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Abstract: We study the following fractional Schrödinger equation

ε2s(−∆)su + V(x)u = f (u), x ∈ RN ,

where s ∈ (0, 1). Under some conditions on f (u), we show that the problem has a family of solutions
concentrating at any finite given local minima of V provided that V ∈ C(RN , [0,+∞)). All decay rates
of V are admissible. Especially, V can be compactly supported. Different from the local case s = 1
or the case of single-peak solutions, the nonlocal effect of the operator (−∆)s makes the peaks of the
candidate solutions affect mutually, which causes more difficulties in finding solutions with multiple
bumps. The methods in this paper are penalized technique and variational method.

Keywords: variational method; fractional Schrödinger; multi-peak; compactly supported; penalized
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1. Introduction and main results

In this paper, we consider the fractional Schrödinger equation

ε2s(−∆)su + V(x)u = f (u), x ∈ RN , (1.1)

where N > 2s, s ∈ (0, 1), V is a continuous function, ε > 0 is a small parameter, f : RN → R is
a nonlinear function. Problem (1.1) is derived from the study of time-independent waves ψ(x, t) =
e−iEtu(x) of the following nonlinear fractional Schrödinger equation

iε
∂ψ

∂t
= ε2s(−∆)sψ + U(x)ψ − f (ψ) x ∈ RN . (NLFS )
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For example, letting f (t) = |t|p−2t, V(x) = U(x) − E and inserting ψ(x, t) = e−iEtu(x) into (NLFS ), one
can show that (NLFS ) is

ε2s(−∆)su + V(x)u = |u|p−2u. (1.2)

In physics, Eq (1.1) can be used to describe some properties of Einstein’s theory of relativity and
also has been derived as models of many physical phenomena, such as phase transition, conservation
laws, especially in fractional quantum mechanics, etc., [1]. (NLFS ) was introduced by Laskin [2,3] as
an extension of the classical nonlinear Schrödinger equations s = 1 in which the Brownian motion of
the quantum paths is replaced by a Lèvy flight. To see more physical backgrounds, we refer to [4].

In this paper, we are interesting in semiclassical analysis of (1.1). From a mathematical point of
view, the transition from quantum to classical mechanics can be formally performed by letting ε→ 0.
For small ε > 0, solutions uε are usually referred to as semiclassical bound states.

In the local case s = 1, the study of the nonlinear Schrödinger equation

−ε2∆u + V(x)u = f (u) (NLS )

has been extensively investigated in the semiclassical regime and a considerable amount of work has
been done, showing that existence and concentration phenomena of single- and multi-bump solutions
occur at critical points of the electric potential V when ε → 0, see [5–19] and the references therein
for example.

To our best knowledge, there are few results on the semiclassical bound states to problem (1.1) in
the nonlocal case s ∈ (0, 1). Basing on the well-known non-degenerate results in [20,21] and the math-
ematical reduction method, it was proved in [22–24] that problem (1.2) has solutions concentrating at
the prescribed non-degenerate critical points of V when ε → 0. When infx∈RN V(x) > 0 and V has
local minimum which may be degenerate, Alves et al. in [25] used the penalized method developed
by del Pino et al. in [10] and the extension method developed by Caffarelli et al. in [26] to construct
solutions concentrating at a local minimum of V when ε → 0. Successively, assuming more weakly
that lim inf |x|→∞ V(x)|x|2s ≥ 0, in [27, 28], solutions concentrating at a local minimum of V were also
obtained. We point out here that the solutions found in [25] and [27] have exactly one local maximum
and hence are single-peaked.

However, concerning (1.1), up to now there are no research on the multi-bump solutions in the case
that the potentials V(x) vanish at infinity and critical points of V(x) are degenerate. The main difficulty
lies in that for a suitable function u : RN → R, under the nonlocal effects of (−∆)s, one can not
compute (−∆)su as precisely as −∆u. Moreover, the nonlocal operator (−∆)s makes the peaks of the
candidate solutions affect mutually, which causes more difficulties in finding solutions with multiple
bumps (see the estimates of (2.23), (2.26) and (2.29) in Lemma A.2 for example).

This paper devotes to finding solutions with multiple bumps for more general potentials including
fast decaying potentials, i.e.,

lim inf
|x|→∞

V(x)|x|2s = 0,

in which, a typical case is that V is compactly supported.
In order to state our main result, we need to introduce some notations and assumptions. For s ∈

(0, 1), the fractional Sobolev space H s(RN) is defined as

H s(RN) =
{
u ∈ L2(RN) :

u(x) − u(y)
|x − y|N/2+s ∈ L2(RN × RN)

}
,
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endowed with the norm
∥u∥Hs(RN ) =

( ∫
RN
|(−∆)s/2u|2 + u2 dx

) 1
2
,

where ∫
RN
|(−∆)s/2u|2dx =

∫
R2N

|u(x) − u(y)|2

|x − y|N+2s dx dy.

Like the classical case, we define the space Ḣ s(RN) as the completion of C∞c (RN) under the norm

∥u∥2 =
∫
RN
|(−∆)s/2u|2dx =

∫
R2N

|u(x) − u(y)|2

|x − y|N+2s dx dy.

Define the following fractional Sobolev space

W s,2(Ω) =
{
u ∈ L2(Ω) :

|u(x) − u(y)|

|x − y|
N
2 +s

∈ L2(Ω ×Ω)
}
.

It is easy to check that with the inner product

(u, v) =
∫
Ω

∫
Ω

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s dxdy +

∫
Ω

uvdx ∀u, v ∈ W s,2(Ω),

W s,2(Ω) is a Hilbert space (see [4] for details). According to [4], the fractional Laplacian is defined as

(−∆)su(x) = C(N, s)P.V.
∫
RN

u(x) − u(y)
|x − y|N+2s dy

= C(N, s) lim
ε→0

∫
RN\Bε(x)

u(x) − u(y)
|x − y|N+2s dy.

For the sake of simplicity, we define for every u ∈ Ḣ s(RN) the fractional (−∆)su as

(−∆)su(x) =
∫
RN

u(x) − u(y)
|x − y|N+2s dy.

Our solutions will be found in the following weighted fractional Sobolev space:

Ds
V,ε(R

N) =
{
u ∈ Ḣ s(RN) : u ∈ L2(RN ,V(x) dx

)}
,

endowed with the norm
∥u∥Ds

V,ε(R
N ) =
( ∫
RN
ε2s|(−∆)s/2u|2 + Vu2 dx

) 1
2
.

For the nonlinear term f (u), we assume

( f1) f (t) is an odd function and f (t) = o(t1+κ̃) as t → 0+, where κ̃ =
2s + 2κ

N − 2s − ν̃
> 0

with ν̃, κ > 0 are small parameters.

( f2) lim
t→∞

f (t)
tp = 0 for some 1 < p < 2∗s − 1. (1.3)

( f3) There exists 2 < θ ≤ p + 1 such that 0 ≤ θF(t) < f (t)t for all t > 0, where
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F(t) =
∫ t

0
f (α)dα.

( f4) The map t 7→
f (t)
t

is increasing on (0,+∞).

A typical case of f (t) is: f (t) = |t|p−2t with 2 + 2s
N−2s < p < 2∗s.

For the potential term V , we assume that V ∈ C
(
RN , [0,∞)

)
and

(V) There exist open bounded sets Λi ⊂⊂ S i ⊂⊂ Ui with smooth boundaries, such that

0 < λi = inf
Λi

V < inf
Ui\Λi

V, Ui ∩ U j = ∅ if 1 ≤ i , j ≤ k. (1.4)

Denote Λ =
⋃k

i=1Λi, S =
⋃k

i=1 S i and U =
⋃k

i=1 Ui. Without loss of generality, we assume that 0 ∈ Λ.

Theorem 1.1. Let N > 2s, s ∈ (0, 1), V satisfy (V) and f satisfy the assumptions ( f1) − ( f4). Then
problem (1.1) has a positive solution uε ∈ Ds

V,ε(R
N) if ε > 0 is small enough. Moreover, there exists k

families of points {{xi
ε} : 1 ≤ i ≤ k} and an α close to N − 2s, such that

(i) lim
ε→0

V(xi
ε) = λi,

(ii) lim inf
ε→0

∥uε∥L∞
(

Bερ(xi
ε)
) > 0

(iii) uε(x) ≤
k∑

i=1

Cεα

εα + |x − xi
ε|
α
,

where C and ρ are positive constants.

Now we introduce the main idea of the proof. For the local case s = 1, certain penalized functional
like

Kε(u) = M1

k∑
j=1

((
(L j

ε(u))1/2
+ − ε

N/2(c j + σ j)1/2)
+

)2
(1.5)

was usually employed to prove that the penalized solution uε has exactly one peak in each Λi, see
[17, 18, 29] for example. But, the key step of this argument is to eliminate the effect of Kε(u) to the
equation, which needs a type of isolated property of the least energy of −∆u + u = g(u). However,
for our case 0 < s < 1, this type of isolated property is still unknown. To overcome this difficulty, we
use the method developed by Byeon and Jeanjean in [30], which proves the existence of multi-peak
solutions of following equation

− ε2∆u + V(x)u = g(u) (1.6)

by using only the compactness of the set consisting of the radial positive least energy solutions of the
following limiting problem of (1.6):

−∆u + au = g(u),

where a > 0 is a constant and g is a nonlinear term satisfying some subcritical conditions. For more
application of this methods, see [31]. Roughly speaking, by the compact property, we use the defor-
mation ideas of Lemma 2.2 in [32] to construct a (PS )c sequence near the least energy solutions of the
following k problems:

(−∆)su + λiu = f (u), in RN , i = 1, · · · , k.
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It is worth mentioning that the compact property can be obtained by the decay estimates of positive
radial least energy solutions(see Proposition 2.4 below). However, the vanishing of V and the nonlocal
effect of (−∆)s makes the construction of multi-peak solutions more difficult than the classical case
s = 1, the non-vanishing case [30] and the single peak case [28]. Firstly, an elementary(but tedious)
calculations show that when V(x) vanishes faster than |x|−2s, the natural functional Iε : Ds

V,ε(R
N) → R

corresponding to (1.1) defined as

Iε(u) =
1
2

∫
RN

(ε2s|(−∆)s/2u|2 + Vu2)dx −
∫
RN

F(u)dx,

whose critical points are solutions of Eq (1.1), is not well-defined inDs
V,ε(R

N), where F(t) =
∫ t

0
f (s)ds.

Moreover, the fact that V(x) may be compactly supported makes it impossible that V can dominated
the nonlinear term |u|p−2u like [27]. Hence we have to introduce a different penalized idea from [30]
to cut-off the nonlinear term. More precisely, we will first use the nonlocal part (−∆)s to modify the
problem by the following fractional Hardy inequality∫

RN

|u(x)|2

|x|2s dx ≤ CN,s∥(−∆)s/2u∥22 (1.7)

for all u ∈ Ḣ s(RN)(see [35]), and then construct a sup-solution and estimate the energy of multi-peak
solutions.

The celebrated paper [26] provides an easy way to understand the nonlocal problem (see [25] for
example), by which, one can convert the nonlocal problem (1.1) into a local problem. But we do not
use this method in our paper. Indeed, if problem (1.1) becomes a local problem, the vanishing of V and
the added variable “t > 0” (which comes from extending the problem into RN+1

+ , see [25] for instance)
will make it difficult to construct precise penalized functions.

The paper is organized as follows: in Section 2, we establish the penalized scheme. By using the
compact property of the set consisting of positive radial least energy solutions and the deformation
idea in Lemma 2.2 of [32], we construct a (PS )c sequence with k-peaks in Λ, and then get a penalized
multi-peak solution. In Section 3, we construct a penalized function to prove that the penalized solution
is indeed a solution of the original equation (1.1). In the Appendix we will give some tedious energy
estimates caused by the nonlocal operator.

2. The penalized problem

In this section, we first establish a penalized problem by using the fractional Hardy inequality
(1.7) to cut off the nonlinear term f . A well-defined smooth penalized functional in Ds

V,ε(R
N) will be

obtained. Secondly, we use the compact property of set consisting of least energy solutions and the
deformation lemma [32, Lemma 2.2] to construct a (PS )c sequence near the least energy solutions.
A penalized solution with k peaks for the penalized problem will be obtained by passing limit on the
(PS )c sequence.

2.1. The Penalized Functional

The following inequality exposes the relationship between H s(RN) and the Banach space Lq(RN).
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Proposition 2.1. (Fractional version of the Gagliardo−Nirenberg inequality) [37] For every u ∈
H s(RN),

∥u∥q ≤ C∥(−∆)s/2u∥β2∥u∥
1−β
2 ,

where q ∈ [2, 2∗s] and β satisfies β

2∗s
+

(1−β)
2 = 1

q .

The above inequality implies that H s(RN) is continuously embedded into Lq(RN) for q ∈ [2, 2∗s].
Moreover, on bounded set, the embedding is compact (see [4]), i.e.,

H s(RN) ⊂⊂ Lq
loc(R

N) compactly, if q ∈ [1, 2∗s).

2.2. The penalized functional

Now we are going to modify the original problem (1.1). According to the fractional Hardy inequal-
ity (1.7), we choose a family of penalized potentials Pε ∈ L∞(RN , [0,∞)) for ε > 0 small in such a way
that  Pε(x) = 0, x ∈ Λ,

lim
ε→0

supRN\ΛPε(x)ε−(2s+3κ/2)|x|2s+κ = 0, (2.1)

where κ > 0 is the same parameter in ( f1). Noting that by (1.7), when ε > 0 is small enough, it holds
that for any A ⊂ RN ,∫

A
Pε(x)|u|2 ≤ CN,s

ε2s+ 3κ
2

infx∈(RN\Λ)∩A |x|κ

∫
RN
|(−∆)s/2u|2 for all u ∈ Ds

V,ε (2.2)

where CN,s is the constant in (1.7). This type of estimate plays a key role in the paper(see (2.10) below
for example).

Now we give the penalized problem according to the choice of Pε:

ε2s(−∆)su + Vu = χΛ f (s+) + χRN\Λmin{ f (s+),Pε(x)s+}. (2.3)

It is easy to check that if a solution uε of (2.3) satisfies

f (uε) ≤ Pεuε on RN\Λ,

then uε is a solution of (1.1).
Given a penalized potentialPε that satisfies (2.1), we define the penalized nonlinearity gε : RN×R→

R as
gε(x, s) := χΛ f (s+) + χRN\Λmin{ f (s+),Pε(x)s+}.

We denote Gε(x, t) =
∫ t

0
gε(x, s)ds.

Accordingly, the penalized superposition operators gε and Gε are given by

gε(u)(x) = gε(x, u(x)) and Gε(u)(x) = Gε(x, u(x)).

Following, we define the penalized functional Jε : Ds
V,ε(R

N)→ R as

Jε(u) =
1
2

∫
RN

(ε2s|(−∆)s/2u|2 + V(x)|u|2) −
∫
RN
Gε(u).

The strong assumption (2.1) can help to check that Jε is C1 and satisfies (P.S.) condition.
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Lemma 2.2. (1) If 2 < p < 2∗s and (2.1) hold, then Jε ∈ C1(Ds
V,ε(R

N),R) and for u ∈ Ds
V,ε(R

N),
φ ∈ Ds

V,ε(R
N),

⟨J′ε(u), φ⟩ =
∫
RN
ε2s(−∆)s/2u(−∆)s/2φ + Vuφ −

∫
RN
gε(u)φ.

Here ⟨·, ·⟩ denotes the duality product between the dual space Ds
V,ε(R

N)′ and the space Ds
V,ε(R

N).
In particular, u ∈ Ds

V,ε(R
N) is a critical point of Jε if and only if u is a weak solution of the penalized

equation
ε2s(−∆)su + Vu = gε(u). (2.4)

(2) ((P.S.) condition) If 2 < p < 2∗s and (2.1) holds, then Jε owns the mountain pass geometry and
satisfies the Palais-Smale condition.

Proof. We omit the proof since it is quite similar to that in [28, Lemma 2.4]. □

2.3. Construction of solutions with k peaks

Definition 2.3. For a > 0, we define the value ca as

ca = inf
γ∈Γa

max
t∈[0,1]

La(γ(t)),

where La : H s(RN)→ R and Γa are given by

La(u) =
1
2

∫
RN

∫
RN

|u(x) − u(y)|2

|x − y|N+2s dy +
1
2

∫
RN

a|u|2 −
∫
RN

F(u)

and
Γa := {γ ∈ (C[0, 1],H s(RN)) : γ(0) = 0, La(γ(1)) < 0},

where F(t) =
∫ t

0
f (s)ds. From [1, 36], we know that ca is continuous, increasing on a and can be

achieved by a positive radial solution Ua which satisfies the following limiting problem

(−∆)su + au = f (u), x ∈ RN .

Moreover, there exist two positive constants c̃a, C̃a such that

c̃a

1 + |x|N+2s ≤ Ua(|x|) ≤
C̃a

1 + |x|N+2s , x ∈ RN . (2.5)

Then, letting S a = {Ua : Ua is positive radial and achieves ca}, by the decay estimate (2.5), we have

Proposition 2.4. The set S a is compact in H s(RN).

Proof. If S a contains finitely many elements, then it is compact. Otherwise, taking a sequence {Un} ⊂

S a, since {Un} is bounded in H s(RN), there exists a U ∈ H s(RN) such that
Un ⇀ Uweakly in H s(RN),
Un → U a.e. in RN ,

Un → U strongly in Lq
loc(R

N), 1 < q < 2∗s − 1.
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Then, by (2.5), we have Un → U strongly in Lp(RN). Obviously, U is nonnegative and satisfies

(−∆)sU + aU = f (U).

Furthermore, by standard regularity argument(see Appendix D in [21] for example), we have U > 0.
Then, by Definition 2.3, we have lim infn→∞ La(Un) ≥ La(U) ≥ ca. Then La(U) = ca, U ∈ S a and∫

RN
|(−∆)s/2Un|

2 + a|Un|
2 →

∫
RN
|(−∆)s/2U |2 + a|U |2

as n→ ∞. This completes the proof. □

From now on we define

Mi = {x ∈ Λi : V(x) = λi} andM =
k⋃

i=1

Mi.

Let η(x) = η(|x|) ∈ C∞c (RN) satisfy 0 ≤ η ≤ 1, η ≡ 1 on Bβ(0) and η ≡ 0 on RN\B2β(0), where β > 0
is a small parameter satisfyingM2β ⊂ Λ. For each pi ∈ Mi and Uλi ∈ S λi given by Definition 2.3, we
define

U p1,...,pk
ε (x) =

k∑
i=1

η(x − pi)Uλi

( x − pi

ε

)
, x ∈ RN .

We will find a solution to (2.4), for sufficiently small ε > 0, near the set

Xε =
{
U p1,...,pk
ε : Uλi ∈ S λi , pi ∈ Mi, 1 ≤ i ≤ k

}
.

For each 1 ≤ i ≤ k, we also define

W i
ε(x) = η(x − pi)Uλi

( x − pi

ε

)
.

We have:

Proposition 2.5. For each i ∈ {1, . . . , k}, it holds

Jε
( k∑

j=1

t jW j
ε) < 0

if ti > T for some T ∈ (0,+∞).

Proof. By the choice of W i
ε, there exists a positive constant C such that

Jε
( k∑

i=1

tiW i
ε) =

k∑
i=1,k=1

i, j

ε2s

2

∫
RN×RN

tit j(W i
ε(x) −W i

ε(y))(W j
ε(x) −W j

ε(y))
|x − y|N+2s dxdy

+

k∑
i=1

( t2
i

2
∥W i

ε∥
2
ε −

∫
RN

F(tiW i
ε)
)
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≤

k∑
i=1

(
Ct2

i ∥W
i
ε∥

2
ε −

∫
RN

F(tiW i
ε)
)

= εN
k∑

i=1

(
Ct2

i ∥ηε(x)Uλi(x)∥2 −
∫
RN

F(tiηε(x)Uλi(x))
)
.

By decomposition, we have

∥ηε(x)Uλi(x)∥2

= ∥Uλi(x)∥2 +
∫
RN×RN

(η2
ε(x) − 1)|Uλi(x) − Uλi(y)|2

|x − y|N+2s dxdy

+

k∑
i=1

t2
i

∫
RN

∫
RN

ηε(x)(Uλi(x) − Uλi(y))(ηε(x) − ηε(y))Uλi(y)
|x − y|N+2s dxdy

+

∫
RN

∫
RN

(ηε(x) − ηε(y))2U2
λi

(y)

|x − y|N+2s dxdy.

(2.6)

But, arguing as done in the proof of the following (2.23), (2.26) and (2.29) in Lemma A.2, we know
that ∫

RN

∫
RN

(ηε(x) − ηε(y))2U2
λi

(y)

|x − y|N+2s dxdy = oε(1).

Hence

Jε
( k∑

i=1

tiW i
ε) ≤ ε

N
k∑

i=1

(
Ct2

i ∥Uλi(x)∥2 −
∫

B1(0)
F(tiUλi(x))

)
.

Then, by the assumption on f and max
t>0

1≤i≤k

(
Ct2

i ∥Uλi(x)∥2 −
∫

B1(0)
F(tiUλi(x))

)
< +∞, we get the conclusion.

□

As a result of Proposition 2.5, we know that the following definition is reasonable: for τ =
(t1, . . . , tk) ∈ [0,T ]k, let γε(τ) =

∑k
i=1 tiW i

ε and define

Dε = max
τ∈[0,T ]k

Jε
(
γε(τ)

)
.

We have the following estimate forDε.

Proposition 2.6. (i) lim
ε→0

Dε

εN =
∑k

i=1 cλi .

(ii) lim sup
ε→0

max
τ∈∂[0,T ]k Jε

(
γε(τ)
)

εN ≤
∑k

i=1 cλi − min
1≤i≤k

cλi .

(iii) For each δ > 0, there exists α > 0 such that for sufficiently small ε > 0,

Jε(γε(τ))
εN ≥

Dε

εN − α

implies that γε(τ) ∈ X
δεN/2

2
ε .
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Proof. By the decay rates of Uλi and the analysis of (2.6), we have

Jε(γε(τ))/εN =

k∑
i=1

Lλi(tiUλi) + oε(1)

+
∑

1≤i, j≤k

tit j

2

∫
RN×RN

|x − y|−N−2s(ηε(x)Uλi(x) − ηε(y)Uλi(y)
)

(
η(εx + pi − p j)Uλ j

(
x +

pi − p j

ε

)
− η(εy + pi − p j)Uλ j

(
y +

pi − p j

ε

))
dxdy

+

k∑
i=1

t2
i

2

∫
RN

(
η2
ε(x)V(εx + pi) − λi

)
U2
λi

(x)dx

+

k∑
i=1

∫
RN

(
F
(
tiUλi(x)) − F

(
tiηε(x)Uλi(x)

))
,

where ηε(x) = η(εx). Choosing ε > 0 be small enough such that suppηε ∩ suppηε
(
· +

pi−p j

ε

)
= ∅, we

have ∣∣∣∣ ∫
RN×RN

|x − y|−N−2s(ηε(x)Uλi(x) − ηε(y)Uλi(y)
)

(
η(εx + pi − p j)Uλ j

(
x +

pi − p j

ε

)
− η(εy + pi − p j)Uλ j

(
y +

pi − p j

ε

))
dxdy
∣∣∣∣

= 2
∫

B 2β
ε

(0)
dx
∫

B 2β
ε

(
p j−pi
ε

) ηε(x)ηε
(
y + pi−p j

ε

)
Uλi(x)Uλ j

(
y + pi−p j

ε

)
|x − y|N+2s dy

≤ C
(min

i, j
1≤i, j≤k

(|pi − p j| − 4β)

ε

)−N−2s

= oε(1).

Then by the fact that pi ∈ Mi and ti ≤ T , 1 ≤ i ≤ k, we have

Jε(γε(τ))
εN =

k∑
i=1

Lλi(tiUλi) + oε(1). (2.7)

Hence we get (i) and obviously (ii) is true.

Finally, (2.7) implies that if τε ∈ [0,T ]k satisfies lim
ε→0

( Jε
(
γε(τε)
)

εN −
Dε

εN

)
= 0, then it must hold

lim
ε→0

τε = (1, . . . , 1),

which implies (iii).
Consequently, we complete the proof. □

Next, we define
Cε = inf

ψ∈Ψε
max
τ∈[0,T ]k

Jε(ψ(τ)),

Electronic Research Archive Volume 30, Issue 2, 585–614.



595

where

Ψε :=
{
ψε ∈ C

(
([0,T ]k,Ds

V,ε(R
N) ∩ Xνε

N/2

ε

)
|ψε(τ) = γε(τ) for τ ∈ ∂[0,T ]k}, (2.8)

where ν > 0 is large positive constant. Obviously, Ψε is nonempty since γε ∈ Ψε. We now prove the
following property of Cε.

Lemma 2.7.

lim
ε→0

Cε

εN =

k∑
j=1

cλ j .

The proof will rely on the following lemma, whose proof, for the sake of continuity, is postponed
to the appendix. We define for every i ∈ {1, . . . , k}, the functional Ji

ε : W s,2(S i)→ R as

Ji
ε(u) =

ε2s

2

∫
S i

∫
S i

|u(x) − u(y)|2

|x − y|N+2s dy +
1
2

∫
S i

V(x)|u|2 −
∫

S i

Gε(u).

We have

Lemma 2.8. The mountain pass value

ci
ε := inf

γi
ε∈Γ

i
ε

max
t∈[0,1]

Ji
ε(γ

i
ε(t)), i ∈ {1, . . . , k}

can be achieved, where

Γi
ε := {γi

ε ∈ (C[0, 1],W s,2(S i)) : γi
ε(0) = 0, Ji

ε(γ
i
ε(1)) < 0}.

Moreover,

lim
ε→0

ci
ε

εN = cλi . (2.9)

Now we prove Lemma 2.7:

Proof of Lemma 2.7. By Proposition (2.6), we have the upper bounds

lim sup
ε→0

Cε

εN ≤

k∑
j=1

cλ j .

It remains to prove the lower estimate, i.e.,

lim inf
ε→0

Cε

εN ≥

k∑
j=1

cλ j .

We first observe that given any ψε ∈ Ψε and any continuous curve c : [0, 1] → [0,T ]k with c(0) ∈
{0} × [0,T ]k−1 and c(1) ∈ {T } × [0,T ]k−1, we have γ1

ε = ψε ◦ c|S 1 ∈ Γ
1
ε. In fact, by the definition of Ψε,

we have

γ1
ε(0) = 0, J1

ε (γ1
ε(1)) ≤ Jε(TW1

ε + 0 ·
k∑

i=2

W i
ε) < 0.
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Lemma 2.8 implies that
sup

t∈[0,1]
J1
ε (γ1

ε(t)) ≥ ε
N(cλ1 + oε(1)).

Similarly, for every γ
j
ε = γ ◦ c|S j belongs to Γ j

ε, where c is arbitrary continuous path which joint
[0,T ] j−1 × {0} × [0,T ]k− j with [0,T ] j−1 × {T } × [0,T ]k− j, it holds

sup
t∈[0,1]

J j
ε(γ

j
ε(t)) ≥ ε

N(cλ j + oε(1)).

Thus we can repeat the argument of Coti-Zetali and Rabinowitz in [34] to prove, for every path ψε ∈ Γ,
the existence of a point τ̂ ∈ [0, 1]k satisfying

Ji
ε(ψε(τ̂)) ≥ εN(cλi + oε(1)) for j = 1, . . . , k.

Consequently, by (2.1), (2.2) and the fact that ψε(τ) ∈ Xνε
N/2

ε , we get

lim inf
ε→0

1
εN sup

τ∈[0,1]k
Jε(ψε(τ))

≥ lim inf
ε→0

1
εN Jε(ψε(τ̂))

≥ lim inf
ε→0

1
εN

( k∑
i=1

Ji
ε(ψε(τ̂)) − εκ+2s

∫
RN
|(−∆)s/2ψε(τ̂)|2dx

)
≥

k∑
i=1

cλi ,

(2.10)

which is exactly the required lower estimate. □

Next, we are going to construct a penalized solution for the penalized problem (2.3). We first prove
that the limit of a (PS )c sequence near the set Xε must own k-peaks.

Proposition 2.9. Let {ε j} j with lim
j→∞

ε j = 0 and {uε j} ⊂ X
dεN/2

j
ε j satisfy

lim
j→∞

Jε j(uε j)

εN
j

≤

k∑
i=1

cλi , lim
j→∞

∥J′ε j
(uε j)∥

εN/2
j

= 0.

Then for sufficiently small d > 0, there exist, up to subsequence, {xi
j} j ⊂ R

3, i = 1, . . . , k, xi ∈ Mi,
Uλi ∈ S λi such that

lim
j→∞

xi
j = xi (2.11)

and

lim
j→∞

∥∥∥∥uε j(·) −
k∑

i=1

η(· − xi
j)Uλi

( · − xi
j

ε j

)∥∥∥∥
Ds

V,ε j

/εN/2
j = 0. (2.12)
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Proof. For the sake of convenience, we write ε for ε j. Since S λi , i = 1, . . . , k are compact in H s(RN),
there exist Uλi ∈ S λi and pi

ε ∈ Mi such that∥∥∥∥uε(x) −
k∑

i=1

η(x − pi
ε)Uλi

( x − pi
ε

ε

)∥∥∥∥
Ds

V,ε

≤ 2dεN/2.

Letting R0 ≥ 1 be a fixed positive constant and εR0 ≤ β, for each i = 1, . . . , k, we have∫
BR0

|uε(εx + pi
ε) − Uλi(x)|2 ≤

4d2

λi
.

As a result, we can let d > 0 be small enough so that

lim inf
ε→0

∫
BR0

|uε(εx + pi
ε)|

2 > 0 and lim inf
ε→0

∥uε∥L∞(BεR0 (pi
ε)) > 0, (2.13)

for all 1 ≤ i ≤ k.
Denote u1,i

ε (x) = η(x − pi
ε)uε(x), u1

ε(x) =
∑k

i=1 u1,i
ε (x) and u2

ε(x) = uε(x) − u1
ε(x). Denote v1,i

ε (x) =
u1,i
ε (εx + pi

ε) and v2,i
ε (x) = vi

ε(x) − v1,i
ε (x), where vi

ε(x) = uε(εx + pi
ε). Fix arbitrarily an i ∈ {1, . . . , k}.

Obviously, by assumption, for each φ ∈ C∞c (RN) and ε small enough, testing J′ε(uε) with φ
(

x−pi
ε

ε

)
, we

find
oε(1) =

∫
RN

(
(−∆)sv1,i

ε

)
φ + V i

ε(x)v1,i
ε φ − gε(εx + pi

ε, v
1,i
ε )φ +

∫
RN

(
(−∆)sv2,i

ε

)
φ. (2.14)

Since {uε} ⊂ XdεN/2

ε , by fractional Hardy inequality (1.7), we have∣∣∣∣ ∫
RN

(
(−∆)sv2,i

ε

)
φ
∣∣∣∣

=
∣∣∣∣ ∫

suppφ
dx
∫

Bc
β/ε

(0)

φ(x)v2,i
ε (y)

|x − y|N+2s dy
∣∣∣∣

≤

∫
suppφ

(φ(x))2dx
∫

Bc
β/ε

(0)

1
|x − y|N+2s dy

+

∫
suppφ

dx
∫

Bc
β/ε

(0)

(v2,i
ε (y))2

|x − y|N+2s dy

= oε(1) +
∫

suppφ
dx
∫

Bc
β/ε

(0)

(v2,i
ε (y))2

|y|2s

|y|2s

|x − y|N+2s dy

= oε(1). (2.15)

Then, since {v1,i
ε } is bounded in H s(RN), by the Liouville type Theorem 3.3 of [27], we have

(−∆)sv1,i
∗ + V(pi

∗)v
1,i
∗ = f

(
(v1,i
∗ )+
)

in RN , (2.16)

where v1,i
∗ is the weak limit of some subsequence of v1,i

ε in H s(RN) and pi
∗ ∈ Mi is limit of pi

ε. Conse-
quently, according to the argument of Proposition 3.4 in [28], we have for every R > 0 that

lim inf
ε→0

Jε(uε)
εN
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= oR(1) + lim inf
ε→0

k∑
i=1

∫
BεR(pi

ε)

(1
2

(|(−∆)s/2uε|2 + V(x)|uε(x)|2) −Gε(uε)
)
/εN

≥

k∑
i=1

LV(pi
∗)(v

1,i
∗ ) + oR(1) ≥

k∑
i=1

cλi + oR(1). (2.17)

Consequently, by Lemma 2.8, we have λi = V(pi
∗), pi

∗ ∈ Mi and v1,i
∗ (· + zi) ∈ S λi for some zi ∈ R

N .
Denote

v1,i
∗ (· + zi) = Uλi .

In the following we show that

v1,i
ε (·)→ Uλi(· − zi) strongly in H s(RN). (2.18)

By the same argument of Lemma 3.4 in [28], we can conclude that

lim
ε→0
R→∞

∥uε∥L∞
(

U\
⋃k

i=1 BRε(pi
ε)
) = 0 (2.19)

and for any r > 0, yε ∈ RN with limε→0
|pi
ε−yε |
ε
= +∞, it holds

lim sup
ε→0

∫
Br(yε)
|v1,i
ε |

2 = 0. (2.20)

Then according to Proposition 2.1 and the Concentration-Compactness Lemma 1.21 of [32], we have

v1,i
ε → v1,i

∗ strongly in Lq(RN), 2 < q < 2∗s − 1. (2.21)

By decomposition, one find

Jε(uε) = Jε(u1
ε) +

ε2s

2

∫
RN
|(−∆)s/2u2

ε|
2

+ ε2s
∫
RN

dx
∫

RN

(
u1
ε(x) − u1

ε(y)
)(

u2
ε(x) − u2

ε(y)
)

|x − y|N+2s dy

+
1
2

∫
RN

V(x)|u2
ε|

2 +

∫
RN

V(x)u1
εu

2
ε +

∫
RN

Gε(u1
ε) −
∫
RN
Gε(uε).

But, with (2.19) at hand, we can use the same method in the proof of (2.24)(which needs only (2.25))
to show that

ε2s

2

∫
RN
|(−∆)s/2u2

ε|
2 +

1
2

∫
RN

V(x)|u2
ε|

2 = εNoε(1), (2.22)

which and (2.2) imply that

Jε(uε) = Jε(u1
ε) +
∫
RN

F(u1
ε) −
∫
Λ

F(uε) + εNoε(1).

From (2.19), we have∣∣∣∣ ∫
RN

F(u1
ε) −
∫
Λ

F(uε)
∣∣∣∣ ≤ ∥uε∥κ̃

L∞
(
Λ\
⋃k

i=1 Bβ(pi
ε)
) ∫
Λ\
⋃k

i=1 Bβ(pi
ε)
|uε|2 = εNoε(1).
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Hence, by the analysis above, we have

Jε(uε) = Jε(u1
ε) + ε

Noε(1).

Decomposing again, we find

Jε(uε)
εN =

k∑
i=1

Jε(v1,i
ε ) + ε−NT 1

ε (η̃ε) + oε(1),

where

T 1
ε (η̃ε) := ε2s

∑
1≤i, j≤k

∫
RN

(
u1,i
ε (x) − u1,i

ε (y)
)(

u1, j
ε (x) − u1, j

ε (y)
)

|x − y|N+2s dy.

But, it has been proved in Appendix that

T 1
ε (η̃ε) := εNoε(1). (2.23)

Hence, it holds

Jε(uε)
εN =

k∑
i=1

Jε(v1,i
ε ) + oε(1).

So

lim
ε→0

k∑
i=1

Jε(v1,i
ε ) =

k∑
i=1

cλi ,

which combining with the analysis of (2.17) yields

lim
ε→0

Jε(v1,i
ε ) = cλi , i = 1, . . . , k.

Consequently, by (2.21), we have∫
RN
|(−∆)s/2Uλi(· − zi)|2 + λi|Uλi(· − zi)|2

≥ lim sup
ε→0

∫
RN
|(−∆)s/2v1,i

ε |
2 + V i

ε(x)|v1,i
ε |

2

≥ lim sup
ε→0

∫
RN
|(−∆)s/2v1,i

ε |
2 + λi|v1,i

ε |
2

≥

∫
RN
|(−∆)s/2Uλi(· − zi)|2 + λi|Uλi(· − zi)|2,

which gives (2.18).
Now from (2.18), we have

ε−N
∥∥∥∥uε − k∑

i=1

η(x − pi
ε − εzi)Uλi

( x − pi
ε − εzi

ε

)∥∥∥∥2
Ds

V,ε
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≤ 2ε−N
∥∥∥∥ k∑

i=1

η(x − pi
ε − εzi)

(
uε − Uλi

( x − pi
ε − εzi

ε

))∥∥∥∥2
Ds

V,ε

+ 2ε−N
∥∥∥∥uε − k∑

i=1

η(x − pi
ε − εzi)uε

∥∥∥∥2
Ds

V,ε

≤ 2kε−N
k∑

i=1

∥∥∥∥η(x − pi
ε − εzi)

(
uε − Uλi

( x − pi
ε − εzi

ε

))∥∥∥∥2
Ds

V,ε

+ 2ε−N
∥∥∥∥uε − k∑

i=1

η(x − pi
ε − εzi)uε

∥∥∥∥2
Ds

V,ε

:= oε(1) + Iε.

It remains to show that
Iε = oε(1). (2.24)

By the same blow-up analysis of lemmas 3.3 and 3.4 in [28], it holds

lim
ε→0
R→∞

∥uε∥L∞
(

U\
⋃k

i=1 BRε(pi
ε+εzi)
) = 0. (2.25)

Consequently, denoting η̃ε = 1 −
∑k

i=1 η
(
2(x − pi

ε − εzi)
)

and testing J′ε(uε) against with η̄εuε, we have,
for ε > 0 small enough,

Ĩε : =
ε2s

2

∫
RN
η̃ε(x)dx

∫
RN

|uε(x) − uε(y)|2

|x − y|N+2s dy +
∫
RN

V(x)|η̃ε(x)||uε|2dx

≤

∫
RN
gε(uε)η̃εuε +

ε2s

2

∫
RN

dx
∫
RN

(uε(x) − uε(y))(η̃ε(y) − η̃ε(x))uε(y)
|x − y|N+2s dy

+ oε(1)εN/2∥η̃εuε∥Ds
V,ε

:=
∫
RN
gε(uε)η̃εuε + T 2

ε (η̃) + oε(1)εN/2∥η̃εuε∥Ds
V,ε

≤ ∥uε∥κ̃
L∞
(
Λ\
⋃k

i=1 BRε(pi
ε+εzi)
) ∫
RN

V(x)η̃ε(x)|uε|2dx +
∫
RN\Λ

Pε|uε|2

+ T 2
ε (η̃ε) + oε(1)εN/2∥η̃εuε∥Ds

V,ε
,

which implies

Ĩε ≤ C
( ∫
RN\Λ

Pε|uε|2 + T 2
ε (η̃ε)
)
+ oε(1)εN/2∥η̃εuε∥Ds

V,ε
.

However, we have proved in the Appendix that

lim sup
ε→0

T 2
ε (η̃ε)
εN ≤ 0 (2.26)
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and
∥η̃εuε∥Ds

V,ε
≤ CεN/2. (2.27)

Hence, by the choice of Pε and fractional Hardy inequality (1.7), it holds

lim
ε→0

Ĩε
εN = 0. (2.28)

Noting the following estimate proved in the Appendix

T 3
ε (η̆ε) = ε2s

∫
RN

∫
RN

|η̆ε(x)uε(x) − η̆ε(y)uε(y)|2

|x − y|N+2s dxdy = εNoε(1), (2.29)

where η̆ε(x) = 1 −
∑k

i=1 η(x − pi
ε − εzi), we find

Iε ≤
T 3
ε (η̆ε)
εN +

Ĩε
εN = oε(1),

which is exactly (2.24). Letting xi
ε = pi

ε + εzi, we get

lim
ε→0

ε−N
∥∥∥∥uε − k∑

i=1

η(x − xi
ε)Uλi

( x − xi
ε

ε

)∥∥∥∥2
Ds

V,ε

= 0.

Hence we complete the proof.
□

Proposition 2.10. For d > 0 sufficiently small, there exist constants σ > 0 and ε0 > 0, such that

∥J′ε(u)∥Ds
V,ε(R

N ) ≥ ε
N/2σ for JDε

ε ∩ (XdεN/2

ε \XdεN/2/2
ε ) and ε ∈ (0, ε0),

where JDε
ε = {u ∈ Ds

V,ε(R
N) : Jε(u) ≤ Dε}.

Proof. To the contrary, suppose that for small d1 > d2 > 0, there exist {ε j}
∞
j=1 with lim

j→∞
ε j = 0 and

uε j ∈ X
d1ε

N/2
j

ε j \X
d2ε

N/2
j

ε j satisfying lim
j→∞

Jε j(uε j)/ε
N
j ≤
∑k

i=1 cλi and lim
j→∞

J′ε j
(uε j )

εN/2
j
= 0. By Proposition 2.9, there

exists {xi
j}
∞
j=1 ⊂ R

N , i = 1, . . . , k, xi ∈ Mi, such that

lim
j→∞
|xi

j − xi| = 0 and lim
j→∞

∥∥∥∥uε j(·) −
k∑

i=1

η(· − xi
j)Uλi

( · − xi
j

ε j

)∥∥∥∥
Ds

V,ε j

/εN/2
j = 0.

Hence, by the definition of Xε, we see that lim
j→∞

dist(uε j ,Xε j)/ε
N/2
j = 0. This is a contradiction to

uε j < X
d2ε

N/2
j /2

ε j . □

Now, we use Proposition 2.10 and the Deformation Lemma 2.2 in [32] to construct a (PS )c sequence
near the set Xε.

Define
µ := ε−N inf

u∈Xε
{∥u∥ε,S i , i = 1, . . . , k}.

Fix d0 ∈ (0, µ2 ) such that Propositions 2.9 and 2.10 hold for d ∈ (0, d0].
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Proposition 2.11. For sufficiently small fixed ε > 0, there exists a sequence {un}
∞
n=1 ⊂ JDε

ε ∩X
dεN/2

ε such
that J′ε(un)→ 0 as n→ ∞.

Proof. By Proposition 2.10, there exists a constant σ ∈ (0, 1), such that

∥J′ε(u)∥Ds
V,ε(R

N ) ≥ ε
N/2σ for u ∈ JDε

ε ∩ (XdεN/2

ε \XdεN/2/2
ε ) and ε ∈ (0, ε0).

From Proposition 2.6(iii), there exist constants α > 0, ε1(α) > 0 such that for ε ∈ (0, ε1] and
d ∈ (0, d0], that

Jε(γε(τ))/εN ≥ Dε/ε
N − α⇒ γε(τ) ∈ Xε

N/2d/2
ε . (2.30)

Now, set

α0 := min{
α

2
,

1
8
σ2d0,

ρ

2
},

where ρ = min
1≤i≤k

cλi . We choose 0 < ε̄ < min{ε0, ε1} such that for ε ∈ (0, ε̄]

|Dε/ε
N −

k∑
i=1

cλi | < α0, |Cε/ε
N −

k∑
i=1

cλi | < α0 and |Dε/ε
N − Cε/ε

N | < α0.

We assume to the contrary that for some ε ∈ (0, ε̄], d ∈ (0, d0), there exist β = β(ε) ∈ (0, 1) such that

∥J′ε(u)∥/εN/2 ≥ β > 0 for u ∈ JDε
ε ∩ X

dεN/2

ε .

By Lemma 2.2 in [32], we can choose gε be a pseudo-gradient vector field for J′ε on a neighbourhood
Nε of JDε

ε ∩ X
dεN/2

ε , which satisfies

∥gε(u)∥ ≤ 2 min{εN/2, ∥J′ε(u)∥},
⟨J′ε(u), gε(u)⟩ ≥ min{εN/2, ∥J′ε(u)∥}∥J′ε(u)∥.

Let ζε be a Lipschitz continuous function on Ds
V,ε(R

N) such that 0 ≤ ζε ≤ 1, ζε ≡ 1 on XdεN/2

ε ∩ JDε
ε

and ζε ≡ 0 on Ds
V,ε(R

N)\Nε. Let ξε be a Lipschitz continuous function on R such that 0 ≤ ξε ≤ 1,
ξε(l) ≡ 1 if |l −Dεε

−N | ≤ α
2 and ξε(l) ≡ 0 if |l −Dεε

−N | ≥ α. Set

hε(u) :=
{
−ζε(u)ξε(ε−N Jε(u))gε(u), if u ∈ Nε

0, if u ∈ Ds
V,ε\Nε.

(2.31)

Then there exists a unique solution Φε : Ds
V,ε × [0,+∞)→ Ds

V,ε to the following initial value problem{ d
dθΦε(u, θ) = hε(Φε(u, θ)),
Φε(u, 0) = u.

(2.32)

(See the proof of Lemma 2.3 in [32]). It can be easily check that Φε has the following properties:

(1) Φε(u, θ) = u if θ = 0 or u ∈ Ds
V,ε(R

N)\Nε or |Jε(u) − Dε| ≥ αε
N .

(2)∥
d
dθ
Φε(u, θ)∥ ≤ 2εN/2. (2.33)
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(3)
d
dθ

Jε(Φε(u, θ)) = ⟨J′ε(Φε(u, θ)), hε(Φε(u, θ)) ≤ 0.

Claim 1 For any τ ∈ [0,T ]k, there exists θτ ∈ [0,+∞) such that

Φε(γε(τ), θτ) ∈ JDε−α0ε
N

ε .

Proof of Claim 1. Assume by contradiction that there exists τ0 ∈ [0,T ]k such that

Jε(Φε(γε(τ0), θ)) > Dε − α0ε
N (2.34)

for all θ > 0. Then, by the property (3) in (2.33), we have

Dε − α0ε
N < Jε(Φε(γε(τ0), θ)) ≤ Jε(Φε(γε(τ0), 0)) = Jε(γε(τ0)) ≤ Dε < Dε + α0ε

N , (2.35)

which and the choice of α0 imply that ξε(ε−N Jε(Φε(γε(τ0), θ))) ≡ 1.
If Φε(γε(τ0), θ) ∈ XdεN/2

ε for all θ ≥ 0, then by (2.35), we have Φε(γε(τ0), θ) ∈ XdεN/2

ε ∩ JDε
ε for all

θ ≥ 0. Then ζε(Φε(γε(τ0), θ)) ≡ 1 and | ddθ Jε(Φε(γε(τ0), θ))| ≥ β2εN for all θ ≥ 0. Hence

Jε(Φε(γε(τ0),
α

β2 ) ≤ Dε + α0ε
N − εN

∫ α

β2

0
β2dθ ≤ Dε − α0ε

N ,

a contradiction to (2.35).
Assume that Φε(γε(τ0), θ0) < XdεN/2

ε for some θ0 > 0. Note that (2.34), (2.35) and (2.30) imply

that γε(τ0) ∈ X
d
2 ε

N/2

ε . Then there exist 0 < θ1
0 < θ2

0 such that Φε(γε(τ0), θ1
0) ∈ ∂X

d
2 ε

N/2

ε , Φε(γε(τ0), θ2
0) ∈

∂XdεN/2

ε and Φε(γε(τ0), θ) ∈ XdεN/2

ε \X
d
2 ε

N/2

ε for all θ ∈ (θ1
0, θ

2
0). Then by Proposition 2.10, we have

| ddθ Jε(Φε(γε(τ0), θ)| ≥ σ2εN for all θ ∈ (θ1
0, θ

2
0). By property (2) of (2.33) and mean value theorem, we

have
dεN/2

2
≤ ∥Φε(γε(τ0), θ1

0) − Φε(γε(τ0), θ2
0)∥ ≤ 2εN/2|θ1

0 − θ
2
0|,

which implies

|θ1
0 − θ

2
0| ≥

d
4
.

Hence

Jε
(
Φε(γε(τ0), θ2

0)
)
= Jε
(
Φε(γε(τ0), θ1

0)
)
+

∫ θ2
0

θ1
0

d
dθ

Jε
(
Φε(γε(τ0), θ)

)
dθ

≤ Dε + α0ε
N − εNσ2|θ1

0 − θ
2
0|

< Dε + α0ε
N − εNσ2 d

4

≤ Dε + α0ε
N − εNσ2 d0

4
≤ Dε − α0ε

N , (2.36)

which is a contradiction to (2.35). This completes the proof of Claim 1.
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By Claim 1, we can define θ(τ) := inf{θ ≥ 0 : Jε
(
Φε(γε(τ), θ)

)
≤ Dε − α0ε

N} and let γ̄ε(τ) :=
Φε(γε(τ), θ(τ)). We have

Claim 2 γ̄ε(τ) ∈ Ψε.

Proof of Claim 2. Firstly, for any τ ∈ ∂[0,T ]k, by Proposition 2.6, we have γε(τ) ∈ JDε−α0ε
N

ε .
Hence θ(τ) = 0 and γ̄ε(τ) = γε(τ) if τ ∈ ∂[0,T ]k. If Jε(γε(γε(τ)) ≤ Dε − α0ε

N , then ϑ(τ) = 0 and so
γ̄ε(τ) = γε(τ) ∈ Xνε

N/2

ε for large ν > 0. If Jε(γε(τ)) > Dε − α0ε
N , then by (2.30), γε(τ) ∈ XdεN/2/2 and by

property (3) in (2.33)

Dε − α0ε
N < Jε

(
Φε(γε(τ), θ)

)
≤ Dε < Dε + α0ε

N , for all θ ∈ [0, θ(τ)).

This implies ξε(ε−N Jε(Φε(γε(τ0), θ))) ≡ 1 for all θ ∈ [0, θ(τ)). Consequently, if γ̄ε(τ) =
Φε(γε(τ), ϑ(τ)) < XdεN

ε , then by the same argument of (2.36), there exists a θ ∈ (0, θ(τ)) such that

Jε
(
Φε(γε(τ), θ)

)
< Dε − α0ε

N .

This contradicts the definition of θ(τ). Hence γ̄ε(τ) ∈ XdεN/2

ε ⊂ Xνε
N/2

ε .
Secondly, we prove that γ̄ε(τ) is continuous. We fix any τ̄ ∈ [0, 1]k. If Jε(γε(τ̄)) < Dε − α0ε

N ,
then θ(τ̄) = 0. Then by the continuity of γε, we conclude that γ̄ε(τ) is continuous at τ̄. If Jε(γε(τ̄)) =
Dε − α0ε

N , then from the proof of (2.36), we know that γε(τ̄) ∈ XdεN/2

ε , and so

∥J′ε
(
γε(τ̄)

)
∥ ≥ βεN/2 > 0.

Thus, from the property (3) in (2.33), we have Jε
(
Φε(γε(τ̄), θ(τ̄) + ω

)
< Dε − α0ε

N . By the continuity
of γε, we choose r > 0 as the constants such that Jε(Φε(γε(τ), θ(τ̄))

)
< Dε − α0ε

N for all τ ∈ Br(τ̄).
Then by the definition of θ(τ), we have θ(τ) < θ(τ̄) for all τ ∈ Br(τ̄) ∩ [0,T ]k, and then

0 ≤ lim sup
τ→τ̄

θ(τ) ≤ θ(τ̄).

If θ(τ̄) = 0, we immediately have
lim
τ→τ̄

θ(τ) = θ(τ̄).

If θ(τ) > 0, then for any 0 < ω < θ(τ̄), similarly we have Jε(Φε(γε(τ), θ(τ̄) − ω)
)
> Dε − α0ε

N . By the
continuity of γε again, we see that

lim inf
τ→τ̄

θ(τ) ≥ θ(τ̄).

So θ(·) is continuous at τ̄. This completes the proof of Claim 2.
Now we have proved that γ̄ε(τ) ∈ Ψε and maxτ∈[0,T ]k ≤ Dε − α0ε

N , which contradicts the definition
of Cε. This completes the proof.

□

Lemma 2.12. Let {un}
∞
n=1 be the sequence given by Proposition 2.11. Then {un} has a subsequence

which converges to uε in Ds
V,ε(R

N). Moreover, there hold uε > 0, uε ∈ Ds
V,ε(R

N) ∩ C1,β(RN) for some
β ∈ (0, 1) and uε is a solution to the penalized problem (2.3)(or (2.4)).
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Proof. The convergence is from Lemma 2.2. The regularity result follows from Appendix D in [21].
Testing the penalized equation (2.4) with (uε)− and integrating, we can see that uε ≥ 0. Suppose to the
contrary that there exists x0 ∈ R

N such that uε(x0) = 0, then we have

0 = ε2s(−∆)suε(x0) + V(x0)uε(x0) < 0,

which is a contradiction. Therefore, uε > 0.
□

To end this section, we prove that uε owns k-peaks.

Lemma 2.13. Let ρ > 0 and uε be the solution of (2.3) given by Lemma 2.12. Then there exists k
families of points {xi

ε}, i = 1, . . . , k, such that

(1) lim inf
ε→0

∥uε∥L∞(Bερ(xi
ε)) > 0,

(2) lim
ε→0

dist(xi
ε,Mi) = 0,

(3) lim
R→∞
ε→0

∥uε∥L∞(U\∪1≤i≤k BεR(xi
ε)) = 0.

Proof. The proof is trivial by the fact that the (PS ) sequence given by Proposition 2.11 satisfies the
assumptions of Proposition 2.9. □

3. Back to the original problem

In this section we show that uε solves the original problem (1.1). For this purpose, basing on the
penalized equation (2.4), all we need to do is to prove that

f (uε) ≤ Pε(x)uε, x ∈ RN\Λ. (3.1)

We use comparison principle to prove (3.1), for which we should first linearize the penalized equation
(2.4) outside small balls.

Proposition 3.1. Let {xi
ε}, i = 1, . . . , k be the k families of points given by Lemma 2.13. Then for ε > 0

small enough and δ ∈ (0, 1), there exist C∞ > 0 and R > 0 such that ε2s(−∆)suε + (1 − δ)Vuε ≤ Pεuε, in RN\
⋃k

i=1 BRε(xi
ε),

uε ≤ C∞ in Λ.
(3.2)

Proof. That uε ≤ C∞ in Λ is from Lemma 2.13 and the L∞ estimate in [21, Appendix D]. By the
assumption on f , infU V(x) > 0 and Lemma 2.13, there exists R > 0 such that

f (uε) ≤ δVuε in U\
k⋃

i=1

BRε(xi
ε).

Obviously
gε(uε) ≤ Pεuε in RN\U.

Hence we conclude our result by inserting the previous pointwise bounds into the penalized equation
(2.4).

□
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Next, we construct a suitable sup-solution to Eq (3.2). Some of the the details are similar to that in
Proposition 4.2 of [28]. Let η̃β(s), s ≥ 0 be a smooth non-increasing function with η̃β ≡ 1 on [0, 1] and
η̃β ≡ 0 on (1+β,+∞), where β is a small parameter. Define ηβ,R(|x|) = η̃β(|x|/R). Setting 0 < α < N−2s
and denoting

f αβ,R(x) = ηβ,R(x)
1

Rα
+
(
1 − ηβ,R(x)

) 1
|x|α

,

f α,iβ,R,ε(x) = f αβ,R
( x − xi

ε

ε

)
,

f αβ,R,ε(x) =
k∑

i=1

f α,iβ,R,ε(x).

We have

Proposition 3.2. Let ε > 0 be small enough. Then for every x ∈ RN\
⋃k

i=1 BRε(xi
ε), it holds

ε2s(−∆)s f αβ,R,ε + (1 − δ)V(x) f αβ,R,ε − Pε(x) f αβ,R,ε ≥ 0. (3.3)

Proof. Fixing any i ∈ {1, . . . , k}, a computation shows that

ε2s(−∆)s f α,iβ,R,ε + V(x) f α,iβ,R,ε − Pε(x) f α,iβ,R,ε

= (−∆)s f αβ,R,ε
( x − xi

ε

ε

)
+ V(x) f αβ,R,ε

( x − xi
ε

ε

)
− Pε(x) f αβ,R,ε

( x − xi
ε

ε

)
(3.4)

=
(
(−∆)s f αβ,R,ε(y) + V i

ε(y) f αβ,R,ε(y) − P̂i
ε(y) f αβ,R,ε(y)

)∣∣∣∣
y= x−xi

ε
ε

,

where V i
ε(·) = V(εx · +xi

ε) and P̂i
ε(·) = Pε(ε · +xi

ε). But, using the non-increasing property of ηβ and
the computation of Proposition 4.2 of [28], for any y ∈ RN\BR(0), when ε > 0 is small enough, we can
conclude that

(−∆)s f αβ,R,ε(y) + V i
ε(y) f αβ,R,ε(y) − P̂i

ε(y) f αβ,R,ε(y) ≥ 0. (3.5)

Then for all x ∈ RN\BRε(xi
ε), it holds

ε2s(−∆)s f α,iβ,R,ε + V(x) f α,iβ,R,ε − Pε(x) f α,iβ,R,ε ≥ 0.

As a result, we have

ε2s(−∆)s f αβ,R,ε + V(x) f αβ,R,ε − Pε(x) f αβ,R,ε

=

k∑
i=1

(
ε2s(−∆)s f α,iβ,R,ε + V(x) f α,iβ,R,ε − Pε(x) f α,iβ,R,ε

)
≥ 0

for all x ∈ RN\
⋃k

i=1 BRε(xi
ε). This completes the proof. □

At last, we give the proof of Theorem 1.1.
Proof of Theorem 1.1. Let 

Pε(x) = ε2s+2κ

|x|2s+κχRN\Λ(x),

Uε(x) = CRα f αβ,R,ε(x).
(3.6)
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It is easy to check that Pε satisfies the assumption (2.1).
By Proposition 3.2, choosing the constant C > 0 large enough and letting vε(x) = uε(x)−Uε(x), we

have 
ε2s(−∆)svε(x) + (1 − δ)V(x)vε(x) − Pε(x)vε(x) ≤ 0, in RN\

⋃k
i=1 BRε(xi

ε),

vε(x) ≤ 0 in
⋃k

i=1 BRε(xi
ε).

Since v+ε ∈ D
s
V,ε(when α is closed to N − 2s), testing the equation above against with v+ε (x), by the

fractional Hardy inequality in (1.7), we find v+ε (x) = 0, x ∈ RN . Hence vε(x) ≤ 0, x ∈ RN . Especially,
we have

uε(x) ≤ Uε(x) =
k∑

i=1

f α,iβ,R,ε(x) ≤
k∑

i=1

Cεα

εα + |x − xi
ε|
α
, x ∈ RN .

Moreover, letting α be closed to N − 2s, for all x ∈ RN\Λ, it holds

f (uϵ)
uϵ
≤ (uϵ)κ̃ ≤

Cϵακ̃

|x|ακ̃
≤
ϵ2s+2κ

|x|2s+κ = Pϵ(x).

This gives (3.1). As a result, uε solves the original problem.

Remark 3.3. In the local case s = 1, we can prove the same result more easily by introducing the same
penalized function Pε in this paper. We point out here that we also answer positively to the conjecture
proposed by Ambrosetti and Malchiodi in [33] in the nonlocal case.

A. Appendix

In this section we are going to verify Lemma 2.8, (2.23), (2.26), (2.27) and (2.29).

Proposition A.1. For every i = 1, . . . , k, it holds

lim
ε→0

ci
ε

εN = cλi .

Proof. The achievement of ci
ε is easily from the fact that the embedding

W s,2(Ω) ↪→ Lp

is compact for 1 ≤ p < 2∗s(see [4] for more details). Thus we only need to prove (2.9).
For every nonnegative v ∈ C∞c (RN)\{0} and x0 ∈ Λi, let vε(x) = v

( x−x0
ε

)
. Obviously, supp vε ⊂ Λi

and γ(t) = tTvε ∈ Γi
ε for ε small enough and T large enough. Therefore,

ci
ε ≤ max

t∈[0,1]
Ji
ε(γ(t))

≤ εN max
t>0

( t2

2

∫
RN

∫
RN

|v(x) − v(y)|2

|x − y|N+2s dxdy

+
t2

2

∫
RN

V(εx + x0)|v|2dx −
∫
RN

F(tv)dx
)
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and then

lim sup
ε→0

ci
ε

εN ≤ lim sup
ε→0

max
t>0

( t2

2

∫
RN

∫
RN

|v(x) − v(y)|2

|x − y|N+2s dxdy

+
t2

2

∫
RN

V(εx + x0)|v|2dx −
∫
RN

F(tv)dx
)

= max
t>0

Lv(x0)(tv).

Hence, by the arbitrariness of v and x0, we have

lim sup
ε→0

ci
ε

εN ≤ cλi . (A.1)

On the other hand, let wε be a critical point corresponding to ci
ε, i.e., Ji

ε(wε) = ci
ε and

ε2s
∫

S i

wε(x) − wε(y)
|x − y|N+2s dy + V(x)wε(x) = gε(wε), x ∈ S i. (A.2)

It follows that

ε2s
∫

S i

∫
S i

wε(x) − wε(y)
|x − y|N+2s wε(x)dydx +

∫
S i

V(x)|wε(x)|2 =
∫

S i

gε(wε)wε.

Then by (2.2), it holds

ε2s
∫

S i

∫
S i

wε(x) − wε(y)
|x − y|N+2s wε(x)dydx +

∫
S i

V(x)|wε(x)|2

≤ C
(
∥wε∥

p−1
L∞(Λi)

+ ∥wε∥
κ̃
L∞(Λi)
)(
ε2s
∫

S i

∫
S i

wε(x) − wε(y)
|x − y|N+2s wε(x)dydx +

∫
S i

V(x)|wε(x)|2
)
,

from which we conclude that there exists xi
ε ∈ Λi such that for ρ > 0,

lim inf
ε→0

∥wε∥L∞(Bερ(xi
ε)) > 0. (A.3)

Going if necessary to a subsequence, we assume that

lim
ε→0

xi
ε → xi ∈ Λi. (A.4)

Now, let w̃ε(x) = wε(xi
ε + εx), then w̃ε satisfies∫

S i
ε

w̃ε(x) − w̃ε(y)
|x − y|N+2s dy + Vε(x)w̃ε(x) = g̃ε(w̃ε) x ∈ S i

ε, (A.5)

where Vε(x) = V(xi
ε + εx), S i

ε = {x ∈ R
N : εx + xi

ε ∈ S } and g̃ε(w̃ε) = g(εx + xi
ε, w̃ε). Moreover, by

(A.1), we have
sup
ε>0
∥w̃ε∥W s,2(BR) < ∞
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for every R ∈ (0,+∞). Thus, by diagonal argument, we conclude that w̃ε ⇀ w̃ weakly in W s,2(BR) for
every R > 0. Moreover, it is easy to check by Fatou’s Lemma that w̃ ∈ H s(RN). Then, by (A.4), using
Corollary 7.2 in [4] and taking limit in (A.5), we conclude that∫

RN

w̃(x) − w̃(y)
|x − y|N+2s dy + V(xi)w̃ = χΛi

∗
f (w̃) x ∈ RN ,

where Λ∗i is the limit of the set Λi
ε = {x ∈ R

N : εx + xi
ε ∈ Λi}. But by (A.3) and using the standard

bootstrap argument in Appendix D in [21], we have

∥w̃∥L∞(Bρ(0)) = lim
ε→0
∥w̃ε∥L∞(Bρ(0)) ≥ lim inf

ε→0
∥wε∥L∞(Bρ(0)) > 0,

which combined with the Liouville-type results (see Lemma 3.3 in [27]) implies that Λi
∗ = R

N . Hence
we have

(−∆)sw̃ + V(xi)w̃ = f (w̃) in RN .

Proceeding as one proves Lemma 3.3 of [28], we have

lim inf
ε→0

ci
ε

εN ≥ LV(xi)(w̃) + oR(1)

+ lim inf
ε→0

1
εN

(1
2

∫
S i
ε\BR

dx
∫

S i
ε

|w̃ε(x) − w̃ε(y)|2

|x − y|N+2s dy

+
1
2

∫
S i
ε\BR

Vε(x)w̃2
ε(x)dx −

∫
S i
ε\BR

G̃ε(w̃ε(x))dx
)

≥ cV(xi) + oR(1)

Therefore,

lim inf
ε→0

ci
ε

εN ≥ cλi ,

which and (A.1) complete the proof. □

Lemma A.2. The estimates (2.23), (2.26), (2.27) and (2.29) hold.

Proof. Hereafter, we define η̂ε(x) = η(2εx) = ηε(2x) for all x ∈ RN . We first give the proof of (2.26).
By the definition of η̄ε, we have

2T 2
ε (η̃ε)/εN =

k∑
i=1

ε2s−N
∫
RN

dx
∫
RN

(uε(x) − uε(y))
(
η
(
2(x − pi

ε − εzi)
)

− η
(
2(y − pi

ε − εzi)
))

uε(y)|x − y|−N−2sdy

=

k∑
i=1

∫
RN

dx
∫
RN

(vi
ε(x) − vi

ε(y))(η̂ε(x) − η̂ε(y))vi
ε(y)

|x − y|N+2s dy

:=
k∑

i=1

T 2,i
ε (η).
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For each i = 1, . . . , k, dividing RN into several regions, we have

T 2,i
ε (η) =

∫
B β
ε

dx
∫

B β
ε

(vi
ε(x) − vi

ε(y))(η̂ε(x) − η̂ε(y))vi
ε(y)

|x − y|N+2s dy

+

∫
B β
ε

dx
∫

Bc
β
ε

(vi
ε(x) − vi

ε(y))(η̂ε(x) − η̂ε(y))vi
ε(y)

|x − y|N+2s dy

+

∫
Bc
β
ε

dx
∫

B β
ε

(vi
ε(x) − vi

ε(y))(η̂ε(x) − η̂ε(y))vi
ε(y)

|x − y|N+2s dy

:=
3∑

j=1

T 2,i, j
ε (η).

For T 2,i,1
ε (η), by Cauchy inequality, we have

|T 2,i,1
ε (η)|2 ≤ C

∫
B β
ε

|vi
ε(y)|2dy

∫
B β
ε

|η̂ε(x) − η̂ε(y)|2

|x − y|N+2s dx

≤ Cε2
∫

B β
ε

|vi
ε(z)|2dy

∫
B 2β

ε

1
|z|N+2s−2 dx

= Cε2s.

For T 2,i,2
ε (η), by the definition of η, we have

T 2,i,2
ε (η) ≤

∫
B β
ε

dx
∫

Bc
β
ε

vi
ε(x)η̂ε(x)vi

ε(y)
|x − y|N+2s dy.

But, using the similar estimate of T 2,i,1
ε (η) and fractional Hardy inequality (1.7), we have∣∣∣∣ ∫

B β
ε

dx
∫

Bc
β
ε

vi
ε(x)η̂ε(x)vi

ε(y)
|x − y|N+2s dy

∣∣∣∣
≤

∫
B β
ε

dx
∫

Bc
3β
ε

|vi
ε(x)|η̂ε(x)|vi

ε(y)|
|x − y|N+2s dy

+

∫
B β
ε

dx
∫

B 3β
ε
\B β

ε

|vi
ε(x)||η̂ε(x) − η̂ε(y)||vi

ε(y)|
|x − y|N+2s dy

∣∣∣∣
≤

∫
B β
ε

dx
∫

Bc
3β
ε

|vi
ε(x)|η̂ε(x)|vi

ε(y)|
|x − y|N+2s dy +Cεs

≤
( ∫

B β
ε

(η̂ε(x)vi
ε(x))2dx

∫
Bc

3β
ε

1
|x − y|N+2s dy

) 1
2

·
( ∫

Bc
3β
ε

(
vi
ε(y)
)2

|y|2s dy
∫

B β
ε

|y|2s

|x − y|N+2s dx
) 1

2
+Cεs
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≤ Cεs.

Hence, it holds
lim sup
ε→0

T 2,i,2
ε (η) ≤ 0.

Similarly, one has
lim sup
ε→0

T 2,i,3
ε (η) ≤ 0.

So
lim sup
ε→0

T 2,i
ε (η) ≤ 0

and

lim sup
ε→0

T 2
ε (η)
εN ≤ 0.

Secondly, we prove (2.23). By the definition of η, we have

|T 1
ε (η)/2|2 ≤ ε4s

( ∫
Bβ(pi

ε+εzi)
(uε(x))2dx

∫
Bβ(p j

ε+εz j)

1
|x − y|N+2s dy

)
·
( ∫

Bβ(p j
ε+εz j)

(uε(y))2dy
∫

Bβ(p j
ε+εz j)

1
|x − y|N+2s dx

)
= ε4N+4s

( ∫
B β
ε

(vi
ε(x))2dx

∫
B β
ε

1

|εx + pi
ε + εzi − εy − p j

ε − εz j|
N+2s

dy
)

·
( ∫

B β
ε

(v j
ε(y))2dy

∫
B β
ε

1

|εx + pi
ε + εzi − εy − p j

ε − εz j|
N+2s

dx
)

= ε2N
( ∫

B β
ε

(vi
ε(x))2dx

∫
B β
ε

1

|x − y + pi
ε+εzi−p j

ε+εz j

ε
|N+2s

dy
)

·
( ∫

B β
ε

(v j
ε(y))2dy

∫
B β
ε

1

|x − y + pi
ε+εzi−p j

ε−εz j

ε
|N+2s

dx
)

≤ Cε2N+4s.

Then we have
T 1
ε (η)
εN ≤ Cεs,

which gives (2.23).
Thirdly, we give the proof of (2.29). Denoting Aε = R

N\
⋃k

i=1 B2β(pi
ε + εzi), one can check that

ε−2sT 3
ε (η̆) =

∫
RN

∫
RN

|η̆ε(x)uε(x) − η̆ε(y)uε(y)|2

|x − y|N+2s dxdy

=

∫
Aε

dx
∫

Aε

|uε(x) − uε(y)|2

|x − y|N+2s dxdy +
∫

Aε
dx
∫

Ac
ε

|uε(x) − η̆ε(y)uε(y)|2

|x − y|N+2s dxdy

+

∫
Ac
ε

dx
∫

Aε

|η̆ε(x)uε(x) − uε(y)|2

|x − y|N+2s dxdy +
∫

Ac
ε

dx
∫

Ac
ε

|η̆ε(x)uε(x) − η̆ε(y)uε(y)|2

|x − y|N+2s dxdy
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≤

∫
Aε

dx
∫

Aε

|uε(x) − uε(y)|2

|x − y|N+2s dxdy +C
∫

Aε
dx
∫

Ac
ε

|uε(x) − uε(y)|2

|x − y|N+2s dxdy

+C
∫

Aε
dx
∫

Ac
ε

|(1 − η̆ε(y))uε(y)|2

|x − y|N+2s dxdy +
∫

Ac
ε

dx
∫

Ac
ε

|η̆ε(x)uε(x) − η̆ε(y)uε(y)|2

|x − y|N+2s dxdy

≤ CεN +C
∫

Aε
dx
∫

Ac
ε

|(1 − η̆ε(y))uε(y)|2

|x − y|N+2s dxdy

+

∫
Ac
ε

dx
∫

Ac
ε

|η̆ε(x)uε(x) − η̆ε(y)uε(y)|2

|x − y|N+2s dxdy

≤ CεN .

As a result, we get (2.29).
The proof of (2.27) is similar and we omit it. □
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