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Eduardo Ibargüen-Mondragón1,*, M. Victoria Otero-Espinar2 and Miller Cerón Gómez1
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Abstract: The acquisition of antibiotic resistance due to the consumption of food contaminated with
resistant strains is a public health problem that has been increasing in the last decades. Mathematical
modeling is contributing to the solution of this problem. In this article we performed the qualitative
analysis of a mathematical model that explores the competition dynamics in vivo of ceftiofur-resistant
and sensitive commensal enteric Escherichia coli (E. coli) in the absence and during parenteral
ceftiofur therapy within the gut of cattle, considering the therapeutic effects (pharmacokinetics
(PK)/pharmacodynamics (PD)) in the outcome of infection. Through this analysis, empirical properties
obtained through in vivo experimentation were verified, and it also evidenced other properties of
bacterial dynamics that had not been previously shown. In addition, the impact of PD and PK has
been evaluated.
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1. Introduction

In the area of mathematical modeling, it is a very common practice to use continuous dynamical
systems defined through systems of ordinary differential equations to model population dynamics in
different branches of knowledge. The purpose of this type of model is to predict the temporal
evolution of interacting populations and characterize laws, properties or intrinsic patterns that govern
their behavior [1].

There are multiple examples of mathematical models that have contributed to the solution of
problems in real contexts and have generated theories that are still valid and applied today, such as the
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case of Hammer and his law of mass action, which expresses that the rate at which a disease spreads
is proportional to the number of individuals susceptible to contracting it, multiplied by the number of
infectious [2]. Ross developed a mathematical theory that correctly explained that to eradicate malaria
it was not necessary to eliminate the total population of mosquitoes, but it was enough to maintain
their population level below a threshold [3]. Kermack and McKendrick established the threshold
theorem, which postulates that the introduction of an infectious individual in a community will not
give result in an outbreak unless the density of the susceptible population exceeds a certain critical
value [4]. Lotka and Volterra with their prey-predator model, described the interaction in which one
organism, the predator, eats all or part of the body of another organism, the prey [5, 6]. More recently,
Stewart and Levin created the Stewart-Levin criterion, which determines the equilibrium frequencies
of plasmid-carrying cells in terms of key modeling parameters: Population growth, conjugational
transfer and segregation rate [7]. These are just some of the most cited cases in the literature, and their
success is based on the complement of different factors such as:

1) The robustness of the mathematical models; that is, well-defined models whose variables and
parameters are consistent with the dynamics to be studied. In addition, the results of the qualitative
analysis of the model are coherent with the phenomenon and determine the behavior in terms of
the model parameters.

2) The validation of the model through data obtained from experimentation in vivo, in vitro, or in
field work.

3) Parameter estimation
4) Sensitivity analysis of parameters
5) Numerical simulations

To carry out the first item, there is a broad theoretical analysis of autonomous and non-autonomous
dynamical systems [8,9]. Items two through five require statistical, inferential, probabilistic, numerical
and computational methods to be carried out [10]. As we can see, to carry out an investigation that
contemplates the five previous points, interdisciplinary work is required. This implies that in areas such
as microbiology this becomes a very difficult task because experimental data is not always available
or the level of complexity of the models is very high. At present, in silico experimentation or artificial
intelligence are areas that are supporting mathematical modeling. However, they are emerging sciences
that are just being coupled and require an adaptation time to contribute in the best way to modeling
[11, 12].

At present, antimicrobial resistance is one of the main public health problems at the global level,
and its sudden increase in the last decades has affected the health systems of both low-income and
high-income countries [13]. In particular, it is of great relevance to advance in the understanding of
the role played by plasmids in the acquisition of antibiotic resistance mediated by plasmids. In this
regard, there are works focused on characterizing properties that determine the outcome of infection
in the interaction dynamics between sensitive and resistant strains [1, 14–19], on pharmacokinetic
(PK)/pharmacodynamic (PD) models that study the effects of the antibiotic [20–24], among other
topics.

Volkova et al. [24] established that antimicrobial use in food for animals may contribute to
antimicrobial resistance in bacteria of animals and humans. Commensal bacteria of an animal
intestine may serve as a reservoir of resistance-genes. In this sense, they developed a mathematical
model on plasmid-mediated ceftiofur resistance in commensal enteric Escherichia coli (E. coli) of
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cattle, in which they implemented the last four literals mentioned above, except the qualitative
analysis of the model in item one. In this work, we focus on analyzing the robustness of the model,
and determining laws, patterns and properties that arise from the theoretical results, as well as relating
the qualitative analysis with the results of Volkova et al. [24].

2. Materials and methods

In order to study plasmid-mediated ceftiofur resistance in commensal enteric E. coli of cattle,
Volkova et al. formulated systems of ordinary differential equations that measure both the therapeutic
effect of parenteral treatment with ceftiofur on competition dynamics between ceftiofur-sensitive and
resistant commensal enteric E. coli, as well as the impact of the absence of treatment on competition
dynamics. In a way, the authors are analyzing the pharmaceutical response of ceftiofur in the outcome
of the infection, which is closely related to the role played for both the PK and the PD of the antibiotic
in the propagation of bacterial population within the host. Since the models formulated by Volkova et
al. [24] incorporate both the PK and PD of ceftiofur, in this section we will present the concepts, as
well as the models and data used by them.

2.1. Pharmacokinetic modeling

The PK describes the behavior of an administered drug in the body over time and is currently
defined as the study of the absorption, distribution, metabolism and excretion of a drug [8]. We could
say that the quantitative description of kinetic patterns of concentration due to the four drug properties
mentioned above frame PKs. In general, these patterns are measured experimentally by means of
kinetic parameters that allow determining the evolution of the drug concentration with respect to time.
PK models are phenomenological or empirical approaches to describe drug concentration that allows
us to compare their results with experimental evidence [25]. In [24], based on a literature review and
experimental data, Volkova et al. developed an experimental protocol on the PKs of ceftiofur
metabolities, which led them to the formulation of PK models for two different patterns. They began
by defining concentration of ceftiofur equivalents (CE) as the total of ceftiofur and its active
metabolites. Due to there being no published data on the pattern or inter-individual variability of the
biliary excretion, they assumed for the protocol there was no enterohepatic ceftiofur circulation, and
CE-concentration in the intestine was independent of that in systematic distribution. Let C(t) be the
CE-concentration per g of feces in the large intestine at time t. From review, Volkova et al. concluded
that C(t) seemed to decay exponentially, and since the pattern of biliary excretion of ceftiofur is
unknown, they explored two possibilities in a therapy with repeated injections of a
non-sustained-release formulation of ceftiofur [24]. The parameters used in the pharmacokinetics of
ceftiofur metabolites were

• Ceftiofur dose in one injection D.
• Fraction of ceftiofur dose in one injection excreted in bili p.
• Volume of the animal’s large intestine V .
• Biodegradation at rate λ.
• Excretion fraction number k.
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In the protocol, Volkova et al. assumed that, D, p and V were taken to be equal for every injection
n j, which occurred at time T j since start of treatment, t = 0. Based on the above information, they
proposed the following concentration patterns.

Pattern 1: Amount Dp was excreted at one hour post injection (p.i). After a passage time Tδ, biliary
metabolites entered the large intestine. At entry, for a given n j, C(t) per g of feces (assuming
weight-to-volume ratio of feces of one) was Dp/V , then it decayed exponentially due to the
biodegradation at rate λ. In consequence, C(t) is given by

C(t) =
n∑

j=1

c j(t), (2.1)

where

c j(t) =

 0, if t < T j + 1 + Tδ
Dp
V

exp
[
−λ

(
t − (T j + 1 + Tδ)

)]
, if t ≥ T j + 1 + Tδ,

being n = 5, T j = 24
(
n j − 1

)
, and the injection number j = 1, . . . , n.

Note that the function C(t) defined in (2.1) is a piecewise continuous function with a discontinuity
at t∗ = T j + 1 + Tδ. In [24], Volkova et al. modeled seven ceftiofur treatment scenarios for cattle
and compared their results with experimental data. In this work we will use the data from the
scenario R1 which corresponds to a six-month-old dairy cattle weighing 180 kg and treated for the
bovine respiratory disease named interdigital necrobacillosis. Table 1 shows the biliary ceftiofur
metabolites parameters.

Table 1. Data for six-month-old, parameter values of PK/PD. Intramuscular administration,
every 24 hours, for five days (three days).

Parameter Description, units Reference
p 0.37 [24]
Tδ 6 [24]
D 2.2 mg CE/kg [24]
V 5 [24]
β 0.004 h−1 [24]
λ 0.02 h−1 [24]
v 0.0310 [24]
H 1.5 [24]
MICs 1 [24]
MICr 8 [24]
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Using data from Table 1 we obtain the following expression for CE-concentration of Pattern 1.

C(t) =



0, if t < 7
0.1638e−0.2(t−7), if 7 ≤ t < 31
0.1638

[
e−0.2(t−7) + e−0.2(t−31)

]
, if 31 ≤ t < 55

0.1638
[
e−0.2(t−7) + e−0.2(t−31) + e−0.2(t−55)

]
, if 55 ≤ t < 79

0.1638
[
e−0.2(t−7) + e−0.2(t−31) + e−0.2(t−55) + e−0.2(t−79)

]
, if 70 ≤ t < 103

0.1638
[
e−0.2(t−7) + e−0.2(t−31) + e−0.2(t−55) + e−0.2(t−79) + e−0.2(t−103)

]
, otherwise.

(2.2)

Pattern 2: Six equal fractions of Dp were excreted hourly at hour one to six p.i. The choice of hours
one to six p.i. was based on the working hypothesis that Tδ = 6 hours, thus the entire amount
Dp would reach the large intestine by 12 hours p.i and the initial concentration of µg/g feces was
Dp/6V . The concentration C (CE µg/g) at time t was as in (2.1), c j for a given n j was

c j(t) =
m∑

k=1

c jk(t),

being m = 6, k = 1, . . . ,m and

c jk(t) =

 0, if t < T j + k + Tδ
Dp
6V

exp
[
−λ

(
t − (T j + k + Tδ)

)]
, if t ≥ T j + k + Tδ

(2.3)

being n = 5, T j = 24
(
n j − 1

)
, and the injection number j = 1, . . . , n. In this case, the expression

for CE-concentration of Pattern 2 is given by

C(t) =
6∑

k=1

5∑
j=1

c jk(t),

where c jk(t) is defined in (2.3) and estimated using data from Table 1.

2.2. Pharmacodynamics modeling

PD is the study of the molecular, biochemical, and physiologic effects or actions of drugs. The effect
of the drug is associated with receptors, which are the most important target of therapeutic drugs. The
main functions of the drug effect are the binding of the drug to the receptor, drug-induced receptor
activation, and the propagation of this initial receptor activation into the observed drug effect. The
drug-receptor interaction was developed [25] which deduced the most common function used to relate
drug concentration with the pharmacological effect, the Emax model defined by

E =
EmaxCρ

Ecρ50 +Cρ
, (2.4)

where Emax is the maximum effect, Ec50 is the concentration at half the maximal observable in vivo
effect, ρ are drug molecules and the drug concentration C is an equilibrium point of the differential
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equation that model drug–receptor complex interaction. In this case, (2.4) defines a static nonlinear
model in which C is constant. If we consider C as a time course C(t), we must implicitly assume that
equilibrium is achieved rapidly throughout C(t) ≡ C (see [25], chapter 12). When a baseline E0 is
introduced to (2.4), we obtain the Emax model describing either stimulation or inhibition of the effect
by the concentration of the drug given by

E = E0 ±
EmaxCρ

Ecρ50 +Cρ
. (2.5)

In [24], Volkova et al. presented the protocol for the PK effect in which the changes in the net growth
of ceftiofur-sensitive and resistant enteric E. coli depending on CE-concentration were modeled by
means of the inhibitory version of Emax model defined in (2.5). Specifically, they defined E0 = 1,
Emax = 2, ρ = H as the Hill coefficient and Ec50 = MIC as the minimum inhibitory concentration.
Therefore, the fractional changes in net growth of ceftiofur-sensitive and resistant E. coli, respectively,
at CE-concentration C are given by

Es = 1 −
2CH

MICH
s +CH

Er = 1 −
2CH

MICH
r +CH , (2.6)

where MICs is the MIC for ceftiofur-sensitive and MICr is the MIC for ceftiofur-resistant. In the
protocol, they consider the following possibilities

PD-effect A Multiplicative PD effect on E. coli net growth with a constant minimum inhibitory
concentration (MIC = 1 µg/mL) and changing ceftiofur concentration expressed as multiples of
MIC; Hill coefficient = 1.5.

PD-effect B Multiplicative PD effect on E. coli net growth with changing MIC and a constant ceftiofur
concentration (4 µg/mL); Hill coefficient = 1.5.

Under the assumption that the CE-concentration defined in (2.2) reaches an equilibrium C that satisfies
the conditions of the dynamics exposed in PD-effect A, we have that Es and Er defined in (2.6) are
rewritten as

Es(ϕ) = 1 −
2ϕ1.5

1 + ϕ1.5

Er(ϕ) = 1 −
2ϕ1.5

81.5 + ϕ1.5 , (2.7)

where ϕ ∈ (0,∞). Observe that Es(0) = 1 = Er(0), which indicates that for ϕ = 0 the dynamics in
absence and during treatment coincide. On the other hand,

Es(1) = 0 , Er(1) =
7
9

Es(4) = −
7
9
, Er(4) = 0
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lim
ϕ→0

Es(ϕ) = 1 , lim
ϕ→0

Er(ϕ) = 1

lim
ϕ→∞

Es(ϕ) = −1 , lim
ϕ→∞

Es(ϕ) = −1. (2.8)

Similarily, for PD-effect B we obtain

Es(MICs) = 1 −
2(41.5)

(MICs)1.5 + 41.5

Er(MICr) = 1 −
2(41.5)

(MICr)1.5 + 41.5 . (2.9)

From (2.9) we obtain the following properties

Es(0) = −1 , Er(1) = −1
Es(4) = 0 , Er(4) = 0

lim
ϕ→0

Es(ϕ) = −1 , lim
ϕ→0

Er(ϕ) = −1

lim
ϕ→∞

Es(ϕ) = 1 , lim
ϕ→∞

Es(ϕ) = 1. (2.10)

From (2.8) and (2.10) we observe that the PD- effect A defined in (2.7) is completely opposite to
PD-effect B defined in (2.9). Those PD − e f f ects will be substituted in (2.11) to perform numerical
simulations of the bacterial dynamics during parenteral ceftiofur treatment.

2.3. Volkova-Lanzas-Lu-Gröhn model

In [24], V. Volkova et al. formulated a system of ordinary differential equations to explore the
dynamics in vivo of ceftiofur-resistant and sensitive commensal enteric E. coli in the absence and
during parenteral ceftiofur therapy within the gut of cattle. The model is given by

dNs

dt
= rEs

(
1 −

N
Nmax

)
Ns −

βNsNr

N
+ (1 − v)γN − γNs

dNr

dt
= r (1 − α) Er

(
1 −

N
Nmax

)
Nr +

βNsNr

N
+ vγN − γNr, (2.11)

where Ns(t) and Nr(t) denote the number of sensitive and resistant E. coli cells at time t, respectively,
N(t) = Ns(t) + Nr(t) is the total number of E. coli cells a time t, Nmax is the upper limit for total E. coli
per g of feces, r is the maximum net growth rate (in exponential growth phase) in numbers of enteric E.
coli and β is frequency-dependent transmission for blaCMY-2-carrying plasmids from resistant donor
to sensitive cells; that is, it is the plasmmid transfer rate, v represents the fraction of the ingested
bacteria carrying plasmids with blaCMY-2, γ is both the rates of hourly fractional in-flow and outflow
of enteric E. coli, α is the reduction rate of the net growth rate due to the fitness cost, and Es and Er are
defined in (2.6), and measure the PD effect on the net growth rate, r, for sensitive and resistant E. coli,
respectively. Note that Es = Er ≡ 1 corresponds to the bacterial dynamics without treatment, while
Es , 1 or Er , 1 corresponds to the dynamics during treatment.

Remark 2.1. It is important to highlight that in the context of the biological phenomenon and the
definition of the parameters these are within the following ranges: r > 0, 0 < β ≤ 1, Nmax > 1,
0 ≤ v ≤ 1, 0 < α < 1 and 0 ≤ γ ≤ 1.
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3. Qualitative analysis of the model without treatment

By substituting Es = Er = 1 in the system of differential equation (2.11) we obtain the dynamical
system of ceftiofur-sensitive and resistant commensal enteric E. coli in the absence of immediate
ceftiofur pressure. In this section we will do the qualitative analysis of the above system.

3.1. Invariant set

The matrix form of (2.11) is given by

dx
dt
= f (x) = Ax + z(x), (3.1)

where

x =
(

Ns

Nr

)
, z(x) =


−

rNNs

Nmax
−
βNsNr

N

−
r(1 − α)NNr

Nmax
+
βNsNr

N

 , (3.2)

and

A =
(

r − vγ (1 − v)γ
vγ r(1 − α) − (1 − v)γ

)
. (3.3)

Let R+ = {p ∈ R : p ≥ 0}. Since f ∈ C1(R2
+ \ (0, 0)), there exists an ε > 0 such that the initial value

problem (ivp) defined by (3.1) and x(0) = x0 ∈ R2 has a unique solution x(t) on the interval [0, ε]
(fundamental theorem of existence and uniqueness [9]). In addition, for a compact set Ω ⊂ R2

+ such
that

{y ∈ R2
+ : y = x(t) for some t ∈ [0, ε)} ⊂ Ω,

it follows that ε = ∞. In consequence, the ivp has a solution x(t) for all t ≥ 0 (Corollary 2, p91 [9]).
Now, by adding the two equations of (2.11) we obtain

dN
dt
= r

(
1 −

N
Nmax

)
(Ns + (1 − α)Nr)

≤ r
(
1 −

N
Nmax

)
(Ns + Nr) , (3.4)

where N = Ns + Nr. In consequence, from (3.4) we obtain

dN
dt
≤ r

(
1 −

N
Nmax

)
N. (3.5)

The solution N(t) = Ns(t) + Nr(t) of inequality (3.5) is globally bounded. In effect, let us suppose that
there exists a time t with N(t) = Ns(t) + Nr(t) = ξ > Nmax. Let t∗ be the infimum of those times where
this inequality holds for a fixed choice of ξ, then dN(t∗)/dt = dNs(t∗)/dt+dNr(t∗)/dt ≥ 0. On the other
hand, from (3.5) it is followed that

dN
dt

(t∗) ≤ r
(
1 −

N(t∗)
Nmax

)
N(t∗). (3.6)
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Since N(t∗)/Nmax > 1, then from (3.6) we obtain dN(t∗)/dt < 0, which is a contradiction. On the other
hand, since N′(0) = 0 and N′′(0) = r > 0 then N′(t) is nonnegative increasing function at t = 0, and
since N(0) ≥ 0, then N(t) is nonnegative increasing function at t = 0. In consequence, the solution of
inequality (3.5) satisfies 0 ≤ N(t) = Ns(t) + Nr(t) ≤ Nmax for all t ≥ 0. Therefore, the invariant set of
(2.11) is given by the compact set

Ω =
{
(Ns,Nr) ∈ R2

+} : 0 < Ns + Nr ≤ Nmax

}
. (3.7)

3.2. Equilibrium points

The equilibria of (2.11) are given by the solutions of the algebraic equation

Ax + z(x) = 0. (3.8)

Now, we will find the equilibrium points for which Ns = 0. In this case, (3.8) is reduced to

(1 − v)γNr = 0

r(1 − α)
(
1 −

Nr

Nmax

)
Nr − (1 − v)γNr = 0. (3.9)

Observe that Nr = 0 is a solution of (3.9), which implies the existence of the equilibrium solution
x0 = (0, 0)T of (2.11). However, the function z defined in (3.2) is not defined in the point x0. Therefore,
x0 is not an equilibrium point of (2.11). When Nr > 0, we obtain (1− v)γ = 0 from the first equation of
(3.9), and Nr = Nmax from the second ones. In consequence, if (1 − v)γ = 0 there exists an equilibrium
point x1 = (0,Nmax)T . Now, when Nr = 0, (3.8) is reduced to

r
(
1 −

Ns

Nmax

)
Ns − vγNs = 0

vγNs = 0. (3.10)

The solutions of (3.10) are Ns = 0, and if vγ = 0 then Ns = Nmax. Therefore, if vγ = 0 there exists
an equilibrium point x2 = (Nmax, 0)T . Now, we will find the equilibrium points for which Ns > 0 and
Nr > 0. By adding the two equations of (3.8) we obtain

r
(
1 −

N
Nmax

)
(Ns + (1 − α)Nr) = 0. (3.11)

Since α < 1, then the solution of (3.11) is given by N = Ns + Nr = Nmax. From the above equation we
obtain

Ns = Nmax − Nr. (3.12)

By substituting N = Nmax in (3.8) we obtain the following system

−
βNsNr

Nmax
+ (1 − v)γNmax − γNs = 0

βNsNr

Nmax
+ vγNmax − γNr = 0. (3.13)
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By replacing (3.12) in the second equation of (3.13) we obtain the following quadratic equation

N2
r − Nmax

(
1 −
γ

β

)
Nr − v

γN2
max

β
= 0. (3.14)

The only positive solution of (3.14) is

N+r =
Nmax

2

1 − γβ +
√(

1 −
γ

β

)2

+
4vγ
β

 . (3.15)

By substituting (3.15) in (3.12) we obtain

N+s =
Nmax

2

1 + γβ −
√(

1 −
γ

β

)2

+
4vγ
β

 . (3.16)

The existence results are summarized in the following proposition.

Proposition 3.1. The systen (2.11) always has the equilibrium x+ = (N+s ,N
+
r )T . If (1 − v)γ = 0

there exists the resistant bacteria-equilibrium x1 = (0,Nmax)T , and if vγ = 0 there exists the sensitive
bacteria-equilibrium x2 = (Nmax, 0)T .

3.2.1. Existence analysis of equilibrium x0

As we could observe, the point x0 is not an equilibrium solution of (2.11). However, if we define

z̃(x) =
{

z(x), x , (0, 0)T ;
(0, 0)T , x = (0, 0)T .

(3.17)

Then x0 = (0, 0)T is an equilibrium solution of the system

dx
dt
= f̃ (x) = Ax + z̃(x). (3.18)

Since
lim

x→(0,0)
f̃ (x) = f̃ (0),

then the function f̃ is continuous in x0. Therefore, f̃ ∈ C(R2
+). Now, the natural derivative of f̄ could

be

D f̃ (x) =
{

D f (x), if x , (0, 0);
A, if x = (0, 0).

(3.19)

However, D f̃ is not a continuous function in x0. Therefore f̃ is differentiable but not continuously
differentiable, which prevents us from using the Picard’s Theorem to guarantee the uniqueness of the
equilibrium solution x0 of (3.18).

Remark 3.2. Note that in the absence of the ceftiofur pressure (Es = Er = 1), all the equilibrium
solutions of (2.11), including the infection-free point x0 are on the boundary of the set Ω.
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3.3. Stability analysis

In this section we determine the stability of the equilibrium points of (2.11). The linearization of
(2.11) around an equilibrium point x̄ is given by x′ = J(x̄)x, where the Jacobian matrix J evaluated at
x is given by

J(x) = A + Dz(x), (3.20)

where

Dz(x) =


−

r (2Ns + Nr)
Nmax

− β

(
Nr

Ns + Nr

)2

−
rNs

Nmax
− β

(
Ns

Ns + Nr

)2

−
r(1 − α)Nr

Nmax
+ β

(
Nr

Ns + Nr

)2

−
r(1 − α) (2Nr + Ns)

Nmax
+ β

(
Ns

Ns + Nr

)2


3.3.1. Stability of the resistant-bacteria equilibrium x1

In the case (1 − v)γ = 0, the Jacobian matrix evaluated at x1 = (0,Nmax)T is given by

J(x1) =
(

−(vγ + β) 0
vγ − r(1 − α) + β −r(1 − α)

)
.

(3.21)

The eigenvalues of J(x1) are λ1 = −(vγ + β) < 0 and λ2 = −r(1 − α) < 0, which implies that x1 is
locally asymptotically stable (l.a.s) in Ω. This result is summarized in the following proposition.

Proposition 3.3. The resistant-bacteria equilibrium x1 is l.a.s. in Ω.

3.3.2. Stability of the sensitive-bacteria equilibrium x2

In the case vγ = 0, the Jacobian matrix evaluated at x2 = (Nmax, 0)T is given by

J(x2) =
(
−r γ − (r + β)
0 β − γ

)
.

(3.22)

The eigenvalues of J(x2) are λ̄1 = −r and λ̄2 = γ (R0 − 1), where

R0 =
β

γ
. (3.23)

Since λ1 < 0 and λ2 < 0 if and only if R0 < 1, we have the following result.

Proposition 3.4. If R0 < 1, then sensitive-bacteria equilibrium x2 is l.a.s. in Ω.

Remark 3.5. In the case γ > 0, it implies that Proposition 3.4 makes sense when v = 0.

Remark 3.6. Since β is the plasmid transfer rate and γ is the outflow rate, then R0 = β/γ can be
interpreted as the offspring ratio of bacteria measuring the new bacteria generated by resistant
bacteria population.

Electronic Research Archive Volume 30, Issue 11, 6673–6696.



6684

3.3.3. Stability of the coexistence-bacteria equilibrium x+

The Jacobian matrix evaluated at x+ = (N+s ,N
+
r )T is given by

J(x+) =


−

vγ + r
N+s

Nmax
+ β

(
N+r

Nmax

)2 (1 − v)γ −
 rN+s
Nmax

+ β

(
N+s

Nmax

)2
vγ −

r(1 − α)N+r
Nmax

+ β

(
N+r

Nmax

)2

−(1 − v)γ −
r(1 − α)N+r

Nmax
+ β

(
N+s

Nmax

)2

 .
(3.24)

The characteristic polynomial of J(x+) is

p(λ) = λ2 + a1λ + a2, (3.25)

where

a1 = γ +
r

Nmax

[
N+s + (1 − α)N+r

]
+
β

Nmax

(
N+r − N+s

)
a2 =

r
Nmax

[
N+s + (1 − α)N+r

]
+

rN+s
Nmax

β

Nmax

(
N+r − N+s

)
. (3.26)

Observe that if N+r ≥ N+s , then a1 > 0 and a2 > 0. Now, we will determine the conditions for which the
above inequality is satisfied. Observe that

N+r − N+s = Nmax


√(

1 −
γ

β

)2

+
4vγ
β
−
γ

β


=

Nmax

(
1 −

2γ
β
+

4vγ
β

)
√(

1 −
γ

v

)2
+

4vγ
β
+
γ

v

. (3.27)

If
β

γ
> 2(1 − 2v), (3.28)

then N+r − N+s ≥ 0, which implies that a1 > 0 and a2 > 0. Therefore, from the Routh-Hurwitz
criterion we conclude that the eigenvalues of J(x+) have negative real part. In consequence, we have
the following result.

Proposition 3.7. If the condition (3.28) or equivalently R0 > 2(1−2v) is satisfied, then the equilibrium
point x+ is l.a.s. in Ω.

Remark 3.8. Note that (3.28) establishes a relation between the fraction of the ingested bacteria
carrying plasmids with blaCMY-2, v, and the number of new bacteria generated by them, R0, suggests
that the larger the fraction of ingested bacteria, the lower the number of bacteria generated by a
bacterium carrying plasmids with resistance genes.
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3.3.4. Stability analysis of the free-bacteria equilibrium x0

The linearization of (3.18) around of an equilibrium point x̄ is given by x′ = J̃(x̄)x, where the
Jacobian matrix J̃ evaluated at x is given by

J̃(x̄) = D f̃ (x̄) = A + Dz̃(x̄) =
{

J(x̄), x , (0, 0)T ;
A, x = (0, 0)T .

(3.29)

From (3.29) we obtain J̃(x0) = A, and its characteristic polynomial is given by

p0(λ) = λ2 + ã1λ + ã2, (3.30)

where

ã1 = −(2 − α)r + γ
ã2 = −r[−r(1 − α) + γ(1 − vα)]. (3.31)

If ã1 > 0 and ã2 > 0, then x0 is locally asymptotically stable. Above implies the following result.

Proposition 3.9. If

r < min
{
γvα,

γ

2 − α

}
(3.32)

then x0 is locally asymptotically stable in the closure of Ω given by

Ω̄ =
{
(Ns,Nr) ∈ R+2 ∪ {(0, 0) : 0 ≤ N ≤ Nmax

}
. (3.33)

Remark 3.10. The product γvα can be interpreted as the fraction of ingested bacteria carrying
blaCMY-2 plasmids that acquired resistance to ceftiofur and were subsequently secreted.

4. Qualitative analysis of the model during treatment

The system of differential equations (2.11) describes the dynamical system of ceftiofur-sensitive
and resistant commensal enteric E. coli during parenteral ceftiofur treatment. In this section we will do
the qualitative analysis of the above system. We begin by highlighting that in the PD modeling carried
out by Volkova et al. [24], the PD effect defined in (2.6) does not vary with respect to time t. This is
due to the fact that both MIC and the stationary ceftiofur concentration C were taken constant with
respect to time t. However, in scenario A, MIC is constant and C is a multiple of MIC. In this sense,
the PD effect varies with respect to a parameter but not with respect to time. Scenario B is interpreted
in a similar way. Consequently, in this case the nonlinear system of ordinary differential equations
(2.11) is autonomous. For this reason, we will use the theory of autonomous systems to determine
their equilibrium solutions.

Carrying out the same procedure as in the subsection 3.1 (invariant set), it is verified that the set Ω
defined in (3.7) is the invariant set of system (3.4).
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4.1. Equilibrium points

In a similar way to the developed Ns = 0 o Nr = 0 in subsection 3.2, the following result is verified.

Proposition 4.1. If (1 − v)γ = 0 there exists the resistant bacteria-equilibrium x̄1 = (0,Nmax)T , and if
vγ = 0 there exists the sensitive bacteria-equilibrium x̄2 = (Nmax, 0)T .

Now, for Ns > 0 and Nr > 0, by adding the two equations of (3.8) we obtain

r
(
1 −

N
Nmax

)
(EsNs + (1 − α)ErNr) = 0. (4.1)

Since −1 ≤ Es ≤ 1 and −1 ≤ Er ≤ 1, then the solutions of (4.1) are

Ñr = Nmax − Ñs

N̄r =
Es

(α − 1)Er
N̄s. (4.2)

From the first one solution Ñr of (4.2) we obtain the coexistence equilibrium x̄+ = x+ = (N+s ,N
+
r )T ,

which is the same equilibrium defined in Proposition 3.1. Before determining the second coexistence
equilibrium, let us note that the second solution N̄r of (4.2) has biological sense if and only if Es and Er

have opposite signs. Now, by substituting N̄r into the total bacterial population N we obtain N̄ = aN̄s

where a = 1 + Es/(α − 1)Er. Taking the righthand side of the first equation of (2.11) equal to zero and
substituting N̄r, N̄s and N̄ in the resulting equation we obtain the following equation

rEs

(
1 −

aN̄s

Nmax

)
−
β(a − 1)

a
+ [1 − (1 − v)a] γ = 0. (4.3)

The solution of (4.3) is

N̄s =
Nmax

a

{
1 +

1
rEs

[
β(1 − a)

a
+ (1 − (1 − v)a) γ

]}
. (4.4)

From (4.4) we conclude that N̄s > 0 if and only if

1 +
1

rEs

[
β(1 − a)

a
+ (1 − (1 − v)a) γ

]
> 0. (4.5)

By substituting, N̄s in the second equation of (4.2) we obtain

N̄r =
(a − 1)Nmax

a

{
1 +

1
rEs

[
β(1 − a)

a
+ (1 − (1 − v)a) γ

]}
.

The following proposition summarized the existence result for coexistence equilibria.

Proposition 4.2. The system (2.11) always has the equilibrium x̄+ = (N+s ,N
+
r )T . If Es and Er have

opposite signs and the inequality (4.5) is satisfied then there exists the coexistence equilibrium x̄ =
(N̄s, N̄r)T .
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4.2. Stability analysis

In this subsection we will determine the stability of the equilibrium points of (2.11) during the
treatmet. The linearization of (2.11) around an equilibrium point x̂ is given by x′ = J̄(x̂)x, where the
Jacobian matrix J̄ evaluated at x is given by

J̄(x) = Ā + Dz̄(x), (4.6)

where

Dz̄(x) =


−

rEs (2Ns + Nr)
Nmax

− β

(
Nr

Ns + Nr

)2

−
rEsNs

Nmax
− β

(
Ns

Ns + Nr

)2

−
r(1 − α)ErNr

Nmax
+ β

(
Nr

Ns + Nr

)2

−
r(1 − α)Er (2Nr + Ns)

Nmax
+ β

(
Ns

Ns + Nr

)2


and

Ā =
(

rEs − vγ (1 − v)γ
vγ r(1 − α)Er − (1 − v)γ

)
.

Following a procedure similar to the one carried out in subsection 3.3.1, we verify that the
eigenvalues of the Jacobian J̄(x̄1) are given by λ̄1 = −(vγ + β) and λ̄2 = −r(1 − α)Er. In consequence,
if (α > 1 ∧ Er < 0) or (α < 1 ∧ Er > 0), then x̄1 is locally asymptotically stable in Ω. Similarly, we
verify that the eigenvalues of the Jacobian J̄(x̄2) are given by λ̄3 = −rEs and λ̄4 = β − γ. Therefore, if
Es > 0 and β < γ, then x̄2 is locally asymptotically stable in Ω. We can also verify that the
characteristic polynomial of J̄(x̄+) is given by

p(λ) = λ2 + g1λ + g2,

where

g1 = γ +
r

Nmax

[
EsN+s + (1 − α)ErN+r

]
+
β

Nmax

(
N+r − N+s

)
g2 =

r
Nmax

[
EsN+s + (1 − α)ErN+r

] [
γ +

β

Nmax

(
N+r − N+s

)]
.

Observe that if Es > 0, Er > 0 and the inequality (3.28) is satisfied, then g1 > 0 and g2 > 0, which
implies the local stability of x̄+. Since α < 1, then the above results are summarized in the following
proposition

Proposition 4.3. If Er > 0, then x̄1 is l.a.s. in Ω. If Es > 0 and R0 < 1, then x̄2 is l.a.s. in Ω, and if
Es > 0, Er > 0 and the inequality (3.28) is satisfied, then x̄+ is l.a.s in Ω.

By substituting b = Es/(α − 1)Er in (4.2) we obtain x̄ = (N̄s, bN̄s)T where N̄s is defined in (4.4).
From direct calculations we verify that the Jacobian J̄ defined in (4.6) evaluated at x̄ is given by

J̄(x̄) =
(

j11 j12

j21 j22

)
,
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where

j11 = rEs

(
1 − (1 + a)

N̄s

Nmax

)
− vγ − β

(
b
a

)2

j12 = (1 − v)γ − rEs
N̄s

Nmax
− β

(
1
a

)2

j21 = vγ − br(1 − α)Er
N̄s

Nmax
+ β

(
b
a

)2

= vγ + rEs
N̄s

Nmax
+ β

(
b
a

)2

j22 = −(1 − v)γ + r(1 − α)Er

(
1 − (a + b)

N̄s

Nmax

)
+ β

(
1
a

)2

= −(1 − v)γ −
1
b

rEs

(
1 − (a + b)

N̄s

Nmax

)
+ β

(
1
a

)2

.

After some simplifications we verify that the trace and the determinant of J̄(x̄) are given by

trace(J̄(x̄)) = −γ −
[
rEs

b

(
1 − a

N̄s

Nmax

)
−
β

a

]
(1 − b)

det(J̄(x̄)) = rEs

(
1 − a

N̄s

Nmax

) [
−γ +

a
b

vγ +
β

a

]
+ (rEs)2

( N̄s

Nmax

)2

−
1
b

(
1 − (1 + a)

N̄s

Nmax

) (
1 − (b + a)

N̄s

Nmax

) .
As we can see, trace

(
J̄(x̄)

)
and det

(
J̄(x̄)

)
do not have defined sign. In fact, to determine ranges

of the parameters for which they have a defined sign is a difficult task. However, in the section on
numerical simulations we will determine values of the parameters for which trace

(
J̄(x̄)

)
< 0 and

det
(
J̄(x̄)

)
> 0, which implies the stability of the equilibrium x̄. Finally, in the following proposition

we verified that (2.11) does not have periodic solutions in Ω.

Proposition 4.4. System (2.11) does not have periodic orbits in Ω.

Proof. To prove this result, we will use the Theorem 2 of [26], which established that if there exists a
function c ∈ FΩ where

FΩ =
{
f ∈ C0(Ω;R) : f does not change sign and vanishes only on a measure zero set

}
,

such that h is a solution of the system

f1
∂h
∂x1
+ f2
∂h
∂x2
= h (c(x1, x2) − divF) , (4.7)

being F = ( f1, f2)T the righthand side of (2.11), with h ∈ FΩ, then h is a Dulac function for (2.11) on
Ω. For

c (Ns,Nr) = −
[
rEs + vγ

] Ns

Nmax
−

[
r(1 − α)Er + (1 − v)γ

] Nr

Nmax
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h(Ns,Nr) = −NsNr

is satisfied by (4.7) it implies that h is a Dulac function of (2.11). Therefore, (2.11) does not have
periodic orbits in Ω. □

5. Numerical simulation

In this section we use data of one of the scenarios modeled by Volkova et al. in [24] (six month
beef) to perform numerical simulations of (2.11). The data in Table 2 was used for the simulations of
the dynamics without treatment. In this case, the stability condition (3.28) is satisfied, which implies
that solutions tend to the equilibrium x+ = (310535, 5692) on the boundary of the Ω (See Figure 1).

Table 2. Data for six month beef, parameter values of ecology of bacteria.

Parameter Values, units Reference
r 0.17 h−1 [24]
γ 0.01 h−1 [24]
Nmax 316227 CFU/g Est. based on [24]
β 0.004 h−1 [24]
α 0.05 [24]
v 0.011 [24]
Es 1 [24]
Er 1 [24]
Ns(0) 279481CFU/g Est. based on [24]
Nr(0) 5122 CFU/g Est. based [24]

From Figure 1 we see that if the ingested bacteria contains both sensitive and resistant strains, in
the absence of the antibiotic the population of resistant bacteria will persist.

Before presenting simulations for (2.11) during the treatment, let us note that in this case the model
is a nonlinear system of non-autonomous differential equations. In fact, since the concentration of
ceftiofur at time t defined in (3.4) and C(t) is a piecewise continuous function, then the functions of the
PD effects with respect to time t, Es(t) and Er(t) are also discontinuous functions, which implies that
(2.11) is a nonsmooth dynamical system. However, due to properties of pharmacotherapy, it is assumed
that equilibrium C is rapidly reached by C(t), C(t) ≡ C (see [25], chapter 12). In this sense, both Es(t)
and Er(t) will reach the equilibria Es and Er defined in (2.6). Figure 2 shows numerical simulations of
both ceftiofur-sensitive and resistant E. coli under the PD-effect A defined in (2.7). Since both Es and
Er depend on the ratio ϕ between CE-concentration and MIC, we perform the simulations with different
values of ϕ. the lefthand side of Figure 2 shows graphs of the time course of E. coli population sensitive
to ceftiofur and the righthand side shows graphs of the time course of E. coli population resistant to
ceftiofur. For ϕ = 0 we observe that the population of resistant bacteria presents a small increase,
remaining almost constant, while the population of sensitive bacteria grows in such a way that the
sum of both bacterial quantities reaches the carrying capacity, Nmax. This dynamic coincides with the
dynamics in the absence of the antibiotic. For ϕ ∈ (0, 2] the bacterial population reaches an equilibrium
of coexistence in the interior set ofΩ with the characteristic that as ϕ grows, the population of sensitive
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Figure 1. Numerical simulation for the model without treatment.The graph on the left-hand
side corresponds to the phase diagram in which it is observed that the solutions tend to
equilibrium x+ = (310535, 5692) on the boundary of the Ω. The graph on the right-hand side
shows the temporal evolution of the populations Ns(t) and Nr(t).

Figure 2. Numerical simulation for the model during treatment under the PD-effect A defined
in (2.7). Lefthand side shows graphs of the time course of E. coli population sensitive to
ceftiofur and the righthand side shows graphs of the time course of E. coli population resistant
to ceftiofur, for different values of the ratio ϕ ∈ [0, 4] between CE-concentration and MIC.
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Figure 3. Numerical simulation for the model during treatment under the PD-effect A defined
in (2.9). Left-hand side shows graphs of the time course of E. coli population sensitive
to ceftiofur and the right-hand side shows graphs of the time course of E. coli population
resistant to ceftiofur, for different values of MICs and a fixed value MICr = 10.

bacteria decreases and increases the population of resistant bacteria. For ϕ ∈ (2, 4] both populations
tend to decrease as ϕ approaches the value ϕ = 4 where both populations cancel out. Figures 3 and
4 show numerical simulations of both ceftiofur-sensitive and resistant E. coli under the PD-effect B
defined in (2.9). These simulations were performed for nine equidistant values of MICs in the interval
[0, 4], and the fixed value MICr = 10 for Figure 3 and MICr = 0.001 for Figure 4. the lefthand side of
Figure 3 shows graphs of the time course of E. coli population sensitive to ceftiofur and the righthand
side shows graphs of the time course of E. coli population resistant to ceftiofur. For MICs = 4 we
observe that the population of resistant bacteria presents a slight increase, and then decreases, reaching
an equilibrium close to its initial population, while the sensitive bacteria maintains a sustained increase
until reaching equilibrium in such a way that the sum of both bacterial populations reaches the capacity
bacterial load, Nmax. In this dynamic it is observed that as MICs increases, the population of sensitive
bacteria decreases, while the population of resistant bacteria increases. In Figure 4 both bacterial
populations tend to be cleared. We have also verified numerically that when MICr decreases the
behavior shown in Figure 4 becomes a trend.

6. Discussion

Qualitative analysis of the model without treatment corresponds to the scenario of ceftiofur-sensitive
and resistant commensal enteric E. coli in the absence of immediate ceftiofur pressure. In this case, we
verify that there is always an equilibrium of coexistence of both bacterial populations on the boundary
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Figure 4. Numerical simulation for the model during treatment under the PD-effect A defined
in (2.9). Lefthand side shows graphs of the time course of E. coli population sensitive to
ceftiofur and the righthand side shows graphs of the time course of E. coli population resistant
to ceftiofur, for different values of MICs and a fixed MICr = 0.001.

of Ω, x+ = (N+s ,N
+
r )T , whereas if there is no inflow and no outflow of E. coli (γ = 0), no ingestion of

bacteria carrying plasmids with blaCMY-2 (v = 0), or if 100% of ingested bacteria carries blaCMY-
2 plasmids, then there are two equilibrium on the boundary of Ω, the ceftiofur-resistant equilibrium
x1 = (0,Nmax)T and the ceftiofur-sensitive equilibrium x2 = (Nmax, 0)T . We have also proved that if
(v = 1 and α < 1) or (γ = 0 and α < 1) then x1 is l.a.s. in Ω. Under the assumption that the reduction
rate of the net growth rate due to the fitness cost is less than one, the previous results suggest that if
100% of ingested bacteria are ceftiofur-resistant or if there is no inflow and no outflow of commensal E.
coli, then the population of ceftiofur-sensitive commensal enteric E. coli will be cleared while ceftiofur-
resistant commensal enteric E. coli will reach carrying capacity Nmax. In other words, the infection will
persist, but only with resistant bacteria. On the other hand, if v = 0 and β < γ then x2 is l.a.s. in Ω,
which suggests that if 100% of ingested bacteria are ceftiofur-sensitive and the plasmid transfer rate is
less than in-flow and outflow rates then the population of ceftiofur-resistant commensal enteric E. coli
will be cleared while ceftiofur-sensitive commensal enteric E. coli will reach carrying capacity Nmax.
Now when, the condition (3.28) is satisfied, then x+ is l.a.s. in Ω which means that ceftiofur-sensitive
and resistant commensal enteric E. coli will proliferate in a controlled way until they reach a steady
state. From (3.27) it is observed that the size of the bacterial populations and the speed at which they
reach equilibrium will depend on the parameters β, v and γ. However, in (3.28) a sufficient condition
for stability of x+ is established that only depends on β and v.

We have verified that for an extension of the dynamical system (3.1) there exists an infection-free
equilibrium x0 on the boundary ofΩ, which is l.a.s when (3.32), depending on α, γ, r and v is satisfied.
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The qualitative analysis of (2.11) in the absence of treatment correlates the results of Volkova et al. [24]
in which the authors verified that reported fractions of enteric commensal E. coli carrying blaCMY-2
in cattle could persist in the absence of immediate ceftiofur pressure. Even more, these fractions were
more sensitive to β and v. In fact, if v held constant, then they would be more sensitive to β and γ.
By taking β ≥ 0.01 (somewhat unrealistic for authors) allowed them to reproduce the reported fraction
if there was no resistance to ceftiofur among ingested E. coli, v = 0. In addition, through qualitative
analysis, specific conditions were determined for which bacterial populations are eliminated, or persist
only with sensitve bacteria, resitanst bacter or with both populations. It is also noted that all equilibrium
solutions are in the boundary set of Ω, which implies that the bacterial populations reach equilibrium
in the carrying capacity Nmax.

Qualitative analysis of the model during treatment corresponds to the scenario of ceftiofur-sensitive
and resistant commensal enteric E. coli during parenteral ceftiofur treatment. In this case, the existence
of the same equilibrium points on the boundary of Ω, (x0, x̄1 = x1, x̄2 = x2, x̄+ = x+ in ∂Ω ) under
the same existence condition of the previous case was proved. Furthermore, if the fractional changes
in net growth of ceftiofur-sensitive and resistant E. coli, (Es and Er, respectively), have opposite signs
and the inequality (4.5) is satisfied, the system (2.11) has another coexistence equilibrium x̄ in the
interior of the set Ω. In addition, we have shown that if Er > 0 then x̄1 is l.a.s. in Ω, which suggests
that if the fractional changes in net growth of ceftiofur-resistant E. coli are positive then the population
of ceftiofur-sensitive commensal enteric E. coli will be cleared while ceftiofur-resistant commensal
enteric E. coli will reach carrying capacity Nmax. If the fractional changes in the net growth of ceftiofur-
sensitive E. coli are positive and the plasmid transfer rate is less than in-flow and outflow rates, then
the population of ceftiofur-resistant commensal enteric E. coli will be cleared while ceftiofur-sensitive
commensal enteric E. coli will reach carrying capacity Nmax. If both fractional changes in the net
growth of ceftiofur-sensitive and resistant E. coli are positive and the condition (3.28) is satisfied, then
x̄+ is l.a.s. In other words, the bacterial populations will reach a steady state in ∂Ω. We could not
determinate the stability of x̄. However, for a certain set of parameters we have numerically verified its
stability (see Figure 3). Newly, not only were we able to corroborate the results of Volkova et al. [24],
but we also supplemented them by determining conditions that govern the outcome of the infection.
In addition, in certain cases the ranges of the parameters were determined. Finally, the fact that it has
been proven that (2.11) does not have periodic solutions implies that the solutions will always reach an
equilibrium solution, which is a required condition in PD.

7. Conclusions

This work provides the mathematical theoretical framework for modeling developed by Volkova et
al. [24] complementing the robustness of the model (2.11) and allowing:

• To verify the properties obtained by Volkova et al., but also evidencing other properties of
bacterial dynamics that had not been previously shown.
• To develop specific relationships between the parameters that determine when a)

ceftiofur-sensitive enteric E. coli tends to be cleared, b) ceftiofur-resistant enteric E. coli tends to
be cleared, c) ceftiofur-sensitive and resistant commensal enteric E. coli tends to be cleared, and
d) neither of the two populations are eliminated.
• To assess the impact of PD and PK on infection outcome.
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to plasmid-mediated antibiotic resistance, J. Appl. Math. Comput., 68 (2022), 1635—1667.
https://doi.org/10.1007/s12190-021-01583-0

2. W. H. Hamer, The milroy lectures on epidemic diseases in england: The evidence of variability
and of persistency of type, Lancet, 167 (1906), 569–574. https://doi.org/10.1016/S0140-
6736(01)80187-2

3. R. Ross, Mosquito Brigades and how to Organize Them, JAMA, (1902), 779–780.
https://doi.org/10.1007/978-3-319-03080-7

4. W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc.
R. Soc. London Ser. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118

5. A. J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Nat. Acad., 6
(1920), 410–415. https://doi.org/10.1073/pnas.6.7.410

6. V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 115
(1926), 558–560. https://doi.org/10.1038/119012a0

7. F. M. Stewart, B. Levin, The population biology of bacterial plasmids: a przori conditions
for the existence of conjugationally transmitted factors, Genetics, 87 (1977), 209–228.
https://doi.org/10.1093/genetics/87.2.209
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