: for number of training epochs do
3: // Generation process
4: generate the super-resolution image of the adversarial example: Xsr = S R(Xadv)
5: generate the positive perturbation of the super-resolution image: Xpert = Noise(Xsr)
6: generate enhanced samples with Xsr and Xpert: Xes = conv(αXsr + βXpert) = G(Xadv)
7: // Training process
8: update the discriminator D with parameters θd:
9: maxL(D) = ∇θd EXadv[logD(Xadv) + log(1 − D(G(Xadv)))]

10: update the generator G with parameters θg:
11: minL(G) = ∇θg EXadv[log(1 − D(G(Xadv)))]
12: minLx = ∇θg EXadv∥Xadv −G(Xadv)∥2
13: minLy = ∇θg EXadv[lCE(F(G(Xadv)),Y)]
14: end for
15: return Xes

4. Experiments and analysis

In this section, we prove the existence of positive perturbations through experiments and verify
the feasibility and effectiveness of the proposed method. In Subsection 4.1, the experimental setup
is introduced in details. The experiment in Subsection 4.2 evaluates the performance of EITGAN on
different attacks and classifiers. The experiment in Subsection 4.3 compares EITGAN with the state-of-
the-art model-agnostic defense methods. The experiment in Subsection 4.4 evaluates the generalization
performance of the EITGAN across different attacks and classifiers. Subsection 4.5 evaluates the
performance of EITGAN on ImageNet-A.

4.1. Experimental setup

Datasets: Our experiments are performed on a dataset with 30,000 training images and 20,000 test
images. This dataset is randomly chosen from ImageNet [25] and corresponds to 5 classes. Each class
contains 10,000 images, and all these images have a size of 224 × 224 × 3. We choose 5 classes to
reduce training costs and ensure high accuracy.
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Networks: To evaluate the proposed EITGAN, we use Inception-V3 [26], ResNet-50 [27] and
Inception ResNet-V2 [28] as the target classifiers. These classifiers are trained on our dataset and their
parameters are saved for training EITGAN. To better evaluate the EITGAN, we set the classifiers’
accuracy on the test images to 80%. While training the EITGAN, we refrain from conducting any
re-training or fine-tuning on these classifiers.

Attacks: We use four adversarial attacks to generate adversarial examples, including FGSM [18],
PGD [29], DF [4], and C & W [20]. For FGSM, we set the step size as ϵ = 2. PGD divides a single-
step attack into multiple small-step attacks, where we set the small step size as α = 2, the iteration as
t = 20, and the maximum step size is restricted to 8. DF is a non-parametric attack that optimizes the
amount of perturbation to misclassify an image. For C & W, we set the margin parameter as k = 0. All
adversarial examples were generated for undefended classifiers.

Defenses: We compare the proposed EITGAN with a number of recently introduced state-of-the-
art model-agnostic defense methods. These include JPEG compression [10], random image resizing &
padding (Resize & Pad) [11], TVM [12], random PD [13], and image SR [14]. All experiments run on
the same dataset and against the same attacks for a fair comparison.

Metrics: In the experiments, well-known metrics such as accuracy, recall, and precision [30,31] are
used to evaluate the performance of the proposed model. Accuracy is used to represent the proportion
of correct samples among all samples, as shown in Eq (4.1). Recall is the proportion of correctly
classified samples in the positive class and can be calculated using Eq (4.2). Precision represents the
proportion of correct in the predicted positive class and is obtained using Eq (4.3).

Accuracy =
T P + T N

T P + FP + T N + FN
(4.1)

Recall =
T P

T P + FN
(4.2)

Precision =
T P

T P + FP
(4.3)

In Eqs (4.1)–(4.3), T P, FP, T N and FN represent true positive, false positive, true negative and
false negative, respectively. In this work, T P refers to the samples that are correctly recognized as the
current class. The sum of T P and FP represents all samples recognized as the current class. The sum
of T P and FN represents all the samples of the current class.

Environment: The hardware environment used in the experiments of this paper includes an
Nvidia 2080Ti Graphic Processing Unit (GPU), a Ryzen 3600X Central Processing Unit (CPU), and
32 GigaByte (GB) Dual Data Rate 4 (DDR4) memory. The software environment comprises
Windows 10, Python 3.8, and PyTorch 1.7.

4.2. Performance evaluation

4.2.1. Results and analysis

Table 1 shows the performance of the enhanced samples generated by the EITGAN on different
classifiers and adversarial attacks. The first column in Table 1 lists the target classifiers. The second
column shows different adversarial attacks, among which the ‘None’ indicates that no adversarial
attack is performed. The third and fourth columns show the accuracy of the original sample and the

Electronic Research Archive Volume 31, Issue 11, 6634–6656.



6645

corresponding enhanced sample, respectively. The fifth column indicates the improved accuracy of
the enhanced sample. The last two columns represent the PSNR values of the enhanced sample Xes

and original sample (clean image X or adversarial example Xadv), respectively.
As shown in Table 1, the enhanced accuracy for the adversarial examples generated by FGSM is the

highest across the three classifiers, which are 97.5%, 93.4%, and 94.1%, respectively. The improved
accuracy of the adversarial examples generated by PGD is better. The last two columns show that
although the PSNR of the enhanced sample is lower than that of the original sample, it generally meets
the image evaluation standard. It should be noted that all PSNRs are compared to the original clean
images. As shown in Table 1, EITGAN can improve not only the accuracy of adversarial examples
as well as the accuracy of clean images. It should be emphasized that the accuracy of the enhanced
recovered adversarial examples is higher than that of the original clean images. Compared with the
results of directly processing clean images, the results of processing the corresponding adversarial
examples are better. This indicates that the positive perturbation generated after merging with the
adversarial perturbation can better highlight the characteristics of the target discriminative regions.

Table 1. The performance of enhanced samples generated by EITGAN on different classifiers
and adversarial attack methods.

Classifiers Attacks
Original
accuracy

Enhanced
accuracy

Improved
accuracy

PSNR
(Xes)

PSNR
(X/Xadv)

Inception-V3

None 80.0% 82.9% 2.9% 23.188 100.000
FGSM 4.6% 97.5% 92.9% 29.459 40.084
PGD 0.0% 92.7% 92.7% 27.015 34.165
Deepfool 0.4% 83.9% 83.5% 26.663 60.909
C & W 2.5% 84.0% 81.5% 24.605 51.393

ResNet-50

None 80.0% 85.0% 5.0% 26.477 100.000
FGSM 19.2% 93.4% 74.2% 27.793 40.047
PGD 0.1% 90.4% 90.3% 26.089 34.380
Deepfool 0.6% 86.8% 86.2% 26.812 53.025
C & W 16.4% 84.6% 68.2% 27.033 56.943

Inception
ResNet-V2

None 80.0% 83.5% 3.5% 28.627 100.000
FGSM 10.7% 94.1% 83.4% 28.974 40.088
PGD 0.2% 90.8% 90.6% 25.762 34.684
Deepfool 0.6% 84.2% 83.6% 26.845 53.136
C & W 14.4% 84.2% 69.8% 27.776 56.541

To better analyze the performance of the EITGAN, we evaluate the precision and recall rates of
the enhanced samples in Tables 2 and 3, respectively. The structure of Table 2 is the same as that of
Table 3. The first three columns represent classifiers, adversarial attack methods, and defense methods,
respectively. ‘None’ indicates that no processing is performed. ‘Class 0’ to ‘Class 4’ respectively
represent the labels corresponding to the five classes. We use Class N (N: 0–4) to represent the column
of ‘Class 0’ to ‘Class 4’. The data in Table 2 indicates the probability that all samples predicted to
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be class N are actually class N, and the calculation is described in Eq (4.3). The data in Table 3
indicates the probability that all samples that are actually in class N are predicted to be in class N,
and the calculation is shown in Eq (4.2). The data in Tables 2 and 3 are calculated based on the
EITGAN obtained from the 20th training epoch. The last column shows the overall accuracy of the
corresponding data in each row. Bold font indicates the data of clean images that have not been attacked
or defended.

Table 2 shows that the distribution of the enhanced sample is relatively balanced across the five
classes, thus explaining that the high accuracy is not because one of the classes is over-recognized and
proving that the experiments are of practical significance. The last column of Table 2 shows that the
overall accuracy of enhanced samples generated by EITGAN is higher than that of the original clean
images, which corresponds to the data in Table 1. In general, the precision of Inception-V3 for class 0
samples is higher, ResNet-50 has better precision for class 1 samples and the precision of Inception
ResNet-V2 for the five classes is relatively average. As shown in Table 3, since the recall rate for the
class 1 sample of the original clean images is the lowest, the recall rate of the class 1 sample generated
by EITGAN is relatively low. Besides, the overall recall rate of the enhanced samples is higher than
that of the original samples. In addition, since the number of T P in Table 3 is the same as in Table 2,
the overall accuracy of both is equal. Table 3 is similar to Table 2, both of which verify the validity of
our experiments and reflect the feasibility and high performance of the EITGAN. It can be concluded
from Tables 2 and 3 that EITGAN can not only effectively resist adversarial attacks but also further
enhance the classified performance of samples, which has considerable practical significance.

Table 2. The Precision (%) of enhanced samples generated by EITGAN.

Classifiers Attacks Defense Class 0 Class 1 Class 2 Class 3 Class 4 Accuracy

Inception-
V3

None None 87.9 81.4 74.4 86.7 72.7 80.0
None

EITGAN

88.5 85.0 81.9 86.9 70.0 81.6
FGSM 97.8 96.4 97.6 98.2 97.0 97.4
PGD 94.1 94.7 92.8 92.3 89.9 92.7
Deepfool 90.3 87.2 82.2 88.5 71.6 83.1
C & W 89.3 84.0 83.7 86.8 72.3 82.6

ResNet-50

None None 70.1 91.1 85.4 80.3 80.3 80.0
None

EITGAN

80.8 88.6 86.2 88.6 78.5 84.2
FGSM 91.5 96.1 96.1 92.4 90.6 93.2
PGD 91.7 94.5 87.0 93.6 85.7 90.3
Deepfool 88.9 85.4 87.2 89.0 83.5 86.8
C & W 85.1 88.6 86.4 87.2 77.0 84.6

Inception
ResNet-V2

None None 75.0 80.7 78.5 89.0 79.2 80.0
None

EITGAN

86.4 84.6 74.7 90.7 77.8 82.2
FGSM 96.2 92.0 92.1 95.6 93.4 93.8
PGD 88.8 88.7 91.8 93.4 91.1 90.7
Deepfool 93.1 92.6 72.6 85.2 74.5 82.3
C & W 85.7 89.0 83.8 86.9 76.7 84.1
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Table 3. The Recall (%) of enhanced samples generated by EITGAN.

Classifiers Attacks Defense Class 0 Class 1 Class 2 Class 3 Class 4 Accuracy

Inception-
V3

None None 78.0 68.0 93.1 82.5 79.2 80.0
None

EITGAN

79.3 68.1 89.6 83.4 87.9 81.6
FGSM 97.2 97.1 98.3 97.5 96.8 97.4
PGD 92.4 87.5 94.7 95.0 94.0 92.7
Deepfool 82.1 71.7 90.1 83.8 88.2 83.1
C & W 79.7 72.3 89.3 84.4 87.7 82.6

ResNet-50

None None 93.1 58.4 84.6 89.5 74.5 80.0
None

EITGAN

90.8 74.9 88.2 84.4 82.8 84.2
FGSM 97.8 89.0 91.2 95.1 93.0 93.2
PGD 93.9 82.8 93.7 90.6 90.4 90.3
Deepfool 90.7 85.8 87.7 87.5 82.2 86.8
C & W 89.7 76.1 86.9 85.8 84.6 84.6

Inception
ResNet-V2

None None 90.0 72.9 87.2 75.3 75.1 80.0
None

EITGAN

85.8 74.8 92.0 77.1 81.7 82.2
FGSM 97.0 95.0 96.0 89.5 91.7 93.8
PGD 95.0 91.6 89.5 86.7 90.7 90.7
Deepfool 83.2 71.9 90.7 81.4 84.3 82.3
C & W 89.2 75.5 86.4 84.1 85.4 84.1

To further diversify the experimental scenarios, we also test EITGAN with Adversarial
Transformation Network (ATN) [32] and Adversarial Example Generative Adversarial Network
(AdvGAN) [33]. Table 4 presents the obtained test accuracy. In the table, “None” denotes the direct
use of adversarial samples, while “EITGAN” indicates the use of samples generated by EITGAN. The
experimental data demonstrates that EITGAN continues to exhibit significant defense capabilities
against GAN-based adversarial attack methods (ATN and AdvGAN).

Table 4. Test accuracy on ATN and AdvGAN.

Attacks
ResNet-50 Inception-V3 Inception ResNet-V2
None EITGAN None EITGAN None EITGAN

ATN 21.9% 80.5% 20.4% 90.3% 22.0% 74.6%
AdvGAN 21.1% 85.9% 5.7% 84.2% 18.1% 76.8%

4.2.2. Grad-CAM visualization

The Class Activation Map (CAM) [34] is a weakly supervised localization technology that helps
explain the prediction of the CNN model by providing visualization of the discriminative area in the
image. The CAM needs to replace the last fully connected layer with a Global Average Pooling (GAP)
layer, which modifies and retrains the most existing model structure. To reduce training costs, we
choose to use Grad-CAM [35], an improved version of the CAM. Grad-CAM calculates the weight
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through the global average of the gradient and then sums the feature maps with weights. Subsequently,
the ReLU is used to consider only the pixels that have a positive impact on the target class. Finally,
the corrected sample is up-sampled to the size of the original image and superimposed on it to obtain
the required heat maps. The heat maps range from blue to red, with red indicating a higher level of
attention and a more significant impact on the results. Figure 6 shows the Grad-CAM of the prediction
by Inception-V3 on the clean, attacked, and recovered images. The clean images in the upper half of
Figure 6 are classified correctly, and those in the lower half are classified incorrectly. The CAM in
Figure 6 indicates Grad-CAM.

Image Sample CAM-Clean Image CAM-Adversarial CAM-Recovered | Xc - Xadv | | Xc - Xes || Xadv - Xes |
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Figure 6. Visualization of EITGAN against PGD attack on clean images that are classified
correctly and incorrectly. The first column shows the clean images. The subsequent three
columns show the CAM on clean, PGD-attacked, and recovered images. The fifth column
shows the perturbations (magnified by 20x) added to the clean image by PGD and the sixth
column shows the perturbations (magnified by 5x) added to the adversarial example by
EITGAN. The last column shows the difference between the clean and recovered images
(magnified by 5x).

As shown in Figure 6, column 5 shows the perturbations added to the clean images by the PGD
attack, which are called adversarial perturbations. Column 6 shows the perturbations added to the
adversarial examples by EITGAN, which we refer to as positive perturbations. Column 7 presents the
result of combining positive perturbations with adversarial perturbations. Comparing the combined
perturbation with the positive perturbation, its distinctive regions are more prominent, and the random
noise is lower. It can be observed from Figure 6 that EITGAN can recover the CAM on the
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adversarial examples to be consistent with that on the clean images, when the clean images are
classified correctly. In the lower half, when the clean images are classified incorrectly, the EITGAN
can also recover the CAM on the adversarial examples to the discriminative regions corresponding to
the correct class labels. It can be concluded that positive perturbations can effectively offset the
impact of adversarial perturbations and make the CAM on the recovered images consistent with that
of the target discriminative regions. The enhanced samples selectively add positive perturbations,
which effectively neutralize the adversarial perturbation and eventually help in recovering the model
attention toward discriminative regions corresponding to the correct class labels.

4.3. Comparison and analysis

Table 5. The accuracy (%) of different defense method.

Classifiers Clean FGSM PGD DeepFool C&W
No Defense
Inception-V3 80.0 4.6 0.0 0.4 2.5
ResNet-50 80.0 19.2 0.1 0.6 16.4
Inception ResNet-V2 80.0 10.7 0.2 0.6 14.4
JPEG (Das et al. [10])
Inception-V3 79.2 51.8 54.2 75.5 76.8
ResNet-50 79.1 41.7 35.3 30.2 74.5
Inception ResNet-V2 77.9 48.6 49.7 32.9 75.2
Resize & Pad (Xie et al. [11])
Inception-V3 78.0 63.8 57.3 74.8 75.6
ResNet-50 77.5 58.0 48.9 56.0 75.0
Inception ResNet-V2 79.9 57.7 46.1 55.7 77.4
TVM (Guo et al. [12])
Inception-V3 75.8 46.5 44.3 71.8 72.5
ResNet-50 72.2 41.4 26.8 32.5 67.7
Inception ResNet-V2 74.4 36.9 26.2 25.9 69.4
PD (Prakash et al. [13])
Inception-V3 66.3 44.9 46.9 62.4 63.4
ResNet-50 64.0 42.4 37.1 35.9 60.6
Inception ResNet-V2 62.7 45.8 46.9 36.3 60.7
SR (Mustafa et al. [14])
Inception-V3 78.4 51.6 53.2 74.7 75.7
ResNet-50 78.4 44.5 39.5 38.1 74.6
Inception ResNet-V2 77.9 50.8 53.3 38.7 75.5
EITGAN (Ours)
Inception-V3 82.9 97.5 92.7 83.9 84.0
ResNet-50 85.0 93.4 90.4 86.8 84.6
Inception ResNet-V2 83.5 94.1 90.8 84.2 84.2
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We compare EITGAN with various defense mechanisms, as shown in Table 5. The first column
shows the target classifier, and the second column shows the accuracy of the clean images. The third
to sixth columns represent the accuracy of the adversarial examples generated by the four adversarial
attack methods. ‘No Defense’ in Table 5 shows the performance of classifiers on original clean images
and adversarial examples.

In Table 5, we compare the five defense mechanisms. It can be observed that these contrast
defenses have a certain recovery effect on adversarial examples, and the recovered results for C & W
are relatively good compared with those of the other three adversarial attacks. However, the accuracy
of clean images decreases after these defenses, and the accuracy of the recovered samples still has a
certain gap compared to that of clean images. In comparison, the proposed EITGAN can improve not
only the accuracy of adversarial examples but also clean images. It should be emphasized that the
accuracy of the enhanced samples exceeds that of the original clean images, which represents a great
advantages compared with other model-agnostic defenses. Table 5 shows that EITGAN has better
recovery results for adversarial examples generated by FGSM, and the overall recovery performance
of the Inception-V3 model is better.

Class 0

Class 1

Class 2

Class 3

Class 4

Original EITGANJPEG TVM SRPDResize&Pad

Figure 7. Comparison of recovered images on different defenses against FGSM attack. The
first column shows five clean images corresponding to the five classes. The next five columns
display the recovered samples of the five contrasting approaches. The last column show the
enhanced samples generated by EITGAN.
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Table 5 shows that EITGAN outperforms the contrast defense methods. In order to further verify
the superiority of the proposed method, we compare the recovered images generated by the contrast
defenses against the FGSM attack under the Inception-V3 model, as shown in Figure 7. It can be
seen from Figure 7 that the sample after ‘Resize & Pad’ has black borders, the sample after ‘TVM’ is
relatively blurry, and the sample after ‘PD’ has apparent noise. The samples generated by EITGAN
and the other defense methods (JPEG compression, image SR) are similar to the clean images. It can
be proven that the proposed EITGAN does not affect the visual quality of the sample while enhancing
the accuracy of the recovered samples.

4.4. Evaluation across attacks and classifiers

To better reflect the performance of the EITGAN, we separately evaluate its generalization ability
across different attacks and classifiers.

Table 6. The accuracy (%) of EITGAN across different classifiers.

Classifiers Defense
Inception-V3 ResNet-50 Inception ResNet-V2
Clean FGSM PGD DF C & W Clean FGSM PGD DF C & W Clean FGSM PGD DF C & W

Inception-V3
é 80.0 4.6 0.0 0.4 2.5 83.3 82.4 79.5 81.3 83.2 81.3 80.3 77.9 78.3 81.1
Ë 82.9 97.5 92.7 83.9 84.0 79.7 82.3 80.1 79.2 80.5 79.5 78.6 76.5 75.8 78.3

ResNet-50
é 80.7 79.6 75.7 80.6 80.6 80.0 19.2 0.1 0.6 16.4 78.8 76.7 73.6 74.3 78.6
Ë 76.3 79.9 74.0 77.8 79.8 85.0 93.4 90.4 86.8 84.6 77.9 79.0 75.8 73.2 76.7

Inception
ResNet-V2

é 85.1 84.6 81.3 85.1 85.1 85.9 84.7 80.7 83.3 85.7 80.0 10.7 0.2 0.6 14.4
Ë 81.7 82.4 81.7 81.5 79.9 85.2 83.7 82.4 80.2 84.0 83.5 94.1 90.8 84.2 84.2

Table 7. The accuracy (%) of EITGAN across different attacks.

Train
Test

Clean FGSM PGD DF C & W Clean FGSM PGD DF C & W Clean FGSM PGD DF C & W

Inception-V3 ResNet-50 Inception ResNet-V2
None 80.0 4.6 0.0 0.4 2.5 80.0 19.2 0.1 0.6 16.4 80.0 10.7 0.2 0.6 14.4
Clean 82.9 73.9 68.9 80.8 81.0 85.0 39.3 25.4 37.5 79.6 83.5 34.2 23.7 32.4 76.7
FGSM 80.2 97.5 91.2 83.7 83.2 81.4 93.4 86.8 83.3 83.1 80.1 94.1 89.1 82.2 82.2
PGD 79.5 96.3 92.7 82.7 82.1 81.3 92.7 90.4 81.1 83.2 78.7 92.9 90.8 81.8 80.7
DeepFool 81.3 88.4 74.9 83.9 82.4 83.4 92.7 86.4 86.8 85.4 75.9 92.5 81.1 84.2 80.1
C&W 81.6 87.5 75.3 82.8 84.0 83.9 87.8 73.8 81.5 84.6 82.3 91.7 68.9 76.4 84.2

We evaluate the generalization performance of EITGAN across different classifiers as shown in
Table 6. The first column represents the target classifiers. The first row demonstrates the target
classifiers for the generalization experiments, and the second row represents the clean images and
adversarial examples corresponding to the current classifier. The second column shows the state of the
current sample. The row of ‘é’ indicates the accuracy of the original sample, and the row of ‘Ë’
indicates the accuracy of the enhanced sample generated by EITGAN. It can be seen from Table 6 that
the generalization ability of the original adversarial examples between models is relatively poor,
which directly affects the generalization of the proposed method between models. However, the
application of EITGAN does not have a major impact on the original sample, and some results are
better than the original. For example, the result of Inception-ResNet-V2 on the enhanced sample,
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which is generated by EITGAN trained on ResNet50 under PGD attack, is 1.7% higher than that of
the original sample.

Table 7 shows the generalization performance of the EITGAN across different attacks. The first
column represents different training sets used to train the EITGAN. The first row represents different
test sets, where adversarial examples are generated by FGSM, PGD, DF, and C & W. We evaluate
the EITGAN performance on three target classifiers. The results in each row of Table 7 indicate the
accuracy of enhanced samples generated on different test sets by EITGAN, and EITGAN is trained
on the training set where the row is located. The row of ‘None’ represents the result without the
EITGAN. As shown in Table 7, the overall generalization performance of EITGAN is better, and each
result across attacks is higher than the accuracy of the original clean image. The EITGAN trained
on different training sets all have the best generalization performance on the FGSM test set, and the
EITGAN trained on the FGSM dataset also has the better generalization performance on different test
sets. The overall experiments show that the proposed method not only resists adversarial attacks, but
also generalizes well.

4.5. Application on more classes

We also do experiments on ImageNet-A [36], a dataset of natural adversarial examples that fool
current ImageNet classifiers. We use the well-trained Inception-V3 [26], ResNet-50 [27] and Wide
ResNet-50 [37] as the target classifiers. These classifiers are trained using ImageNet-1000. Table 8
compares the performance of EITGAN with other defense methods on ImageNet-A.

Table 8. The accuracy (%) of different defenses on ImageNet-A.

ResNet-50 Inception-V3 Wide
ResNet-50

None 0.4 0.9 0.3
JPEG 0.3 0.9 0.3
Resize & Pad 0.4 0.6 0.4
TVM 0.2 0.4 0.4
PD 0.2 0.5 0.2
SR 0.3 1.0 0.2
EITGAN 2.5 2.1 2.6

As shown in Table 8, the first column lists different defense methods, where ‘None’ means no
defense. The first row lists three well-trained target classifiers. The data in Table 8 is the recognition
accuracy of classifiers on samples processed by different defense methods. It can be seen from Table 8
that most of the five defenses compared cannot improve the accuracy of the samples. Even if they could,
the improvement effect is limited, and the maximum is approximately 0.1%. However, EITGAN can
improve the accuracy of the three target classifiers, and the highest can be improved by 2.3%. This
shows that EITGAN can also be applied to more classes and has better performance than other model-
agnostic defenses.
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5. Conclusions

Motivated by problems such as CNN being vulnerable to adversarial attacks and most
model-agnostic defenses decreasing the accuracy of clean images, we proposed an enhanced defense
mechanism EITGAN. The EITGAN is also a model-agnostic defense, which does not need to modify
or retrain the target classifier. In this work, we used image SR to mitigate the effect of adversarial
perturbations, as well as positive perturbation to further enhance the classified performance of the
recovered sample. Extensive experiments showed that the proposed EITGAN outperformed the
state-of-the-art defenses, which cannot only improve the accuracy of clean images but also the
accuracy of recovered adversarial examples higher than that of the original clean images, greatly
improving the defense performance of the target classifier. The enhanced recovered images generated
by EITGAN also have good visual quality and generalization performance.

However, as the number of classes in the target classifier increases, the effectiveness of EITGAN in
defending against adversarial samples gradually diminishes. The classification accuracy on a thousand-
class task only improved by 2.3%. This performance was relatively less effective compared to the
successful defense in a five-class scenario. In future work, we will explore the impact of the number
of classes on defense effectiveness. We will also try to further improve the performance of EITGAN
on more classes and further explore the application of positive perturbation to clean images.
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