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Abstract: Based on the possible singularity of stationary state, we revisit the initial boundary value
problem of the classical Klein-Gordon-Schrödinger (KGS) system in one space dimension. The well-
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1. Introduction and results

In this paper we consider the global existence and uniqueness of solutions in the energy class for
the one dimensional Klein-Gordon-Schrödinger(KGS) equations with partial initial data nonvanishing
at x = ±∞:

∂2
t ϕ − ∂

2
xϕ + ϕ = |ψ|2, t ∈ R, x ∈ R, (1.1)

i∂tψ + ∂2
xψ = −ψϕ, t ∈ R, x ∈ R, (1.2)

ϕ(0, x) = ϕ0(x), ∂tϕ(0, x) = ϕ1(x), ψ(0, x) = ψ0(x), (1.3)
ϕ(t, x)→ e|x|, ψ(t, x)→ 0, (|x| → ∞), (1.4)

where ∂t = ∂/∂t, ∂x = ∂/∂x and i =
√
−1. ψ̄ denotes the complex conjugate of ψ. This system describes

the interaction between nucleons and mesons. Here ψ is a complex scalar nucleon field while ϕ is a
real scalar meson one. In order to obtain more physical details, one can refer to [1, 2]. Formally, the
solution (φ, ψ) of (1.1)–(1.3) satisfies the following conservation laws:

L2-norm : Q(ψ(t)) =‖ψ(t)‖2L2 = ‖ψ0‖
2
L2 , (1.5)

energy : E(φ(t), ψ(t)) =
1
2

(‖φ‖2L2 + ‖∂tφ‖
2
L2 + ‖∂xφ‖

2
L2) + ‖∂xψ‖

2
L2
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−

∫
R

φ(x)|ψ(x)|2dx = E(φ0, ψ0). (1.6)

There is a lot of literature concerning the wellposedness for the classical KGS system. I. Fukuda
and M. Tsutsumi [3] established the global wellposedness in energy space for the cauchy problem by
the projection method of the Galerkin’s type and the compactness argument. They also investigated the
existence and uniqueness of the solutions for the initial-boundary value problem in [4, 5]. The authors
of [6,7] proved the existence of global strong solutions to the initial value problem. B. Wang [8] studied
the classical solutions for this equations with nonlinear terms and proved the global existence of small
solutions. Moreover, some low regularity wellposedness results were reported. J. Colliander, J. Holmer
and N. Tzirakis [9] pointed out the 3d KGS system is global wellposed in L2 × H−1/2. H. Pecher [10]
developed this result in H>−1/4×H>−1/2. In addition, some works associated with asymptotic limit were
invoked in [11, 12].

However, we note that most works are devoted to the high dimensional case, and they may not have
so much interest in one dimensional case. In one space dimension, it does not seem to be extremely
necessary outcome that the following boundary condition at x = ±∞ is imposed on the solution ϕ of
(1.1): ϕ(t, x) → 0(|x| → ∞). Indeed, without the loss of generality, we assume x > 0 and consider the
stationary state

−∂2
xϕ(x) + ϕ(x) = |ψ(x)|2.

Integrating (1.1) from 0 to x yields

−

∫ x

0
∂2

xϕ(x)dx +

∫ x

0
ϕ(x)dx =

∫ x

0
|ψ(x)|2dx <

1
2

Q(ψ0),

which implies ϕ(x) may increase at the level of ex with respect to the spatial variable. The regime x < 0
can be treated analogously.

This fact inspired us to consider KGS system (1.1)–(1.3) with restriction (1.4). To our knowledge,
this issue has never been investigated in previous literature.

In order to study the existence of this kind of solutions satisfying (1.4), we introduce a function
M(x), which is a real-valued function in C∞(R) and satisfies for some R > 0:

M(x) =

 e|x|, |x| > R,

≥ 1, |x| ≤ R.
(A)

Moreover, we put φ(t, x) = ϕ(t, x) − M(x) , φ0(x) = ϕ0(x) − M(x) and φ1(x) = ϕ1(x) . Then (1.1)–(1.4)
can be rewritten as follows:

∂2
t φ − ∂

2
xφ + φ = |ψ|2 + ∂2

xM − M, t ∈ R, x ∈ R, (1.7)
i∂tψ + ∂2

xψ = −ψφ − ψM, t ∈ R, x ∈ R, (1.8)
φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x), ψ(0, x) = ψ0(x), (1.9)
φ(t, x), ψ(t, x)→ 0, (|x| → ∞). (1.10)

The solution (φ, ψ) of (1.7)–(1.10) formally conserves the L2-norm Q and the energy E along the flow
as well:

Q(ψ(t)) = ‖ψ(t)‖L2 = ‖ψ0‖L2 , t ∈ R,
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E(φ(t), ψ(t)) = E(φ0, ψ0), t ∈ R,

where

E(φ, ψ) =
1
2

(‖φ‖2L2 + ‖∂tφ‖
2
L2 + ‖∂xφ‖

2
L2) + ‖∂xψ‖

2
L2

−

∫
R

φ(x)|ψ(x)|2dx −
∫
R

M(x)|ψ(x)|2dx

+

∫
R

φ(x)[M(x) − ∂2
xM(x)]dx. (1.11)

Generally, we call (φ, ψ) the energy solution, if it is the solution of (1.7)–(1.10) and belongs to the
class H1(R) × L2(R) × H1(R). However, when we try to prove the global existence and the uniqueness
of the solutions (1.7)–(1.10), due to the boundlessness of M(x), (φ, ψ) can not be bounded uniformly
in this class, which leads that the compactness argument can not be applied to the system (1.7)–(1.10).
For this, we consider a new weak topology H1(R) × L2(R) × (H1(R) ∩ L2(R; e|x|dx)) as energy class,
indeed, it is the weakest function space in which the energy identity (1.11) makes sense, in which by
utilizing the method in [3], we also can establish the local wellposedness. In addition, with the help of
Gronwall type estimates, the nonlinear term

∫
R

M(x)|ψ(x)|2dx can be bounded by a function depending
on time, which leads to the possibility of global existence.

Before stating results, we first introduce several basic notations used throughout this paper. For
m ∈ N, we denote the standard L2 Sobolev space by Hm(R) and its dual space by H−m(R), where we
put H0(R) = L2(R). For s ∈ R, we denote the function space L2(R; es|x|dx) by Π(s). LetH1 denote the
space H1(R) ∩ Π( 1

2 ), andH−1 denote its dual space. For m ∈ N, 1 ≤ p ≤ ∞ , I ⊂ R denote an interval
and X denote a Banach space, we define the Banach space Wm,p(I; X) by

Wm,p(I; X) = { f (t) ∈ Lp(I; X);
d j

dt j f (t) ∈ Lp(I; X), 1 ≤ j ≤ m},

with the norm

‖ f ‖Wm,p(I;X) = (
m∑

j=0

‖
d j

dt j f ‖p
Lp(I;X))

1
p , 1 ≤ p < ∞,

‖ f ‖Wm,∞(I;X) = max
0≤ j≤m

‖
d j

dt j f ‖L∞(I;X), p = ∞.

Now we state our main results in this paper.

Theorem 1.1. Assume that (φ0, φ1) ∈ H1(R)× L2(R), where φ0 and φ1 are real-valued, ψ0 ∈ H
1 and

M is real-valued smoothing function satisfying (A). Let I be a bounded open interval in R with 0 ∈ I.
Then, (1.7)–(1.10) is uniquely solvable in the following class:

φ ∈

1⋂
j=0

W j,∞(I; H1− j(R)), (1.12)

ψ ∈ L∞(I;H1). (1.13)
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Remark 1. If the function (φ, ψ) satisfies (1.12), (1.13) and (1.7), (1.8) in the distribution sense, then
we have

φ ∈

1⋂
j=0

C j
w(I; H1− j(R)), (1.14)

∂2
t φ ∈ L∞(I; H−1(R)), (1.15)
ψ ∈ Cw(I;H1), (1.16)
∂tψ ∈ L∞(I;H−1). (1.17)

Here, Cm
w (I; X) denotes the set of all m-time weakly continuously differentiable functions from I to

X .
Moreover, we can actually construct the energy solution globally in time. We have the following

stronger wellposedness result in the weak energy class H1(R) × L2(R) ×H1(R).

Theorem 1.2. Under the assumptions of Theorem 1.1. There exists a unique solution (φ, ψ) of
(1.7)–(1.10) such that

φ ∈

2⋂
j=0

C j(R; H1− j(R)), (1.18)

ψ ∈

1⋂
j=0

C j(R;H1−2 j). (1.19)

Remark 2. From L2 conservation and stationary equation, it only can yield ϕ in systems (1.1)–(1.4)
admits the singularity, i.e., the exponential spatial growth form, this property cannot be extended to ψ
in Schrödinger equation. It turns out that ψ decays exponentially, while ϕ increases exponentially.

The rest of this paper is organized as follows. In Section 2, we prepare some basic lemmas which
are used to prove our main theorems. Section 3 is devoted to proving the existence and the uniqueness
for the weak solutions.

2. Preliminaries

In this section, we state two lemmas for the proof of Theorems 1.1 and 1.2. We begin with the
estimates for the linear perturbed Schrödinger equation.

Lemma 2.1. We put H(t) = (∂x + it(∂xM))2. Let M satisfy (A). Then, the operator iH(t) generates the
evolution operator U(t, s), −∞ < s ≤ t < +∞ associated with the linear Schrödinger equation:

i∂tψ + H(t)ψ = 0, t ∈ R, x ∈ R.

The evolution operator U(t, s) satisfies the following Strichartz estimates for any T > 0.
(i) Let I = (−T,T ). Assume that f ∈ L1(I; L2), q and r are positive constants such that 2 ≤ q ≤ ∞

and ( 1
2 −

1
q )r = 2. Then,

‖

∫ t

0
U(t, s) f (s)ds‖Lr(I;Lq) ≤ C‖ f ‖L1(I;L2),
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where C depends only on q and T .
(ii) Let I = (−T,T ), q and r be two positive constants such that 1 ≤ q ≤ 2 and 1

q + 2
r = 5

2 . Assume
that f ∈ Lr(I; Lq) . Then,

‖

∫ t

0
U(t, s) f (s)ds‖L∞(I;L2) ≤ C‖ f ‖Lr(I;Lq),

where C depends only on q and T .

Proof. The Lemma 2.1 is variant of the Strichartz estimates. For the proof, one can see [13–16].

Next, let us recall the Gagliardo-Nirenberg inequality [17] in R, which will be used to treat the
nonlinear terms.

Lemma 2.2. Let 1 ≤ p, q, r ≤ ∞ and let j,m be two integers, 0 ≤ j < m. If

1
p

= j + a
(
1
r
−

m
M

)
+

(1 − a)
q

for some a ∈ [ j
m , 1] (a < 1 if r > 1 and m − j − 1

r = 0), then there exists C(m, j, a, q, r) such that

‖D ju‖Lp ≤ C‖Dmu‖aLr‖u‖1−a
Lq

for every u ∈ D(R).

3. Proof of the main results

In this part, we will prove Theorems 1.1 and 1.2. We start with the uniqueness of the weak energy
solutions.

Proof of Theorem 1.1. We assume that (φ, ψ) is the solution of (1.7)–(1.10) satisfying (1.12)–(1.13),
and put

u(t, x) = ψ(t, x) exp(−itM(x)), (3.1)
u0(x) = ψ0(x). (3.2)

By (1.19) and (A), for a.e., t ∈ I, we note that u ∈ L∞(I; H1) and ∂tu ∈ L∞(I; H−1). Then, the function
u satisfies

i∂tu + (∂x + 2it(∂xM))2u = −φu + it(∂2
xM)u − 3t2(∂xM)2u in H−1. (3.3)

Since all the terms except i∂tu belong to H−1 in (3.3), we can conclude that ∂tu ∈ H−1 and (3.3) holds
true in H−1. Let U(t, s) be the evolution operator generated by i(∂x + 2it(∂xM))2 (see Lemma 2.1). By
the Duhamel principle, (3.2) and (3.3), we have

u(t) = U(t, 0)u0 − i
∫ t

0
U(t, s)[−φu + is(∂2

xM)u − 3s2(∂xM)2u]ds, t ∈ I. (3.4)

Electronic Research Archive Volume 30, Issue 2, 633–643.



638

Let (φ, ψ) and (φ̃, ψ̃) be the two different solutions to (1.7)–(1.10) with the same initial data such that φ
and φ̃ are real-valued, and (φ, ψ) and (φ̃, ψ̃) satisfy (1.12)–(1.13). And let v be defined as in (3.1) for ψ̃.
Then, u and v satisfy (3.4). Set

w = u − v, α = φ − φ̃.

Then, by (3.4), we have

w(t) = −i
∫ t

0
U(t, s)[−φw − αv + is(∂2

xM)w − 3s2(∂xM)2w]ds, t ∈ I. (3.5)

Let T be a positive constant with [0,T ] ⊂ I to be determined later. Denote IT = [0,T ], and take the
L∞(IT ; L2) norm of (3.5), by Lemma 2.1, (1.12) and (1.13), we can obtain

‖w‖L∞(IT ;L2) ≤CT [‖φ‖L∞(IT×R)‖w‖L∞(IT ;L2)

+ ‖α‖L∞(IT ;L2)‖v‖L∞(IT×R)]

+ C
∫ t

0
[s(1 + s)‖w‖L∞(IT ;L2)]ds

≤CT [‖α‖L∞(IT ;L2) + ‖w‖L∞(IT ;L2)], (3.6)

where C is a positive constant. Moreover, from the definition of α, it follows that α(t) satisfies

∂2
t α − ∂

2
xα + α = |ψ|2 − |ψ̃|2, t ∈ IT , (3.7)

α(0, x) = ∂tα(0, x) = 0. (3.8)

If we put ω = (1 − ∂2
x)

1
2 , by (3.7), we then have

α(t) =

∫ t

0
ω−1 sin[(t − s)ω](|ψ|2 − |ψ̃|2)ds, t ∈ IT . (3.9)

Using Sobolev embedding L1 ↪→ H−1, we can deduce,

‖α(t)‖L2 ≤

∫ t

0
‖ω−1(|ψ|2 − |ψ̃|2)‖L2ds

≤

∫ t

0
‖|ψ|2 − |ψ̃|2‖L1ds

≤

∫ t

0
(‖ψ‖L2‖ψ̄ − ¯̃ψ‖L2 + ‖ ¯̃ψ‖L2‖ψ − ψ̃‖L2)ds

≤C
∫ t

0
‖ψ‖L2‖ψ − ψ̃‖L2ds. (3.10)

And, among them

‖ψ(t) − ψ̃(t)‖L2 ≤ C‖w(t)‖L2 . (3.11)

Accordingly, we conclude with the estimates (3.6) and (3.10)–(3.11)

‖w‖L∞(IT ;L2) + ‖α(t)‖L∞(IT ;L2)
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≤C(T )
(
‖w‖L∞(IT ;L2) + ‖α(t)‖L∞(IT ;L2)

)
, (3.12)

where C(T ) is a positive constant depending increasingly on T . If we choose T > 0 so small that
C(T ) ≤ 1

2 , then (3.12) implies that

φ(t) = φ̃(t), ψ(t) = ψ̃(t), t ∈ [0,T ]. (3.13)

We repeat the above procedure to obtain (3.13) for all t ∈ I. This shows Theorem 1.1.

Next we prove Theorem 1.2 by using the results stated in Theorem 1.1.

Proof of Theorem 1.2. Let {(φ0n, φ1n)}, {ψ0n} and {vn} be the sequences in C∞0 (R) such that φ0n → φ0 in
H1, φ1n → φ1 in L2 and ψ0n → ψ0 in H1. Actually, we can choose these sequences as follows. Let
χ be a function in C∞0 (R) with compact support on [0, 2] such that χ(x) = 1 for |x| ≤ 1, and let ρ be
a function in C∞0 (R) such that ρ ≥ 0 and

∫
R
ρ(x)dx = 1. For η, ε > 0, we define χη(x) = χ(ηx) and

ρε(x) = ε−1ρ(x/ε). Moreover, we define

φ jηε =ρε ∗ (χηφ j), j = 0, 1
ψ0ηε =ρε ∗ (χηψ0),
mηε =ρε ∗ [χη(∂2

xM − M)] − |ρε ∗ (χηψ0)|2 + ρε ∗ (χη|ψ0|
2)

+ ρε ∗ [χηφ0 + η2(∂2
xχ)ηφ0 + 2η(∂xχ)η∂xφ0)],

where ∗ denotes the convolution with respect to the spatial variable x. With the suitable choice of
η, ε > 0, we may obtain the desired sequences.

We consider the Cauchy problem of (1.7)–(1.10) with ∂2
xM − M replaced by mn in (1.8). Then, for

each pair of the initial data (φ0n, φ1n, ψ0n), we have the unique local solutions (φn, ψn) of the initial value
problem of (1.7)–(1.10) belonging to{

∩1
j=0C

j([−T,T ]; H3− j)
}
×C([−T,T ]; H3 ∩ Π(1/2))

with φn real-valued, where the existence time T > 0 depends only on ‖φ0n‖H3 , ‖φ1n‖H2 and ‖ψ0n‖H3∩Π(1/2).
For the local existence of smooth solutions, one can also refer to Theorem 2.1 in [18].

We multiply (1.7) by ∂tφn and multiply (1.8) by ∂tψ̄n, respectively, take the real part to obtain the
energy identity:

E(φn, ψn) = E(φ0n, ψ0n), t ∈ [−T,T ], (3.14)

where the energy functional E is defined as in (1.11). Moreover, multiplying (1.8) by ψ̄n, integrating
the resulting equation in x over R and taking the imaginary part, we can obtain

‖ψn(t)‖L2 = ‖ψ0n‖L2 , t ∈ [−T,T ]. (3.15)

Next we estimate
∫
R
|ψ(x)|2φ(x)dx. Applying Cauchy inequality, Hölder inequality and Lemma 2.2, we

get

‖|ψn(t)|2φn(t)‖L1 ≤ ‖φn(t)‖L2‖ψn(t)‖2L4
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≤
1
4
‖φn(t)‖2L2 + ‖ψn(t)‖3L2‖∂xψn‖L2

≤
1
4
‖φn(t)‖2L2 + ‖ψn(t)‖6L2 +

1
4
‖∂xψn‖

2
L2 , t ∈ [−T,T ], (3.16)

which implies

1
4
‖φ‖2L2 +

1
2
‖∂tφ‖

2
L2 +

1
2
‖∂xφ‖

2
L2 +

3
4
‖∂xψ‖

2
L2

≤E(φ0n, ψ0n) + ‖ψn(t)‖6L2 −

∫
B(0,R)

C(R)φdx +

∫
R

M(x)|ψ(x)|2dx

≤C +

∫
B(0,R)

|C(R)φ|dx +

∫
R

M(x)|ψ(x)|2dx

≤C(R) +
1
8
‖φ‖2L2 +

∫
R

M(x)|ψ(x)|2dx, (3.17)

where C(R) is a constant which is only depending on R given in (A). Therefore,

1
8
‖φ‖2L2 +

1
2
‖∂tφ‖

2
L2 +

1
2
‖∂xφ‖

2
L2 +

3
4
‖∂xψ‖

2
L2 ≤ C +

∫
R

M(x)|ψ(x)|2dx. (3.18)

Inequality (3.18) implies that

‖∂xψ‖
2
L2 ≤ C +

∫
R

M(x)|ψ(x)|2dx. (3.19)

Then, we estimate
∫
R

M(x)|ψ(x)|2dx. We multiply (1.8) by Mψ̄n, integrate the resulting equation in x
over R and take the imaginary part to get

‖M
1
2ψn(t)‖2L2 ≤‖M

1
2ψ0n‖

2
L2 + C

∫ t

0
‖∂xψn(s)‖L2‖ψn(s)‖L2ds

≤‖M
1
2ψ0n‖

2
L2 + C|t| + C

∫ t

0
‖∂xψn(s)‖L2ds

≤‖M
1
2ψ0n‖

2
L2 + C|t| + C

∫ t

0

∫
R

M(x)|ψ(x)|2dxds. (3.20)

Using Gronwall inequality and (3.20), we get

‖M
1
2ψn(t)‖2L2 ≤(‖M

1
2ψ0n‖

2
L2 + C|t|)eC|t|. (3.21)

Therefore,

‖∂xψn(t)‖2L2 ≤ CeC|t|, t ∈ [−T,T ], (3.22)

where C does not depend on n and T . (3.18), (3.21), (3.22) and the linear hyperbolic theory show that

‖φn(t)‖H1 + ‖∂tφn(t)‖L2 + ‖∂xφn(t)‖L2 ≤ CeC|t|, t ∈ [−T,T ], (3.23)
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where C does not depend on n and T .
Similarly, it is not difficult to obtain the a priori estimates (dependent on n) for the higher order

derivatives of (φn, ψn), by which we can extend the above local solutions (φn, ψn) globally in time for
each n ≥ 1. Accordingly, (3.15)–(3.23) hold true for any time t ∈ R. Thereafter, applying the standard
compactness analysis, one can derive that there exists at least one global energy solution (φ(t), ψ(t)) of
(1.7)–(1.10) satisfying (1.18)–(1.19) and

‖M
1
2ψ(t)‖2L2 ≤ (‖M

1
2ψ0‖

2
L2 + C|t|)eC|t|, t ∈ R, (3.24)

1
2

(‖φ‖2L2+‖∂tφ‖
2
L2 + ‖∂xφ‖

2
L2) + ‖∂xψ‖

2
L2

−

∫
R

φ(x)|ψ(x)|2dx +

∫
R

φ(x)[M(x) − ∂2
xM(x)]dx

≤
1
2

(‖φ0‖
2
L2 + ‖∂tφ0‖

2
L2 + ‖∂xφ0‖

2
L2) + ‖∂xψ0‖

2
L2

+ ‖M
1
2ψ0‖

2
L2(eC|t| − 1) + C|t|eC|t|

−

∫
R

φ0(x)|ψ0(x)|2dx +

∫
R

φ0(x)[M(x) − ∂2
xM(x)]dx, t ∈ R. (3.25)

Moreover, the equation (1.7) and the theory of linear hyperbolic equations, together with (1.13), imply
that

φ ∈

1⋂
j=0

C j(R; H1− j). (3.26)

With that, we claim

lim
t→0

sup ‖M
1
2ψ(t)‖2L2 ≤ ‖M

1
2ψ0‖

2
L2 , (3.27)

lim
t→0

sup ‖∂xψ(t)‖2L2 ≤ ‖∂xψ0‖
2
L2 . (3.28)

Since ∣∣∣∣∣∫
R

φ(x)|ψ(x)|2 − φ0(x)|ψ0(x)|2dx
∣∣∣∣∣ ≤ ‖φ(x) − φ0(x)‖H1‖ψ(x)‖L2 , (3.29)∣∣∣∣∣∫

R

(φ(x) − φ0(x))(∂2
xM − M)dx

∣∣∣∣∣ ≤ C(R)‖φ(x) − φ0(x)‖H1 , (3.30)

it follows

lim
t→0

∫
R

φ(x)|ψ(x)|2dx =

∫
R

φ0(x)|ψ0(x)|2dx, (3.31)

lim
t→0

∫
R

φ(x)(∂2
xM − M)dx =

∫
R

φ0(x)(∂2
xM − M)dx. (3.32)

Notice that ψ(t) ∈ C(R; L2) ∩ Cw(R; H1) ∩ Cw(R; Π(1/2))(see Remark 1), by (3.24) and (3.25), we
conclude the claim. Moreover, Let t0 be an arbitrary real constant with t0 , 0. In view of the uniqueness
in Theorem 1.1, we then have

(φ(t), ∂tφ(t))→ (φ(t0), ∂tφ(t0)) in H1 × L2 (t → t0),
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ψ(t)→ ψ(t0) in H1 (t → t0).

A replacement of the initial time and the initial data by t0 and (φ(t0), ∂tφ(t0), ψ(t0)) will follows the
strong continuity of solution in energy class H1 × L2 ×H1 at any time. This closes the proof.

Remark 3. Due to the chaotic structure inside the atom, the generation of this singular solution is not
difficult to understand. It should be pointed out that we can also consider the existence of the solutions
of this system in the higher-dimensional space Rn+1(n ≥ 2) by compactness argument. However, it
does not guarantee that the solution increases exponentially in all spatial directions. In addition, due to
the breakdown of the Sobolev embedding H1 ↪→ L∞, we can not obtain the uniqueness of this kind of
solutions.
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