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Abstract: It is shown that many neurological diseases are caused by the changes of firing patterns
induced by bifurcations. Therefore, the bifurcation control may provide a potential therapeutic method
of these neurodegenerative diseases. In this paper, we investigate the Hopf bifurcation control of the
Morris-Lecar (ML) model with Homoclinic (Hc) bifurcation type by introducing a dynamic state-
feedback control. The results indicate that the linear term can change the ML model from Hc bifur-
cation type to SNIC bifurcation type without changing the firing patterns. The cooperation of linear
and cubic term can transform the ML model from the Hc bifurcation type to the Hopf bifurcation type,
resulting in the transformation of firing patterns from type I to type II. Besides, we utilize the Poincare
Birkhoff (PB) normal form method to derive the analytical expression of the bifurcation stability index
for the controlled ML model with Hc bifurcation type, and the results show that the cubic term can
regulate the criticality of the Hopf bifurcation. Numerical simulation results are consistent with the
theoretical analysis.

Keywords: ML model; hopf bifurcation control; dynamic state-feedback control; bifurcation stability
index; neurological dynamical diseases

1. Introduction

Individual neurons are the basic units of the biological nervous system, they process information
by working together in neuronal circuits with specific synaptic connectivity. In response to an applied
current, the signal can be propagated from one neuron to the next neuron by generating electrical
impulses or spikes [1]. Hodgkin and Huxley (HH) firstly proposed the mathematical description of the
neural model based on a large number of biological experiments [2], which built a new field of neuronal
electrophysiology and laid the foundation for theoretical neuroscience. However, the HH model is a
complex nonlinear system, and is difficult to be analyzed theoretically. Subsequently, researchers have
successively proposed many simplified neuron models such as the Fitzhugh-Nagumo (FN) model [3],
Morris-Lecar (ML) model [4], Hindmarsh-Rose (HR) model [5], and the modified forms of them [6–8],
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to explore the physiological mechanisms of neurons.

Previous studies have shown that many neurological dynamic diseases such as Epilepsy, Parkin-
son’s disease, Alzheimer’s disease and Schizophrenia may be induced by bifurcations caused by the
changes of the regulatory parameters in the neural system, which leads to the disorders in the firing
patterns of nervous systems [9–12]. In addition, the changes of firing patterns in neuron systems may
cause neurons to produce a kind of plasticity, which finally affects learning, memory and other neural
activities that rely on neuron-plasticity [13]. Therefore, a method is expected to be proposed to control
the bifurcation mechanism of the neuron model, which can change the firing patterns from abnormal
to normal under certain conditions.

Bifurcation control has attracted increasing attention due to its potential applications in many fields,
such as engineering, biomedicine, and meteorology systems etc [14]. The main idea of bifurcation
control is to change the inherent bifurcation characteristics of the original system by designing the
controller without changing the parameters, thereby obtaining some desirable bifurcation behaviors.
This includes delaying or advancing the onset of the bifurcation points, modifying the shape or type of
bifurcations, and so on. Many bifurcation control methods have been provided in previous studies [15–
19]. Xie et al. [10] studied the dynamic behaviors of Hopf bifurcation under the control of the washout
filter in HH model. The results show that the linear term of the controller can control the position of the
Hopf bifurcation point, and the cubic term can change the criticality of the Hopf bifurcation point. The
washout filter dynamic feedback controller is introduced into the two-dimensional HR model to change
the firing pattern from type I to type II by delaying the location of its inherent Hopf bifurcation [12].
Huang et al. [19] studied the Hopf bifurcation control of the ML model with type I under the control of
washout filter-aided dynamic feedback controller. However, the firing pattern cannot be changed from
type I to type II by using the washout filter-aided dynamic feedback controller in ML model. Therefore,
a new controller should be introduced to address this issue. In addition, the analytical expression for
determining the stability index of Hopf bifurcation criticality has not been obtained. Moreover, none
of these studies involved the bifurcation control of the ML model with Hc bifurcation type.

Motivated by above analysis, in the present paper, we introduce a new controller proposed by
Nguyen et al. [20] into the ML model to study the influence of the controller on the ML model with
Hc bifurcation type. In addition, we give the analytical expression of stability index of the system to
determine the criticality of Hopf bifurcation.

The structure of the paper is organized as follows. In Sect. 2 , we reviewed the bifurcation dynamics
and the conditions for the emergence of Hopf bifurcations of the ML model. In Sect. 3, the dynamic
state-feedback control law was applied to the ML neuron model with Hc bifurcation type. Also, we
derived the analytical expression of the bifurcation stability index for the controlled ML model with
Hc bifurcation type. Conclusions are given in Sect. 4.

2. Reviews of the ML model

2.1. ML model

The ML neuron model is a simplified form of HH model and its mathematical description can be
expressed by the following nonlinear differential equations:
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dV
dt
=

1
C
{I − gL(V − VL) − gCaMss(V − VCa) − gKN(V − VK)},

dN
dt
= ϕ

(Nss − N)
τN

. (1)

with

Mss =
1
2

(1 + tanh(
V − V1

V2
)),

Nss =
1
2

(1 + tanh(
V − V3

V4
)), (2)

τN = 1/cosh(
V − V3

2V4
).

where V is the membrane potential, and N is the recovery variable. I is the current stimulation and
is treated as the bifurcation parameter. C is the membrane capacitance. Vi (i = K,Ca, L) represent
the reversal potential, and gi (i = K,Ca, L) represent the maximum conductance. Vi (i = 1, 2, 3, 4) are
constant potentials, and ϕ represents the temperature factor. Here, we named system (1) as the original
system.

2.2. The bifurcation dynamics of the ML model

There are three types of bifurcations in ML model by choosing different parameter sets, including
Hopf bifurcation, saddle node bifurcation on invariant cycle (SNIC) and homoclinic (Hc) bifurcation
(see Table 1). In this paper, we mainly focus on the Hopf bifurcation control of the ML model with
Hc bifurcation type. The bifurcation diagram of the ML model with Hc bifurcation type is shown in
Figure 1. From Figure 1 we can see that as the bifurcation parameter I increases, the ML model with Hc
bifurcation type is divided into six types of dynamic regions. In region I (when I < −9.949), the system
has only one stable equilibrium point in the lower branch; In region II (when −9.949 < I < 34.94), the
system contains three equilibrium points, the stable equilibrium point in the upper branch, the unstable
equilibrium point in the middle branch and the stable equilibrium point in the lower branch; In region
III (when 34.94 < I < 36.32), the system contains a stable limit cycle and three equilibrium points;
In region IV (when 36.32 < I < 39.96), the system contains a stable limit cycle, an unstable limit
cycle and three equilibrium points; In region V(when 39.96 < I < 40.56), the system contains a stable
limit cycle, an unstable limit cycle and a stable equilibrium point; In region VI(when I > 40.56), the
system contains a stable equilibrium point. The corresponding phase diagrams of six typical dynamical
behaviors are shown in Figure 2. Compared it with [19], the ML model with Hc bifurcation type has
more dynamical behaviors than that with SNIC bifurcation type. In particular, Hc bifurcation occurs
in the system when I = 34.94, and the corresponding phase diagram is shown in Figure 3.
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Table 1. Parameter setting in the simulation and experiment.

Parameters Hopf type SNIC type Hc type
ϕ 0.04 0.067 0.23
gCa 4.4 4 4
V3 2 12 12
V4 30 17.4 17.4
VCa 120 120 120
VK -84 -84 -84
VL -60 -60 -60
gK 8 8 8
gL 2 2 2
V1 -1.2 -1.2 -1.2
V2 18 18 18
C 20 20 20
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Figure 1. (a) Bifurcation diagram of the ML model with Hc bifurcation type. (b) The
enlarged representation of (a). Here, the red and black lines represent stable equilibrium point
and unstable equilibrium point, respectively. The green and blue circles represent stable limit
cycle and unstable limit cycle, respectively. S Ni (i = 1, 2) represent saddle node bifurcation
points, H represents Hopf bifurcation point, and Hc represents homoclinic bifurcation point.
I − VI represent six types of dynamical behavior regions, respectively. S N1: I = −9.949
µA/cm2, Hc: I = 34.94 µA/cm2, H: I = 36.32 µA/cm2, S N2: I = 39.96 µA/cm2.
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Figure 2. Six types of phase diagrams of the ML model with Hc bifurcation type. Here, the
blue and red curves represent N-nullcline and V-nullcline, respectively. The black solid line
and the black dashed line represent stable limit cycle (SLC) and unstable limit cycle (ULC),
respectively. The red circle and the black circle represent the stable equilibrium point (SEP)
and the unstable equilibrium point (UEP), respectively. (a) I = −30 µA/cm2, (b) I = 30
µA/cm2, (c) I = 35.5 µA/cm2, (d) I = 37.5 µA/cm2, (e) I = 40 µA/cm2, (f) I = 45 µA/cm2.
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Figure 3. Homoclinic orbit of the ML model with Hc bifurcation type. I = 34.94 µA/cm2.
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2.3. Two types of firing patterns in ML model

Some researchers have proposed that the firing patterns can be determined by the types of bifurca-
tion [21, 22]. Specifically, type I firing pattern occurs when the system undergoes SNIC bifurcation or
Hc bifurcation, while type II firing pattern occurs when the system undergoes Hopf bifurcation. For
type I, the system can fire at any low frequency; for type II, the system fires from a positive minimum
frequency. Figure 4 shows the firing patterns of the ML model under the three types of bifurcations.
From Figure 4 we can see that the ML model with Hopf bifurcation type shows the type II firing pat-
tern (see Figure 4b), and the corresponding time evolutions are shown in Figure 4a; the ML model with
SNIC bifurcation or Hc bifurcation type both show the type I firing pattern (see Figure 4d and 4f), and
the corresponding time evolutions are shown in Figure 4c and 4e, respectively.
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Figure 4. (a) (c) (e) Time evolution diagrams of the ML model with Hopf bifurcation, SNIC
bifurcation and Hc bifurcation, respectively. (b) (d) (f) Frequency-I curves of the ML model
with Hopf bifurcation, SNIC bifurcation and Hc bifurcation, respectively.
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2.4. Conditions for the emergence of Hopf bifurcation

Consider the following n-dimensional nonlinear system:

dx
dt
= f (x, µ), (3)

where x ∈ Rn represents the state variables, µ ∈ R represents the bifurcation parameter. Assume that the
system has a fixed point x0 when the bifurcation parameter µ = µ0 and the corresponding eigenvalue
λµ0 = αµ0 + iβµ0 . The Hopf bifurcation occurs at µ = µ0 when the system satisfies the following
conditions: βµ0 , 0, αµ0 = 0, and d

dµ (αµ) | µ = µ0 > 0. However, the eigenvalues of the system cannot
be obtained easily when the system is a high-dimensional system. Therefore, the following Routh-
Hurwitz stability criterion can be used to determine whether the Hopf bifurcation occurs [23]. Assume
that the corresponding characteristic polynomial of system (3) is as follows:

p(λ, µ) = p0(µ)λn + p1(µ)λn−1 + · · · + pn(µ). (4)

Then, we obtain

Hn(µ) =



p1(µ) p0(µ) 0 · · · 0
p3(µ) p2(µ) p1(µ) · · · 0
p5(µ) p4(µ) p3(µ) · · · 0
...

...
...

. . .
...

p2n−1(µ) p2n−2(µ) p2n−3(µ) · · · pn(µ)


. (5)

where pi(µ) = 0, if i < 0 or i > n. Then, we define

D1(µ) = Det(H1(µ)) = p1(µ),

D2(µ) = Det(H2(µ)) = Det
(

p1(µ) p0(µ)
p3(µ) p2(µ)

)
, (6)

· · ·

Dn(µ) = Det(Hn(µ)).

Based on the Routh-Hurwitz stability criterion, the Hopf bifurcation occurs at µ = µ0 when the
system satisfies the following conditions:

(I) Eigenvalue crossing condition:

pn(µ0) > 0,
Di(µ0) > 0, i = 1, · · · , n − 2, (7)

Dn−1(µ0) = 0.

(II) Transversality condition:

dDn−1(µ)
dµ

|µ=µ0, 0. (8)
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3. Hopf bifurcation control of the ML model

3.1. The dynamic state-feedback controller

In this section, we provide a dynamic state-feedback controller to control the Hopf bifurcation of
the original system. Consider the following nonlinear system:

u = u(x, y),
ẏ = g(x, y). (9)

where y ∈ Rm(1 ≤ m ≤ n) represents the state variables of the controller, u(x, y) represents the feedback
control and g(x, y) is a smooth function. In this paper, we utilize the following feedback control law
proposed by Nguyen and Hong [20].

ui(xi, yi) = k1ixi + k3i(xi − x0
i )3 − liyi,

ẏi = ui(xi, yi). (10)

where x0
i (i = 1, 2, ...,m) are the equilibrium points of the system at the Hopf bifurcation point, k1i and

k3i represent the linear term control gain and the cubic term control gain, respectively. li are constant
parameters. Then we obtain the following controlled system:

ẋ = f (x, µ) + u(x, y),
ẏ = g(x, y). (11)

where

u(x, y) = [u1(x1 , y1), · · · , um(xm, ym), 0, · · · , 0]T ,

g(x, y) = [u1(x1 , y1), · · · , um(xm, ym)]T . (12)

According to Eq (10), we have ui = 0 when ẏ = ui = 0. So, if x0 is the equilibrium point of the original
system, (x0, y0) is the equilibrium point of the controlled system, where y0 = (y01, y02, · · · , y0m) and
then y0i = (k1ix0i + k3i(x0i − x01i)3)/li(i = 1, 2, · · · ,m). That is, the equilibrium points of the original
system are the equilibrium points of the controlled model. The reason for using state feedback control
to conduct the Hopf bifurcation control is that the equilibrium structure of the original system and the
controlled system remains unchanged during the control process. In the present paper, we add the
controller to the membrane potential V, and then we obtain the following controlled system:

dV
dt
=

1
C
{I − gL(V − VL) − gCaMss(V − VCa) − gKN(V − VK)} + k1V + k3(V − V0)3 − ly,

dN
dt
= ϕ

(Nss − N)
τN

,

dy
dt
= k1V + k3(V − V0)3 − ly. (13)

where V0 is the equilibrium membrane potential of the original system at the Hopf bifurcation point.
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3.2. Hopf bifurcation control of the ML model with Hc bifurcation type

The Hopf bifurcation control of neuron models has been widely studied, including HH model, HR
model, ML model with Hopf bifurcation type or SNIC bifurcation type [10–12, 19, 20]. However, the
Hopf bifurcation control of the ML model with Hc bifurcation type has not been studied. In addition,
the controllers used in previous researches only studied the system with single Hopf bifurcation point.
Therefore, in the present paper, we utilize the dynamic state-feedback control proposed by Nguyen et
al. to make the Hopf bifurcation point change from one to two. The parameter values of the model
are ϕ = 0.23, gCa = 4,V3 = 12,V4 = 17.4,VCa = 120,VK = −84,VL = −60, gK = 8, gL = 2,V1 =

−1.2,V2 = 18,C = 20, l = 0.1, and I is treated as the bifurcation parameter.

3.2.1. The transition from Hc bifurcation type to SNIC bifurcation type

The Hopf bifurcation point is located at I = 36.32 in the original ML model with Hc bifurcation type
(Figure 1). To change the model from the Hc bifurcation type to the SNIC bifurcation type, the Hopf bi-
furcation point needs to be moved forward. Here, we change the Hopf bifurcation point from I = 36.32
to I0 = 70. The equilibrium point of the original system is (V0 = 6.7697,N0 = 0.35407). Therefore,
the equilibrium point of the controlled system is (V0 = 6.7697,N0 = 0.35407, y0 = 67.697k1), and then
we obtain the Jacobian matrix of the controlled system at the equilibrium point:

J(I0) =


0.1370 + k1 −36.3079 −0.1

0.0061 −0.2326 0
k1 0 −0.1

 . (14)

Then, we obtain the characteristic polynomial of the Jacobian matrix J(I0):

p(λ, I0) = p0λ
3 + p1λ

2 + p2λ + p3 = 0. (15)

where p0 = 1, p1 = 0.1956−k1, p2 = 0.1992−0.2326k1, p3 = 0.01896. Substituting pi (i = 0, 1, · · · ,m)
into the crossing condition (I), we have

p3 = 0.01896 > 0,
D1(I0) = p1 = 0.1956 − k1 > 0, (16)
D2(I0) = p1 p2 − p0 p3 = 0.2326k2

1 − 0.2447k1 + 0.02 = 0,

Solving Eq (16), we have k1 = 0.0893. Then, we have:

dD2(I)
dI

|I=I0= −0.2032 × 10−4 , 0. (17)

which satisfy the transversal condition (II).
The bifurcation diagram of the controlled system when k1 = 0.0893, k3 = 0 is shown in Figure 5a.

As expected, the Hopf bifurcation point of the ML model with Hc bifurcation type moves forward
from I = 36.32 to I = 70. Figure 5b shows the two-parameter bifurcation diagram of bifurcation
parameter I with respect to k1, which further verifies that Hopf bifurcation occurs at I = 70 when
k1 = 0.0893. Now, the model shows a change from the Hc bifurcation type to the SNIC bifurcation
type (see Figure 5a), but does not change the firing pattern of the system (see Figure 5c and 5d).
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Figure 5. (a) Bifurcation diagram of the controlled system when k1 = 0.0893, k3 = 0, I0 =

70. (b) Two-parameter diagram of I with respect to k1. (c) Time evolution diagrams of
the controlled model with different bifurcation parameter I when k1 = 0.0893, k3 = 0. (d)
Frequency-I curves of the controlled system when k1 = 0.0893, k3 = 0.

The results of this section show that the ML model can be transformed from the Hc bifurcation type
to the SNIC bifurcation type by introducing a dynamic state-feedback control. In addition, there is
only one Hopf bifurcation point in the system when k1 , 0, k3 = 0 (Figure 5a), that is, k1 can change
the location of the Hopf bifurcation point of the ML neuron model with Hc bifurcation type, resulting
in the change of bifurcation type from Hc type to SNIC type.

3.2.2. The transition from Hc bifurcation type to Hopf bifurcation type

Previous study has investigated the transition of ML model from SNIC bifurcation type to Hopf
bifurcation type [18]. Here, we will study the transition of the ML model from Hc bifurcation type
to Hopf bifurcation. First, the inherent Hopf bifurcation point in the Hc bifurcation type needs to be
moved forward, and then a new Hopf bifurcation point is constructed in front of the moved inherent
Hopf bifurcation point. Here, we expect to change the inherent Hopf bifurcation point from I = 36.32
to I1 = 200, and then a new Hopf bifurcation point is constructed at I2 = 60.

When I1 = 200, the equilibrium point of the controlled system is (V0 = 12.94,N0 = 0.52697, y0 =

129.4k1), and then we obtain the Jacobian matrix of the controlled system at the equilibrium point:

J(I1) =


−0.1375 + k1 −38.7760 −0.1

0.0066 −0.2301 0
k1 0 −0.1

 . (18)
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Then, we obtain the characteristic polynomial of the Jacobian matrix J(I1):

p(λ, I1) = p0λ
3 + p1λ

2 + p2λ + p3 = 0. (19)

where p0 = 1, p1 = 0.4676 − k1, p2 = 0.3243 − 0.2301k1, p3 = 0.028756. Substituting pi (i =
0, 1, · · · ,m) into the crossing condition (I), we obtain:

p3 = 0.028756 > 0,
D1(I0) = p1 = 0.4676 − k1 > 0, (20)
D2(I0) = p1 p2 − p0 p3 = 0.2301k2

1 − 0.4319k1 + 0.12288668 = 0.

Solving Eq (20), we have k1 = 0.34966383. Then, substituting k1 = 0.34966383 into the controlled
system when I2 = 60, we obtain the equilibrium point of the controlled system (V0 = 6.1368,N0 =

0.33762, y0 = 21.46 + 3148.761k3). The Jacobian matrix of the controlled system at the equilibrium
point is as follows:

J(I2) =


0.5141 + 138.8506k3 −36.0547 −0.1

0.0060 −0.2333 0
0.3497 + 138.8506k3 0 −0.1

 . (21)

Then, we obtain the characteristic polynomial of the Jacobian matrix J(I2):

p(λ, I2) = p0λ
3 + p1λ

2 + p2λ + p3 = 0. (22)

where p0 = 1, p1 = −0.1808 − 138.8506k3, p2 = 0.1033 − 32.3938k3, p3 = 0.0178. Substituting
pi (i = 0, 1, · · · ,m) into the crossing condition (I), we obtain:

p3 = 0.0178 > 0,
D1(I0) = p1 = −0.1808 − 138.8506k3 > 0, (23)
D2(I0) = p1 p2 − p0 p3 = 4497.89857k2

3 − 8.4865k3 − 0.0365 = 0.

Solving Eq (23), we have k3 = −0.00205656. Figure 6 shows the dynamic behaviors of the con-
trolled system when k1 = 0.34966383, k3 = −0.00205656. From Figure 6a we can see that the Hopf
bifurcation point of the ML neuron model with Hc bifurcation type is moved forward from I = 36.32
to I1 = 200, and a new Hopf bifurcation point is constructed at I2 = 60. Figure 6b shows the two-
parameter bifurcation diagram of bifurcation parameter I with respect to k1, which further verifies that
the model undergoes the Hopf bifurcation at I1 = 200, I2 = 60 when k1 = 0.0893. Figure 6c shows
the time evolutions of the controlled system with different bifurcation parameter I. From Figure 6c we
can see that the system fires from a positive minimum frequency, which is further verified in Figure
6d. Now, the model shows a change from Hc bifurcation type to Hopf bifurcation type (see Figure 6a),
and the firing pattern changes from type I to type II (see Figure 6d).

The results in this section show that the ML model can be transformed from the Hc bifurcation type
to the Hopf bifurcation type by introducing dynamic state-feedback control. In addition, the model
performs type II firing pattern when k1 , 0, k3 , 0, that is, the combination of k1 and k3 can change the
firing patterns of the ML neuron model with Hc bifurcation type.
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Figure 6. (a) Bifurcation diagram of the controlled system with k1 = 0.34966383 and
k3 = −0.00205656. (b) Two-parameter diagram of I with respect to k1. (c) Time evolu-
tion diagrams of the controlled system with different bifurcation parameter I when k1 =

0.34966383 and k3 = −0.00205656. (d) Frequency-I curves of the controlled system when
k1 = 0.34966383 and k3 = −0.00205656.

3.2.3. Theoretical analysis of the criticality of Hopf bifurcation

As mentioned above, the criticality of the Hopf bifurcation can be changed by a dynamic state-
feedback controller. In this section, we derive the stability coefficient β2 of the Hopf bifurcation by
utilizing the Poincare Birkhoff (PB) normal form method. The Hopf bifurcation is subcritical when
β2 > 0, resulting in an unstable limit cycle; the Hopf bifurcation is supercritical when β2 < 0, resulting
in a stable limit cycle.

Consider the following controlled system:

ẋ = f (x, µ), (24)

where x = (V,N, y)T , f = ( f1, f2, f3)T . The equilibrium point of the system at µ0: x0(µ0) =
(V0(µ0),N0(µ0), y0(µ0))T . Rewrite the controlled system as: ẋ = f (x, µ) = Jx + g(x), where J is
the Jocabian matrix of the system at the equilibrium point, g(x) is the nonlinear term:

J =
∂ f
∂x
|x=x0=


∂ f1
∂V

∂ f1
∂N

∂ f1
∂y

∂ f2
∂V

∂ f2
∂N

∂ f3
∂y

∂ f3
∂V

∂ f3
∂N

∂ f3
∂y


V=V0,N=N0,y=y0

g(x) = f (x, µ) − Jx. (25)
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Then, we conduct the linear transformation of the controlled system: x = Py + x0(µ0), where
P = [Re(v1), Im(v1), v3], Re(v1) and Im(v1) are the real and imaginary parts of the eigenvector v1

corresponding to eigenvalues λ1, and v3 is the eigenvector corresponding to the eigenvalue λ3. Then,
we have:

ẋ = Pẏ = J(Py + x0(µ0)) + g(Py + x0(µ0)), (26)

Substituting Eq (25) into Eq (26), we have:

Pẏ = J(Py + x0(µ0)) + f (Py + x0(µ0)) − J(Py + x0(µ0)), (27)

where

ẏ = P−1J(Py + x0(µ0)) + P−1[ f (Py + x0(µ0)) − J(Py + x0(µ0))]
= P−1JPy + P−1 f (Py + x0(µ0)) − P−1JPy

= Ay + P−1 f (Py + x0(µ0)) − Ay

= Ay + F. (28)

A = P−1JP is the Jocabian matrix of the system, F is the nonlinear term:

F = P−1 f (Py + x0(µ0)) − Ay. (29)

That is, 
F1

F2

F3

 = P−1


f1(Py + x0(µ0))

f2(Py + x0(µ0))

f3(Py + x0(µ0))

 − A


y1

y2

y3

 . (30)

Based on the PB normal form theory, we obtain the expression of the bifurcation stability coefficient
β2:

β2 = 2Re

g20g11 − 2|g11|
2 − 1

3 |g02|
2

2ω0
i +

g21

2

 . (31)

where

g20 =
1
4

[
∂2F1

∂y2
1

−
∂2F1

∂y2
1

+ 2
∂2F2

∂y1∂y2
+ i

(
∂2F2

∂y2
1

−
∂2F2

∂y2
1

− 2
∂2F1

∂y1∂y2

)]
, (32)

g11 =
1
4

[
∂2F1

∂y2
1

+
∂2F1

∂y2
2

+ i
(
∂2F2

∂y2
1

+
∂2F2

∂y2
2

)]
, (33)

g02 =
1
4

[
∂2F1

∂y2
1

−
∂2F1

∂y2
1

− 2
∂2F2

∂y1∂y2
+ i

(
∂2F2

∂y2
1

−
∂2F2

∂y2
1

+ 2
∂2F1

∂y1∂y2

)]
, (34)
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g21 = G21 + 2G1
110w1

11 +G1
101w1

20, (35)

G21 =
1
8

[
∂3F1

∂y3
1

+
∂3F1

∂y1∂y2
2

+
∂3F2

∂y2
1∂y2

+
∂3F2

∂y3
2

+ i
(
∂3F2

∂y3
1

+
∂3F2

∂y1∂y2
2

−
∂3F1

∂y2
1∂y2

−
∂3F1

∂y3
2

)]
, (36)

G1
110 =

1
2

[
∂2F1

∂y1∂y3
+
∂2F2

∂y2∂y3
+ i

(
∂2F2

∂y1∂y3
−
∂2F1

∂y2∂y3

)]
, (37)

G1
101 =

1
2

[
∂2F1

∂y1∂y3
−
∂2F2

∂y2∂y3
+ i

(
∂2F2

∂y1∂y3
+
∂2F1

∂y2∂y3

)]
. (38)

Here, the vectors w1
11 and w1

20 satisfy the following linear equations:

λ3w1
11 = −h11, (λ3 − 2iω0)w1

20 = −h20. (39)

h11 =
1
4

(
∂2F3

∂y2
1

+
∂2F3

∂y2
2

)
, h20 =

1
4

(
∂2F3

∂y2
1

−
∂2F3

∂y2
2

− 2i
∂2F3

∂y1∂y2

)
. (40)

where λ3 is the real characteristic root of the Jacobian matrix, ω0 is the imaginary part of the pure
virtual characteristic root of the Jacobian matrix, and ω0 > 0. Solving Eqs (39) and (40) we obtain:

w1
11 = −

1
4λ3

(
∂2F3

∂y2
1

+
∂2F3

∂y2
2

)
, (41)

w1
20 = −

1
4(λ2

3 + 4ω2
0)

[
λ3

(
∂2F3

∂y2
1

−
∂2F3

∂y2
2

)
+ 4ω0

∂2F3

∂y1∂y2

]
−i

1
2(λ2

3 + 4ω2
0)

[
ω0

(
∂2F3

∂y2
1

−
∂2F3

∂y2
2

)
− λ3

∂2F3

∂y1∂y2

]
. (42)

Then, we obtain the nonlinear terms of the controlled system:

f1 =
1
c

[I − gl(−Vl + V0 + P11y1 + P12y2 + P13y3)

−
1
2

gca

(
1 + tanh

(
V0 + P11y1 + P12y2 + P13y3 − V1

V2

))
(−Vca + V0 + P11y1

+ P12y2 + P13y3) − gk(N0 + P21y1 + P22y2 + P23y3)(−Vk + V0 + P11y1 + P12y2

+ P13y3)] + k1(V0 + P11y1 + P12y2 + P13y3) + k3(−V0 + V0 + P11y1 + P12y2

+ P13y3)3 − l(y0 + P31y1 + P32y2 + P33y3), (43)

f2 = ϕ[
1
2

(
1 + tanh

(
V0 + P11y1 + P12y2 + P13y3 − V1

V4

))
− (N0 + P21y1

+ P22y2 + P23y3)]cosh
(V0 + P11y1 + P12y2 + P13y3 − V3

2
V4

)
, (44)
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f3 = k1(V0 + P11y1 + P12y2 + P13y3) + k3(−V0 + V0 + P11y1 + P12y2

+ P13y3)3 − l(y0 + P31y1 + P32y2 + P33y3). (45)

Because Ay is the first-order function with respect to y and the second or more derivative of y is required
in the following calculations, the derivative of y is omitted. We only calculate the following equation:
F = P−1 f (Py + x0(µ0)).

Next, we calculate the stability coefficient β2 of the controlled system when k1 = 0.3497,
k3 = −0.0021, µ0 = I1 = 200. The equilibrium point of the controlled system is (V0 = 12.94,N0 =

0.52697, y0 = 45.2465), and the corresponding Jacobian matrix is:

J =


0.2122 −38.7760 −0.1
0.0066 −0.2301 0
0.3497 0 −0.1

 . (46)

Then, we obtain the eigenvalues and eigenvectors: λ1 = 0.4938i, λ2 = −0.4938i, λ3 = −0.1179.

v1 =


0.8215

0.0042 − 0.0090i
0.1131 − 0.5588i

 , v2 =


0.8215

0.0042 + 0.0090i
0.1131 + 0.5588i

 , v3 =


−0.0512
−0.0030
0.9987

 . (47)

So, the matrix P = [Re(v1), Im(v1), v3] can be rewrite as:

P =


0.8215 0 −0.0512
0.0042 −0.0090 −0.0030
0.1131 −0.5588 −0.9987

 . (48)

Then, we obtain:

P−1 =


1.2268 −3.2912 0.0530
0.5216 −95.0446 −0.2588
0.1529 −52.8073 0.8505

 . (49)

Substituting Eqs (48) and (49) into F = P−1 f (Py + x0(µ0)), we have:
F1

F2

F3

 =


1.2268 f1 − 3.2912 f2 + 0.0530 f3

0.5216 f1 − 95.0446 f2 − 0.2588 f3

0.1529 f1 − 52.8073 f2 + 0.8505 f3

 . (50)

Finally, substituting the parameters into the stability coefficient formula we have β2 = −9.9169 ×
10−4 < 0, that is, the controlled system undergoes the supercritical Hopf bifurcation at (V0,N0) =
(12.94, 0.52697) when I1 = 200. The membrane potential curve and phase trajectory of the controlled
system at the bifurcation point are shown in Figure 7a and 7b. From Figure 7b we can see that the
phase trajectory of the controlled system converges to a stable limit cycle when I1 = 200. However,
the phase trajectory of the original system converges to a stable equilibrium point when I1 = 200 (see
Figure 7c and 7d). The similar results can be obtained when I2 = 60, so we omit them here.
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Figure 7. Time evolutions and phase diagrams of the controlled system (a-b) and original
system (c-d) when I1=200µA/cm2.

4. Conclusions

In this paper, we investigate the Hopf bifurcation control of the ML model with Hc bifurcation type
by utilizing the method of dynamic state-feedback control. The results show that (1) the location of
the Hopf bifurcation point can be changed by introducing the state-feedback control without changing
the model parameters; (2) the control gain k1 transforms the ML model from the Hc bifurcation type
to the SNIC bifurcation type, but does not change the firing pattern of the model; (3) the cooperation
of control gain k1 and k3 transforms the ML model from the Hc bifurcation type to the Hopf bifurca-
tion type, and the firing pattern shows a change from Type I to Type II. In addition, we find that the
criticality of the Hopf bifurcation of the system can be changed by introducing the control gain k3,
that is, the criticality of the Hopf bifurcation is changed from the subcritical Hopf bifurcation to the
supercritical Hopf bifurcation. Many neurodegenerative diseases are caused by the change of firing
patterns. Therefore, the results of this paper may have potential applications for the treatment of these
diseases.

Compared to previous studies, the conclusions of this paper further enrich the research results. Some
scholars have studied the Hopf bifurcation control based on the ML model with SNIC bifurcation
type by introducing a washout filter-aided dynamic feedback controller [19]. In their research, they
only studied how the location and criticality of the Hopf bifurcation changed under different control
conditions. However, they cannot perform the change of the Hopf bifurcation point from one to two.
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Therefore, it is impossible to study how to control the firing pattern of the system changes from type I
to type II. Here, we utilize a new dynamic state feedback controller to control the Hopf bifurcation of
the ML model with Hc bifurcation type. This controller not only reproduces the previous results, but
also realizes the control of two Hopf bifurcation points. We further study the effects of the controller
on firing patterns, providing potential application value for the treatment of some dynamic diseases. In
addition, the stability index to determine the criticality of the Hopf bifurcation is given in our paper.
The mutual verification of theoretical analysis and numerical simulation improves the integrity of this
research.
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