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Abstract: Consider the problem of finding the maximal nonpositive solvent Φ of the quadratic matrix
equation (qme) X2 + BX + C = 0 with B being a nonsingular M-matrix and C an M-matrix such that
B−1C ≥ 0. Such qme arises from an overdamped vibrating system. Recently, under the condition
that B − C − I is a nonsingular M-matrix, Yu et al. (Appl. Math. Comput., 218 (2011): 3303–3310)
proved that ρ(Φ) ≤ 1 for this qme. In this paper, under the same condition, we slightly improve their
result and prove that ρ(Φ) < 1, which is important for the quadratic convergence of the structure-
preserving doubling algorithm. Then, a new globally monotonically and quadratically convergent
structure-preserving doubling algorithm for solving the qme is developed. Numerical examples are
presented to demonstrate the feasibility and effectiveness of our method.

Keywords: Quadratic matrix equation; structure-preserving doubling algorithm; M-matrix; maximal
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1. Introduction

In this paper, we consider the problem of finding the maximal nonpositive solvent of the following
quadratic matrix equation (qme)

Q1(X) ≡ ÃX2 + B̃X + C̃ = 0, (1.1)

where

Ã ∈ Rn×n is a diagonal matrix with positive diagonal elements,
B̃ ∈ Rn×n is a nonsingular M-matrix and
C̃ ∈ Rn×n is an M-matrix such that B̃−1C̃ ≥ 0.
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Such qme arises from an overdamped vibrating system [1, 2]. By left multiplying Ã−1 [3], without
changing the M-matrix structure of it, qme (1.1) can be reduced to the following form

Q2(X) ≡ X2 + BX + C = 0, (1.2)

where B is a nonsingular M-matrix and C is an M-matrix such that B−1C ≥ 0. It is known that Eq (1.2)
has a maximal nonpositive solvent Φ under the condition that [3]

B −C − I is a nonsingular M-matrix. (1.3)

This solvent Φ is the one of interest.
Various iterative methods have been developed to obtain the maximal nonpositive solvent of qme

(1.2) with assumption (1.3), including the Newton’s method and Bernoulli-like methods (fixed-point it-
erative methods) [3], modified Bernoulli-like methods with diagonal update skill [4]. Newton’s method
is not competitive in terms of CPU time because it is to solve a generalized Sylvester matrix equation
in each Newton’s iterative step. The fixed-point iterative methods are usually linearly or sublinearly
convergent and sometimes can be very slow [3].

There are many researches on iterative methods for other qmes. For example, the cyclic reduc-
tion algorithm and the invariant subspace method for solving the quadratic matrix equation arising
from quasi-birth-death problems [5, 6]; the methods for solving the quadratic matrix equation from
quadratic eigenvalue problems [7–12]; the fixed-point iteration and the Schur method for solving the
quadratic matrix equation arising in noisy Wiener-Hopf problems for Markov chains [13, 14] and oth-
ers; see [15–18] and the references therein. Our work here is mainly inspired by recent study on highly
accurate structure-preserving doubling algorithm for quadratic matrix equation from quasi-birth-and-
death process [19]. Structure-preserving doubling algorithms are very efficient iterative methods
for solving nonlinear matrix equations. For instance, some structure-preserving doubling algorithms
are presented to solve continuous-time algebraic Riccati equations (are) [20], periodic discrete-time
are [21], nonsymmetric are [22, 23] and M-matrix are [24, 25]. For more applications, please refer
to [26, 27] and the references therein.

Yu et al. [3] proved ρ(Φ) ≤ 1 under (1.3). In this paper, we will slightly improve their result and
prove that ρ(Φ) < 1 under the same condition. The property ρ(Φ) < 1 is important since it is desired
for the quadratic convergence of structure-preserving doubling algorithms. Based on the new property
ρ(Φ) < 1, furthermore, we extend the structure-preserving doubling algorithm for the first standard
form (SF1) [27] to solve qme (1.2) and give the quadratically convergent result.

The rest of this paper is organized as follows. In Section 2 we give some notations and state a few
basic results on nonnegative and M-matrices. The main results of this paper are presented in Section 3.
Numerical examples are given in Section 4 to demonstrate the performance of our method. Finally,
conclusions are made in Section 5.

2. Notations and preliminaries

In this section, we first introduce some necessary notations and terminologies for this paper. Rm×m

is the set of all m × m real matrices, Rn = Rn×1, and R = R1. In (or simply I if its dimension is clear
from the context) is the n × n identity matrix. For X ∈ Rm×n, X(i, j) refers to its (i, j)th entry. Inequality
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X ≤ Y means X(i, j) ≤ Y(i, j) for all (i, j), and similarly for X < Y , X ≥ Y , and X > Y . In particular, X ≥ 0
means that X is entrywise nonnegative and it is called a nonnegative matrix. X is entrywise nonpositive
if −X is entrywise nonnegative. A matrix A ∈ Rm×n is positive, denoted by A > 0, if all its entries are
positive. The same understanding goes to vectors. For a square matrix X, denote by ρ(X) its spectral
radius. A matrix A ∈ Rn×n is called a Z-matrix if A(i, j) ≤ 0 for all i , j. Any Z-matrix A can be written
as sI − N with N ≥ 0, and it is called an M-matrix if s ≥ ρ(N). Specifically, it is a singular M-matrix
if s = ρ(N), and a nonsingular M-matrix if s > ρ(N).

The following results on nonnegative matrices and M-matrices can be found in, e.g., [28, 29].

Theorem 2.1. Let A ∈ Rn×n be a nonnegative matrix. Then the spectral radius, ρ(A), is an eigenvalue of
A and there exists a nonnegative right eigenvector xxx associated with the eigenvalue ρ(A): Axxx = ρ(A)xxx.

Theorem 2.2. Let A ∈ Rn×n be a Z-matrix. Then the following statements are equivalent:

(a) A is a nonsingular M-matrix;

(b) A−1 ≥ 0;

(c) Auuu > 0 holds for some positive vector uuu ∈ Rn.

Theorem 2.3. Let A ∈ Rn×n be an M-matrix. Let B ∈ Rn×n be a Z-matrix. If A is nonsingular and
B ≥ A, then B is also a nonsingular M-matrix.

3. The main results

In this section, we give the main results of this paper. Lemma 3.1 below can be found in [3,
Theorem 3.1]. The first goal of this paper is to further prove that ρ(Φ) < 1.

Lemma 3.1. Suppose (1.3), then qme (1.2) has a maximal nonpositive solvent Φ with ρ(Φ) ≤ 1, also
B +Φ and B +Φ −C are both nonsingular M-matrices.

Since B − C − I is a nonsingular M-matrix, by Theorems 2.2, there exists a vector 0 < uuu ∈ Rn such
that

vvv = (B −C − I)uuu > 0.

Unless stated otherwise, throughout the rest of this paper, uuu and vvv are reserved for the ones here. The
following lemma is inspired by [19, Lemma 3.2], we still give the proof for completeness.

Lemma 3.2. Suppose (1.3), i.e., B−C−I is a nonsingular M-matrix. Then ρ(X) , 1 for any nonpositive
solvent X of Eq (1.2).

Proof. Suppose, to the contrary, that ρ(X) = 1 (which is equivalent to ρ(−X) = 1), where X is a
nonpositive solvent of Eq (1.2). Then according to Theorem 2.1, there exists a nonzero and nonnegative
vector zzz ∈ Rn such that −Xzzz = zzz and thus

(X2 + BX + C)zzz = 0

implies that (B −C − I)zzz = 0, which contradicts with the fact that B −C − I is nonsingular.

Combining Lemmas 3.1 and 3.2, we immediately finish our first goal of this paper. Moreover, we
have the following theorem. The theorem is implied by [19, Theorem 3.1] or [30, Theorem 2.3].

Electronic Research Archive Volume 30, Issue 2, 574–584.



577

Theorem 3.3. Under the assumption (1.3), qme (1.2) has a unique maximal nonpositive solvent Φ.
Moreover, it holds that Φ ≤ X0 and

−Φuuu ≤ uuu − B−1vvv,

where X0 = −B−1C is as defined in Eq (3.3a).

It can be checked that Theorem 3.3 is applicable to

CY2 + BY + I = 0, (3.1)

which is called the dual equation of Eq (1.2). In particular, under assumption (1.3), the dual equation
Eq (3.1) also has a unique maximal nonpositive solvent, denoted by Ψ hereafter. In conclusion, Theo-
rem 3.4 below gives some of the important results, the proof is similar to that of [19, Theorem 3.4] and
thus it is omitted here.

Theorem 3.4. Suppose (1.3). The following statements hold.

(a) We have

Φ ≤ X0 = −B−1C ≤ 0, −Φuuu ≤ uuu − B−1vvv,

Ψ ≤ Y0 = −B−1 ≤ 0, −Ψuuu ≤ uuu − B−1vvv.

(b) ρ(Φ) < 1 and ρ(Ψ ) < 1.

(c) I −ΦΨ and I − ΨΦ are nonsingular M-matrices.

Now we are in position to develop a new structure-preserving doubling algorithm for solving the
qme (1.2). Similar to the discussion in the introduction of [19], qme (1.2) is connected with the matrix
pencil

A0

[
I
X

]
= B0

[
I
X

]
X, (3.2)

where

A0 =

[
−B−1C 0

B−1C I

]
=:

[ n n

n E0 0
n −X0 I

]
, (3.3a)

B0 =

[
I B−1

0 −B−1

]
=:

[ n n

n I −Y0

n 0 F0

]
. (3.3b)

Now that the matrix pencil A0 − λB0 is in (SF1), it is natural for us to apply the doubling algorithm
(see Algorithm 1) for (SF1) [27] to solve Eq (3.2).

The basic idea of the structure-preserving doubling algorithm for (SF1) [23,27] for solving Eq (3.2)
is to recursively construct a sequence of matrix pencils Ai − λBi for i ≥ 1 that have the same block
structure as A0 − λB0:

Ai =

[ n n

n Ei 0
n −Xi I

]
, Bi =

[ n n

n I −Yi

n 0 Fi

]
for i = 1, 2, . . . (3.5)
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Algorithm 1 Doubling Algorithm for (SF1) [27]
Input: X0, Y0, E0, F0 ∈ R

n×n determined by Eq (3.3).
Output: X∞ as the limit of Xi if it converges.

1: for i = 0, 1, . . . , until convergence do
2: compute Ei+1, Fi+1, Xi+1, Yi+1 according to

Ei+1 = Ei(I − YiXi)−1Ei, (3.4a)
Fi+1 = Fi(I − XiYi)−1Fi, (3.4b)
Xi+1 = Xi + Fi(I − XiYi)−1XiEi, (3.4c)
Yi+1 = Yi + Ei(I − YiXi)−1YiFi. (3.4d)

3: end for
4: return Xi at convergence as the computed solution.

and at the same time

Ai

[
I
X

]
= Bi

[
I
X

]
M2i

for i = 0, 1, . . .,

where M = X.
We observe that as long as Ek, Fk, Xk, Yk are well-defined (so are Ak and Bk), we will have

Ak

[
I
Φ

]
= Bk

[
I
Φ

]
Φ2k

, Ak

[
Ψ

I

]
Ψ 2k

= Bk

[
Ψ

I

]
,

where Ak and Bk are defined as in Eq (3.5). Or, equivalently,

Φ − Xk = FkΦ
2k+1, Ek = (I − YkΦ)Φ2k

, (3.6a)

Ψ − Yk = EkΨ
2k+1, Fk = (I − XkΨ )Ψ 2k

. (3.6b)

In the following we will analysis the convergence of Algorithm 1 for solving the qme (1.2) under
the assumption (1.3). Theorem 3.5 below is essentially [19, Theorem 6.1] or [23, Theorem 4.1]. The
only difference lies in the initial matrices (E0, F0, X0,Y0).

Theorem 3.5. Under (1.3), the matrix sequences {Ek}, {Fk}, {Xk} and {Yk} generated by Algorithm 1
are well-defined and, moreover, for k ≥ 1,

(a) Ek = (I − YkΦ)Φ2k
≥ 0;

(b) Fk = (I − XkΨ )Ψ 2k
≥ 0;

(c) I − XkYk and I − YkXk are nonsingular M-matrices;

(d) Φ ≤ Xk ≤ Xk−1 ≤ 0, Ψ ≤ Yk ≤ Yk−1 ≤ 0, and

0 ≤ Xk −Φ ≤ Ψ
2k

(−Φ)Φ2k
, 0 ≤ Yk − Ψ ≤ Φ

2k
(−Ψ )Ψ 2k

. (3.7)
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Proof. We prove the theorem by mathematical induction.
Since B is a nonsingular M-matrix, we immediately conclude that X0, Y0, E0 and F0 are well-

defined as in Eq (3.3) and they are all nonpositive. From Theorem 3.4(a), we obtain that Φ ≤ X0 ≤ 0,
Ψ ≤ Y0 ≤ 0. Therefore,

I − X0Y0 ≥ I −ΦΨ, I − Y0X0 ≥ I − ΨΦ.

By Theorem 3.4(c), both I −ΦΨ and I −ΨΦ are nonsingular M-matrices; so are I − X0Y0 and I −Y0X0

according to Theorem 2.3. Hence, the matrices E1, X1, F1, Y1 generated by the Algorithm 1 are well-
defined. Moreover, from Eq (3.4) we have

E1 = E0(I − Y0X0)−1E0 ≥ 0,
F1 = F0(I − X0Y0)−1F0 ≥ 0,
X1 = X0 + F0(I − X0Y0)−1X0E0 ≤ X0,

Y1 = Y0 + E0(I − Y0X0)−1Y0F0 ≤ Y0.

Let k = 1 in Eq (3.6), we have

Φ − X1 = F1Φ
3, E1 = (I − Y1Φ)Φ2 ≥ 0, (3.8a)

Ψ − Y1 = E1Ψ
3, F1 = (I − X1Ψ )Ψ 2 ≥ 0. (3.8b)

Noting that F1, E1 ≥ 0 andΦ, Ψ ≤ 0, it follows from Eq (3.8) thatΦ ≤ X1 ≤ X0 ≤ 0, Ψ ≤ Y1 ≤ Y0 ≤ 0.
By the same reasoning above, we can conclude that I − X1Y1 and I −Y1X1 are nonsingular M-matrices.
Furthermore, it follows from Eq (3.8), Φ ≤ X1 ≤ 0 and Ψ ≤ Y1 ≤ 0 that

0 ≤ X1 −Φ = F1(−Φ)Φ2 = (I − X1Ψ )Ψ 2(−Φ)Φ2 = Ψ 2(−Φ)Φ2 + X1Ψ
3Φ3 ≤ Ψ 2(−Φ)Φ2,

0 ≤ Y1 − Ψ = E1(−Ψ )Ψ 2 = (I − Y1Φ)Φ2(−Ψ )Ψ 2 = Φ2(−Ψ )Ψ 2 + Y1Φ
3Ψ 3 ≤ Φ2(−Ψ )Ψ 2.

This completes the proof of our results for k = 1.
Next, suppose that the results hold for all positive integers k ≤ `. Hence E`+1, X`+1, F`+1, Y`+1 are

well-defined by Eq (3.4), which, together with the induction hypothesis, guarantee that

E`+1 ≥ 0, F`+1 ≥ 0, X`+1 ≤ X` ≤ 0, Y`+1 ≤ Y` ≤ 0. (3.9)

On the other hand, Eqs (3.9) and (3.6) for k = ` + 1 say

Φ − X`+1 = F`+1Φ
2`+1+1 ≤ 0, E`+1 = (I − Y`+1Φ)Φ2`+1

≥ 0, (3.10a)

Ψ − Y`+1 = E`+1Ψ
2`+1+1 ≤ 0, F`+1 = (I − X`+1Ψ )Ψ 2`+1

≥ 0. (3.10b)

Thus we have
I − X`+1Y`+1 ≥ I −ΦΨ, I − Y`+1X`+1 ≥ I − ΨΦ.

Following the same line as the proof of the k = 1 case, we conclude that I − X`+1Y`+1 and I − Y`+1X`+1

are nonsingular M-matrices. Similarly, we deduce from Eq (3.10) that

0 ≤ X`+1 −Φ ≤ Ψ
2`+1

(−Φ)Φ2`+1
,

0 ≤ Y`+1 − Ψ ≤ Φ
2`+1

(−Ψ )Ψ 2`+1
.

By the induction principle, we have finished the proof.

From Eq (3.7) and Theorem 3.4(b), we can conclude that Xk and Yk generated by Algorithm 1
converge quadratically to Φ and Ψ , respectively, under assumption (1.3).
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4. Numerical examples

In this section, we will present numerical results applying Algorithm 1 to solve qme (1.2). We will
compare Algorithm 1 (referred to as da) with two Bernoulli-like methods presented in [3] (referred to,
respectively, as bl1 and bl2 as in [4]) and three modified Bernoulli-like methods with diagonal update
skill [4] (referred to as bl1-du, bl2-du1 and bl2-du2, respectively). In reporting numerical results, we
will record the numbers of iterations (denoted by “Iter”), the elapsed CPU time in seconds (denoted as
“CPU”) and plot iterative history curves for normalized residual NRes defined by

NRes(Xk) =
‖X2

k + BXk + C‖∞
‖Xk‖∞(‖Xk‖∞ + ‖B‖∞) + ‖C‖∞

.

All runs terminate if the current iteration satisfies either NRes < 10−12 or the number of the prescribed
iteration kmax = 1000 is exceeded. According to da, we set X0 = −B−1C for all methods. All experi-
ments are implemented in MATLAB R2018b with a machine precision 2.22× 10−16 on a PC Windows
10 operating system with an Intel i7-9700 CPU and 8GB RAM.

Example 1 ( [4]). Consider the Eq (1.2) with

B =



20 −10
−10 30 −10

−10 30 −10
. . .

. . .
. . .

−10 30 −10
−10 20


, C =



15 −5
−5 15 −5

−5 15 −5
. . .

. . .
. . .

−5 15 −5
−5 15


.

Table 1. Numerical results for Example 1.

n = 30 n = 100
Method Iter CPU NRes Iter CPU NRes
da 4 0.0030 1.0292 × 10−16 4 0.0082 1.0286 × 10−16

bl1 10 0.0021 1.3375 × 10−13 10 0.0052 1.3380 × 10−13

bl1-du 7 0.0024 5.5076 × 10−13 7 0.0055 5.5070 × 10−13

bl2 12 0.0023 8.4738 × 10−13 12 0.0050 8.4740 × 10−13

bl2-du1 11 0.0025 1.5404 × 10−13 11 0.0054 1.5408 × 10−13

bl2-du2 9 0.0027 1.0203 × 10−13 9 0.0049 1.0197 × 10−13

In Table 1, we record the numerical results for Example 1. We find that da uses the smallest number
of iterations and delivers the lowest value of NRes within all the tested methods. For this example,
however, da is not the fastest one in terms of the elapsed CPU time. The reason is that each step of
the da iteration is expensive than that of the other methods and the iteration number of da can not
compensate its additional cost such that da beats the other methods. Figure 1 plots the convergent
history for Example 1. Quadratic monotonic convergence of da and monotonic linear convergence of
Bernoulli-like methods clearly show.
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Figure 1. Convergent history curves for Example 1. The left one is for n = 30 and the right
one is for n = 100.

Example 2 ( [4]). Consider the Eq (1.2) with

B =



4 −1
−1 4 −1

−1 4 −1
. . .

. . .
. . .

−1 4 −1
−1 4


, C = I.

Table 2 displays the the numerical results for Example 2. We find that da is the best one for this
example in terms of Iter, CPU and NRes. The iteration number of da compensates its additional cost
such that da beats the other methods in terms of the elapsed CPU time. Figure 2 shows the convergent
history for Example 2. Quadratic monotonic convergence of da and monotonic linear convergence of
Bernoulli-like methods again clearly show.

Table 2. Numerical results for Example 2.

n = 30 n = 100
Method Iter CPU NRes Iter CPU NRes
da 7 0.0041 3.1621 × 10−14 9 0.0136 1.9857 × 10−16

bl1 110 0.0046 9.8576 × 10−13 324 0.0905 9.8002 × 10−13

bl1-du 77 0.0054 9.0078 × 10−13 226 0.0668 9.8568 × 10−13

bl2 209 0.0070 9.0390 × 10−13 636 0.1365 9.7354 × 10−13

bl2-du1 175 0.0069 9.7996 × 10−13 538 0.1153 9.7411 × 10−13

bl2-du2 142 0.0059 9.4024 × 10−13 440 0.0960 9.7441 × 10−13

5. Conclusions

The structure-preserving doubling algorithm for (SF1) [27] is extended to compute the maximal
nonpositive solvent of a type of qmes. It is shown that the approximations generated by the algorithm
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Figure 2. Convergent history curves for Example 2. The left two are for n = 30 and the right
two are for n = 100.

are globally monotonically and quadratically convergent. Two numerical examples are presented to
demonstrate the feasibility and effectiveness of our method. Our work here can be seen as a new
application of the structure-preserving doubling algorithm for (SF1).
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