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Abstract: In this paper we study a harmonic function method for dipolar source reconstruction, and
implemented the numerical simulations. We propose a new error estimate and provide a rigorous proof
of the estimate. Then, we validate our method in computer-simulated data and study its numerical
stability in different noise levels. It is shown that the harmonic function method can be used to quickly
and accurately locate the active regions in EEG source reconstruction.
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1. Introduction

Neuronal activities generate the electrical current in the brain, and further result in the potential
changes over the scalp. Electroencephalography (EEG) is a technique used to record the potential
changes on the scalp. Even though fMRI, PET, MEG and other brain-imaging tools are widely used
in brain research, they are limited by low spatial/temporal resolution, cost, mobility and suitability
for long-term monitoring. For example, fMRI has the advantage of providing spatially-resolved data,
but suffers from an ill-posed temporal inverse problem, i.e., a map with regional activations does not
contain information about when and in which order these activations have occurred [1]. In contrast,
EEG signals have been successfully used to obtain useful diagnostic information (neural oscillations
and response times) in clinical contexts. Further, they present the advantage to be highly portable,
inexpensive, and can be acquired at the bedside or in real-life environments with a high temporal
resolution. Because of the lack of significant patient risks, EEG is additionally suited for long-term
monitoring.

EEG offers the possibility of measuring the electrical activity of neuronal cell assemblies on the
sub-millisecond time scale [2–4]. EEG source imaging further identifies the positions or distributions
of electric fields based on EEG signals collected on the scalp [5]. This new tool is widely used in
cognitive neuroscience research, and has also found important applications in clinical neuroscience
such as neurology, psychiatry and psychopharmacology [6, 7]. In cognitive neuroscience, the majority
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of the studies investigate the temporal aspects of information processing by analyzing event related
potentials (ERP). In neurology, the study of sensory or motor evoked potentials is of increasing interest,
but the main clinical application concerns with the localization of epileptic foci. In psychiatry and
psychopharmacology, a major focus of interest is the localization of sources of certain EEG frequency
bands. Localizing the activity sources of a given scalp EEG measurement is achieved by solving the
so-called inverse problem [8]. These kinds of inverse problems are usually ill-posed and their solutions
are non-unique [9, 10].

Leahy et al. [11] investigated the accuracy of forward and inverse techniques for EEG and MEG
dipole localization using a human skull phantom. El Badia and Ha-Duong [12] established an algebraic
method to identify the number, locations and moments of electrostatic dipoles in 2D or 3D domain
from the Cauchy data on the boundary. Chafik et al. [13] further provided an error estimate without
proof. Nara and Ando [14] provided a new projective method for 3D source reconstruction by pro-
jecting the sources onto a Riemann sphere. Kang and Lee [15] proposed an algorithm for solving the
inverse source problem of a meromorphic function and apply their method to an electrical impedance
tomography (EIT) problem. El Badia [16] established a uniqueness result and a local Lipschitz sta-
bility estimate for an anisotropic elliptic equation, assuming that the sources are a linear combination
of a finite number of monopoles and dipoles. The author also proposed a global Lipschitz stability
estimate for dipolar sources. Baratchart et al. [17] solved the inverse source problem by locating the
singularities of a meromorphic function from the 2D boundary measurements using best rational or
meromorphic approximations.

Chung and Chung [18] proposed an algorithm for detecting the combination of monopolar and
multipolar point sources for elliptic equations in the 2D domain from the Neumann and Dirichlet
boundary data. Kandasmamy et al. [19] proposed a novel technique, called “analytic sensing”, to
estimate the positions and intensities of point sources in 2D for a Poisson’s equation. Analytic sensing
also used the reciprocity gap principle, but with a novel design of an analytic function which behaved
like a sensor. The authors evaluated their estimation accuracy by Cramér-Rao lower bound. Nara and
Ando [20] proposed an algebraic method to localize the positions of multiple poles in meromorphic
function field from an incomplete boundary. They investigated the accuracy of the algorithm for the
open arc or the closed arc, and for the arc enclosing the poles or not enclosing the poles. El Badia and
Nara [21] established the uniqueness and local stability result for the inverse source problem of the
Helmholtz equation in an interior domain, assuming the source is composed of multiple point sources.

Clerc et al. [22] applied best rational approximation techniques in the complex plane to EEG source
localization and offered stability estimates. Mdimagh and Ben Saad [23] identified the point sources
in a scalar problem modeled by Helmholtz equation, using reciprocity gap principle and assuming
the sources are harmonic in time. They proved local Lipschitz stability by two methods: one was
derived from the Gâteaux differentiability, and the other used particular test functions in the reciprocity
gap functional. Vorwerk et al. [24] studies the important role of head tissue conductivity in EEG
dipole reconstruction. Rubega et al. [25] estimated EEG source dipole orientation based on singular-
value decomposition. Michel and Brunet provided a thorough review on EEG source imaging. There
exist several reconstruction methods, such as minimum norm estimates (MNE) [26], low resolution
electrical tomography (LORETA) [27,28] or multiple-signal classification algorithm (MUSIC) [29,30],
etc.

Recently, Muñoz-Gutiérrez et al. [31] managed to improve the accuracy of EEG source reconstruc-

Electronic Research Archive Volume 30, Issue 2, 492–514.



494

tion by decomposing the EEG signals into frequency bands with different methods, such as empirical
mode decomposition (EMD) and wavelet transform (WT). Kaur et al. [32] presented a new method of
EEG source localization using variational mode decomposition (VMD) and standardized the low res-
olution brain electromagnetic tomography (sLORETA) inverse model. Their VMD-sLORETA model
could locate EEG sources in the brain in a very accurate way. Oikonomou and Kompatsiaris [33] de-
veloped a novel Bayesian approach for EEG source localization. They incorporated a new sparse prior
for the localization of EEG sources with the variational Bayesian (VB) framework and obtained more
accurate localization of EEG sources than state-of-the-art approaches.

In our study we need new methods to detect small changes in EEG source for which dipole methods
have advantage. We followed the analytic dipole method by El Badia and Ha-Duong [12] and derived
a new error estimate for this source localization method. We provided a mathematical proof of this
estimate. We then use simulated data to validate the method. The simulation results support our error
estimation, which has a different distance power than a similar error estimate in [22].

We organize the rest of the paper as follows. In section 2, we introduce the method and its formu-
lation. In section 3, we provide the error estimate of an inverse EEG source localization problem in a
bounded domain and its mathematical proof. In section 4, we use simulated data to valid the method
and error estimate. A brief conclusion and discussion is in Section 5.

2. Mathematical model of EEG problem

2.1. Mathematical model

The electric field E is the negative gradient of the potential u.

E = −∇u. (2.1)

The quasi-static approximation means all time derivatives in the equation are set to zero. By quasi-

static approximation of Maxwell equation ∇ ×H −
∂D
∂t
= J, we have

∇ ×H = J

where H is the magnetizing field, J is the total current density, and D is the displacement field.
Since the divergence of a curl is always zero, we have

∇ · (∇ ×H) = ∇ · J = 0.

EEG problem can be modeled by a Poisson equation.

−∇ · (σ∇u) = ∇ · (σE)
= ∇ · (J − Jp)
= ∇ · J︸︷︷︸

=0

−∇ · Jp

= −∇ · Jp

= F,

where σ is the conductivity, Jp is the primary current density, and F is the source term.
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2.2. Source model

If we assume the source is composed of a finite number of point charges, then by linear combination,
we have

F =
m∑

k=1

qkδ(r − rk), (2.2)

where m is the number of point charges, qk are values of charges, and rk are the locations of the point
charges.

If we assume the source is composed of a finite number of dipoles, we have

F = −
m∑

k=1

pk · ∇δ(r − rk),

where m is the number of dipoles, pk are the moments (or strengths) of the dipoles, and rk are the
centers of dipoles.

2.3. The harmonic function method of identifying dipolar sources

The dipolar source reconstruction problem can be viewed as a Poisson problem.

∆u =
m∑

k=1

pk · ∇δ(r − rk) in Ω, (2.3)

u = f on Γ, (2.4)

∂u
∂ν
= φ on Γ, (2.5)

where f and φ are known, and ν is the outer unit normal vector.
We will use the concept of reciprocity gap functional [34]:

R(v) =
〈
∂u
∂ν
, v

〉
H1/2(Γ),H−1/2(Γ)

−

〈
u,
∂v
∂ν

〉
H1/2(Γ),H−1/2(Γ)

= ⟨φ, v⟩H1/2(Γ),H−1/2(Γ) −

〈
f ,
∂v
∂ν

〉
H1/2(Γ),H−1/2(Γ)

, (2.6)

where v is a harmonic function in Ω:

v ∈ H(Ω) = {w ∈ H1(Ω) | ∆w = 0}. (2.7)

By Green’s formula, we have

R(v) = −
m∑

k=1

pk · ∇v(r − rk),∀v ∈ H(Ω). (2.8)

Let m be the number of dipoles in the brain. Assume m ≤ M in our problem, i.e., there is an upper
bound for the number of dipoles.
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Let us consider the harmonic polynomials

v j(x, y) = (x + iy) j, j ∈ N.

Then, in 2D case

R(v j) = −
m∑

k=1

pk · ∇v j(rk)

= −

m∑
k=1

[
pk1

pk2

]
· ∇(xk + iyk) j

= −

m∑
k=1

[
pk1

pk2

]
·


∂

∂x
(x + iy) j

∂

∂y
(x + iy) j


x=xk ,y=yk

= −

m∑
k=1

[
pk1

pk2

]
·

[
j(xk + iyk) j−1 · 1
j(xk + iyk) j−1 · i

]
= −

m∑
k=1

[
pk1

pk2

]
·

[
1
i

]
j(xk + iyk) j−1

= − j
m∑

k=1

(pk1 + ipk2)(xk + iyk) j−1.

We define

β j :=
R(v j)
− j
=

M∑
k=1

(pk1 + ipk2)(xk + iyk) j−1, j = 1, 2, ..., 2M − 1. (2.9)

Let

η j =


β j

β j+1
...

β j+M−1

 ∈ CM, 1 ≤ j ≤ M, (2.10)

and

Zi =
[
ηi, ηi+1, ..., ηi+M−1

]
=


βi βi+1 · · · βi+M−1

βi+1 βi+2 · · · βi+M
...

βi+M−1 βi+M · · · βi+2M−2

 , i ∈ N.

Then,

Z1 =
[
η1, η2, ..., ηM

]
=


β1 β2 · · · βM

β2 β3 · · · βM+1
...

βM βM+1 · · · β2M−1

 .
The number m of dipoles is estimated as the rank of Z1.
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Now we can reduce the size of the matrix by recalculating β j and η j with M replaced by m. Then,
the m vectors η1, ..., ηm are independent.

To get the estimates of the positions we need to construct an m × m matrix T such that η j+1 =

Tη j, j = 1, ...,m. Then,
[η2, ..., ηm+1] = T [η1, ..., ηm].

So,

T = [η2, ..., ηm+1][η1, ..., ηm]−1

=


β2 β3 · · · βm+1

β3 β4 · · · βm+2
...

βm+1 βm+2 · · · β2m



β1 β2 · · · βm

β2 β3 · · · βm+1
...

βm βm+1 · · · β2m−1


−1

= Z2Z−1
1 .

The positions of dipoles are estimated as the eigenvalues of T .
We now show that the eigenvalues of T are the positions of dipoles. Let us first look at an example

η2 = Tη1.

Tη1 = T


β1

β2
...

βm

 = T


p1 + p2 + · · · + pm

p1S 1 + p2S 2 + · · · + pmS m
...

p1S m−1
1 + p2S m−1

2 + · · · + pmS m−1
m


= p1T


1

S 1
...

S m−1
1

 + p2T


1

S 2
...

S m−1
2

 + · · · + pmT


1

S m
...

S m−1
m

 ,
where pk = pk1 + ipk2, k = 1, 2, ...,m is the moment and S k = xk + iyk, k = 1, 2, ...,m is the position.

η2 =


β2

β3
...

βm+1

 =


p1S 1 + p2S 2 + · · · + pmS m

p1S 2
1 + p2S 2

2 + · · · + pmS 2
m

...

p1S m
1 + p2S m

2 + · · · + pmS m
m


= p1S 1


1

S 1
...

S m−1
1

 + p2S 2


1

S 2
...

S m−1
2

 + · · · + pmS m


1

S m
...

S m−1
m

 ,
where pk = pk1 + ipk2, k = 1, 2, ...,m is the moment and S k = xk + iyk, k = 1, 2, ...,m is the position.

Since


1

S 1
...

S m−1
1

 ,


1
S 2
...

S m−1
2

 , ...,


1
S m
...

S m−1
m

 are independent and the results are similar for η j+1 = Tη j, j =

1, 2, ...,m, we know S 1, S 2, ..., S m are just the eigenvalues of T .
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Now the question is how to get T . Only η1 and η2 are not enough to determine T because vectors
have no inverse. So, we use the redundant information to construct the matrices Z1 and Z2 such that
T = Z2Z−1

1 , where Z1 is invertible because η1, ..., ηm are independent.
To estimate the moments of dipoles we will write Eq (2.9) in matrix form. Notice that now we use

m instead of M. 
β1

β2
...

βm

 =


S 0
1 S 0

2 · · · S 0
m

S 1
1 S 1

2 · · · S 1
m

...

S m−1
1 S m−1

2 · · · S m−1
m




p1

p2
...

pm

 , (2.11)

where pk = pk1 + ipk2, k = 1, 2, ...,m is the moment and S k = xk + iyk, k = 1, 2, ...,m is the position.
We can write Eq (2.11) in matrix form

b = Sp, (2.12)

where b =


β1

β2
...

βm

 ,S =


S 0
1 S 0

2 · · · S 0
m

S 1
1 S 1

2 · · · S 1
m

...

S m−1
1 S m−1

2 · · · S m−1
m

, and p =


p1

p2
...

pm

. Then, the moments of dipoles in 2D

are estimated as
p = S−1b. (2.13)

2.4. Optimization of linear operator

Equation (2.13) works in the ideal case of no noise. In reality, due to the noise in the measurements
and in the sources, we need find a linear operator L to estimate the moments, i.e.,

p̃ = Lb (2.14)

where p̃ represents the estimates of the moments, and b represents the quantities obtained from the
measurements.

Considering the noise accompanied in the measurements, we rewrite Eq (2.12) as

b = Sp + n,

where n is a random vector of mean 0. Let N be the covariance matrix of n. Also, assume that p̃ is
normally distributed with mean p and its covariance matrix is P.

Using multiple measurements and the statistical estimation theory we can find the linear operator
L which minimizes the expected difference ErrL between the estimated moments p̃ and the exact
moments p.

ErrL = ⟨∥p̃ − p∥2⟩
= ⟨∥Lb − p∥2⟩
= ⟨∥L(Sp + n) − p∥2⟩
= ⟨∥(LS − I)p + Ln∥2⟩
= ⟨∥Mp + Ln∥2⟩ (where M = LS − I)
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= ⟨∥Mp∥2⟩ + ⟨∥Ln∥2⟩ (by independence of p and n)
= Tr(MPMT ) + Tr(LNLT ).

Setting the gradient of ErrL to 0 and solving for L, we get the optimal linear operator

L = PST (SPST + N)−1. (2.15)

Then, by Eq (2.14) we get the best estimates of the moments.

2.5. Uniqueness of solutions

Theorem 2.1 (Uniqueness of solutions). Let ui, i = 1, 2 be the solutions of the problems

− ∇ · (σ∇ui) =
mi∑

k=1

p(i)
k · ∇δS (i)

k
in Ω,

∂ui

∂ν
= φ on Γ,

such that
u1 = u2 on Γ,

then
m1 = m2 = m,

p(1)
k = p(2)

k ,∀k = 1, 2, ...,m,

S (1)
k = S (2)

k ,∀k = 1, 2, ...,m.

The solution of Poisson equation is the convolution of the fundamental solution of Laplace equation
and the source function.

w(x) =
1

2π

 m2∑
k=1

pk · (x − S k)∣∣∣x − S (2)
k

∣∣∣2 −
m1∑
k=1

pk · (x − S k)∣∣∣x − S (1)
k

∣∣∣2
 , n = 2.

w(x) =
−1
4π

 m2∑
k=1

pk · (x − S k)∣∣∣x − S (2)
k

∣∣∣3 −
m1∑
k=1

pk · (x − S k)∣∣∣x − S (1)
k

∣∣∣3
 , n = 3.

3. Error estimates of positions

As EEG imaging data are typically noisy, especially determining the rank of a near singular matrix
is very unstable, the error of the numerical reconstruction method needs to be studied. Chafik et
al. [12, 13] proposed that when the norms of the perturbations (g = f̃ − f , h = φ̃ − φ) are small in
H1/2 × H−1/2, there exist a > 0 and b > 0 such that ∀k = 1, 2, ...,m,

∥S̃ k − S k∥2 ≤
m(1 − Rm)

dm−1(1 − R)
max

{(
m − 1

j

)
R j, 0 ≤ j ≤ m − 1

}
·

·
(
a∥g∥H1/2(Γ) + b∥h∥H−1/2(Γ)

)
, (3.1)
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where S k = xk + iyk is the exact position of the kth dipole, S̃ k = x̃k + iỹk is the estimated position of the
kth dipole, d is the minimal distance between S k and S̃ k, and R , 1 is a real number bigger than the
norm of any point on Γ. However, the analysis is not given by Chafik et al.

Here we present a new error estimate and provide a proof.

Theorem 3.1. Suppose m dipoles are enclosed in a circular boundary of radius R. The potential f on
the boundary and the gradient of the potential φ perpendicular to the boundary are known. If T is the
measurements without noise, and T̃ is the measurements with noise, then the error estimate is given by

∥T − T̃∥∞

≤ 2m
(
∥φ∥2R2m

√
2πR + ∥ f ∥2R2m

√
2πR

) (m!mm−1 pm−1
max Rm(m−1)

pm
mindm(m−1)

)
+2m2

(
∥φ∥2R2m

√
2πR + ∥ f ∥2R2m

√
2πR

)2
(
m!mm−1 pm−1

max Rm(m−1)

pm
mindm(m−1)

)2

, (3.2)

where p is the moment of dipoles and d is the smallest distance between any two dipoles.

Proof. We define

Zi =


βi βi+1 · · · βi+m−1

βi+1 βi+2 · · · βi+m
...

βi+m−1 βi+m · · · βi+2m−2

 , i ∈ N.

Then,

Z1 =


β1 β2 · · · βm

β2 β3 · · · βm+1
...

βm βm+1 · · · β2m−1

 .
where

β j =

m∑
k=1

pkS
j−1
k =

m∑
k=1

(pk1 + ipk2)(xk + iyk) j−1, j = 1, 2, ..., 2m − 1.

det(Z1) =

∣∣∣∣∣∣∣∣∣∣∣∣
β1 β2 · · · βm

β2 β3 · · · βm+1
...

βm βm+1 · · · β2m−1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
pk

∑
pkS k · · ·

∑
pkS m−1

k∑
pkS k

∑
pkS 2

k · · ·
∑

pkS m
k

...∑
pkS m−1

k

∑
pkS m

k · · ·
∑

pkS 2m−2
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
m1,m2,···,mm

τ(m1,m2, ...,mm) · pm1 pm2 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣
1 S m2 · · · S m−1

mm

S m1 S 2
m2
· · · S m

mm
...

S m−1
m1

S m
m2
· · · S 2m−2

mm

∣∣∣∣∣∣∣∣∣∣∣∣
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=
∑

m1,m2,···,mm

τ(m1,m2, ...,mm) · pm1 pm2 · · · pmm

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

S m1 S m2 · · · S mm
...

S m−1
m1

S m−1
m2

· · · S m−1
mm

∣∣∣∣∣∣∣∣∣∣∣∣ ·
·S 0

m1
S 1

m2
· · · S m−1

mm

= p1 p2 · · · pm

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

S m1 S m2 · · · S mm
...

S m−1
m1

S m−1
m2

· · · S m−1
mm

∣∣∣∣∣∣∣∣∣∣∣∣ ·
·

 ∑
m1,m2,···,mm

τ(m1,m2, ...,mm) · S 0
m1

S 1
m2
· · · S m−1

mm


= p1 p2 · · · pm

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

S m1 S m2 · · · S mm
...

S m−1
m1

S m−1
m2

· · · S m−1
mm

∣∣∣∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
S m1 S m2 · · · S mm
...

S m−1
m1

S m−1
m2

· · · S m−1
mm

∣∣∣∣∣∣∣∣∣∣∣∣
= p1 p2 · · · pm

∏
1≤i< j≤m

(S i − S j)2.

Here, (m1,m2, ...,mm) is any permutation of (1, 2, ...,m) and τ(m1,m2, ...,mm) is the sign determined by
the permutation.

The maximum absolute row sum norm is defined by

∥A∥∞ = max
i

∑
j

|ai j|,

where A is a matrix. When A is a vector, ∥A∥∞ = max
i
|ai|.

In the following proof we will use an important inequality:

∥a(x)b(x) − a(y)b(y)∥∞ ≤ ∥a(x) − a(y)∥∞ · ∥b(x)∥∞ + ∥b(x) − b(y)∥∞ · ∥a(x)∥∞

where a(x) and b(x) can be scalar, vector, or matrix.
By Cauchy-Schwarz inequality, we have

R(v j)

=
〈
φ, v j

〉
−

〈
f ,
∂v j

∂ν

〉
=

�
Γ

φ · v jds −
�
Γ

f ·
∂v j

∂ν
ds

=

�
Γ

φ · (x + iy) jds −
�
Γ

f ·
∂(x + iy) j

∂ν
ds
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≤

(�
Γ

φ2ds
)1/2 (�

Γ

(x + iy)2 jds
)1/2

+

(�
Γ

f 2ds
)1/2 �

Γ

(
∂(x + iy) j

∂ν

)2

ds

1/2

≤

(�
Γ

φ2ds
)1/2

R j
√

2πR +
(�
Γ

f 2ds
)1/2

jR j−1
√

2πR

≤ j∥φ∥2R j
√

2πR + j∥ f ∥2R j−1
√

2πR.

|β j| =

∣∣∣∣∣R(v j)
− j

∣∣∣∣∣
≤ ∥φ∥2R j

√
2πR + ∥ f ∥2R j−1

√
2πR

≤ ∥φ∥2R2m
√

2πR + ∥ f ∥2R2m
√

2πR

where R > 1.
Let

T = Z2Z−1
1 = Z2

adj(Z1)
det(Z1)

where Z1 =


β1 β2 · · · βm

β2 β3 · · · βm+1
...

βm βm+1 · · · β2m−1

 and Z2 =


β2 β3 · · · βm+1

β3 β4 · · · βm+2
...

βm+1 βm+2 · · · β2m

.
We can view R(v j) as the measurement obtained by the “detector” v j, while β j is just a constant

multiple of R(v j). So, β j is still a measurement of another form, which contains the information about
the moment and the position of the dipole source. Since Z1 and Z2 are constructed by different mea-
surements β j, T is also a matrix of measurements.

Assume T is the measurements without noise, and T̃ is the measurements with noise. Then,

∥T − T̃∥∞ = ∥Z2Z−1
1 − Z̃2Z̃−1

1 ∥∞

≤ ∥Z2 − Z̃2∥∞∥Z−1
1 ∥∞ + ∥Z

−1
1 − Z̃−1

1 ∥∞∥Z2∥∞.

We will analyse the four norms in the above inequality one by one.

∥Z2 − Z̃2∥∞ ≤ m∥φ − φ̃∥2R2m
√

2πR + m∥ f − f̃ ∥2R2m
√

2πR.

To find ∥Z−1
1 ∥∞ we need to estimate ∥ adj(Z1)∥∞. We first observe the results for m = 3, then prove

the results to the arbitrary m using mathematical induction.

If Z1 =


β1 β2 β3

β2 β3 β4

β3 β4 β5

, then the absolute value of the first element of adj(Z1) would be

abs
(∣∣∣∣∣∣β3 β4

β4 β5

∣∣∣∣∣∣
)
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= |β3β5 − β
2
4| ≤ |β3| · |β5| + |β

2
4|

= (p1S 2
1 + p2S 2

2 + p3S 2
3)(p1S 4

1 + p2S 4
2 + p3S 4

3) + (p1S 3
1 + p2S 3

2 + p3S 3
3)2

≤ (3pmaxR2)(3pmaxR4) + (3pmaxR3)2 = 2(3pmaxR3)2

= (3 − 1)!33−1 p3−1
maxR

3(3−1)

=: max
(
abs

(∣∣∣∣∣∣β3 β4

β4 β5

∣∣∣∣∣∣
))
.

Then,

∥ adj(Z1)∥∞

≤ max
(
abs

(∣∣∣∣∣∣β3 β4

β4 β5

∣∣∣∣∣∣
))
+max

(
abs

(∣∣∣∣∣∣β2 β4

β3 β5

∣∣∣∣∣∣
))
+max

(
abs

(∣∣∣∣∣∣β2 β3

β3 β4

∣∣∣∣∣∣
))

≤ 3 ·max
(
abs

(∣∣∣∣∣∣β3 β4

β4 β5

∣∣∣∣∣∣
))

= 3 · (3 − 1)!33−1 p3−1
maxR

3(3−1)

= 3!33−1 p3−1
maxR

3(3−1).

Assume when m = n − 1, we have

abs


∣∣∣∣∣∣∣∣∣∣∣∣
β3 β4 · · · βn+1

β4 β5 · · · βn+2
...

βn+1 βn+2 · · · β2n−1

∣∣∣∣∣∣∣∣∣∣∣∣
 ≤ (n − 1)!nn−1 pn−1

maxR
n(n−1).

In fact, this inequality is also true for other minors with matrix size (n − 1) × (n − 1).
Then, when m = n we have

abs



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β3 β4 · · · βn+1 βn+2

β4 β5 · · · βn+2 βn+3
...

βn+1 βn+2 · · · β2n−1 β2n

βn+2 βn+3 · · · β2n β2n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


≤ max |β2n+1| ·max

abs


∣∣∣∣∣∣∣∣∣∣∣∣
β3 β4 · · · βn+1

β4 β5 · · · βn+2
...

βn+1 βn+2 · · · β2n−1

∣∣∣∣∣∣∣∣∣∣∣∣

 + · · ·

+max |βn+2| ·max

abs


∣∣∣∣∣∣∣∣∣∣∣∣
β4 β5 · · · βn+2

β5 β6 · · · βn+3
...

βn+2 βn+3 · · · β2n

∣∣∣∣∣∣∣∣∣∣∣∣
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≤ n ·max |β2n+1| ·max

abs


∣∣∣∣∣∣∣∣∣∣∣∣
β3 β4 · · · βn+1

β4 β5 · · · βn+2
...

βn+1 βn+2 · · · β2n−1

∣∣∣∣∣∣∣∣∣∣∣∣



≤ n ·max |p1S 2n
1 + p2S 2n

2 + · · · + pnS 2n
n | · (n − 1)!nn−1 pn−1

maxR
n(n−1)

≤ n · npmaxR2n · (n − 1)!nn−1 pn−1
maxR

n2−n)

= n!nn pn
maxR

(n+1)n

≤ n!(n + 1)n pn
maxR

(n+1)n.

Then, for any m we have

∥ adj(Z1)∥∞ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
adj





β1 β2 · · · βm−1 βm

β2 β3 · · · βm βm+1
...

βm−1 βm · · · β2m−3 β2m−2

βm βm+1 · · · β2m−2 β2m−1





∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

≤ max

abs


∣∣∣∣∣∣∣∣∣∣∣∣
β3 β4 · · · βm+1

β4 β5 · · · βm+2
...

βm+1 βm+2 · · · β2m−1

∣∣∣∣∣∣∣∣∣∣∣∣

 + · · ·

+max

abs


∣∣∣∣∣∣∣∣∣∣∣∣
β2 β3 · · · βm

β3 β4 · · · βm+1
...

βm βm+1 · · · β2m−2

∣∣∣∣∣∣∣∣∣∣∣∣



≤ m ·max

abs


∣∣∣∣∣∣∣∣∣∣∣∣
β3 β4 · · · βm+1

β4 β5 · · · βm+2
...

βm+1 βm+2 · · · β2m−1

∣∣∣∣∣∣∣∣∣∣∣∣



= m · (m − 1)!mm−1 pm−1
max Rm(m−1)

= m!mm−1 pm−1
max Rm(m−1).

Thus,

∥Z−1
1 ∥∞ =

∥∥∥∥∥adj(Z1)
det(Z1)

∥∥∥∥∥
∞

≤
m!mm−1 pm−1

max Rm(m−1)

p1 p2 · · · pm
∏

1≤i< j≤m(S i − S j)2

≤
m!mm−1 pm−1

max Rm(m−1)

pm
mindm(m−1)

where d is the smallest distance between any two dipoles.
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Notice that
Z1(Z−1

1 − Z̃−1
1 ) + (Z1 − Z̃1)Z̃−1

1 = 0.

Z−1
1 − Z̃−1

1 = −Z−1
1 (Z1 − Z̃1)Z̃−1

1 .

∥Z−1
1 − Z̃−1

1 ∥∞

≤ ∥Z−1
1 ∥∞ · ∥Z1 − Z̃1∥∞ · ∥Z̃−1

1 ∥∞

≤

(
m!mm−1 pm−1

max Rm(m−1)

pm
mindm(m−1)

)2

·
(
m∥φ − φ̃∥2R2m

√
2πR + m∥ f − f̃ ∥2R2m

√
2πR

)
.

Based on the above results, we have

∥T − T̃∥∞
≤ ∥Z2 − Z̃2∥∞∥Z−1

1 ∥∞ + ∥Z
−1
1 − Z̃−1

1 ∥∞∥Z2∥∞

≤
(
m∥φ − φ̃∥2R2m

√
2πR + m∥ f − f̃ ∥2R2m

√
2πR

) (m!mm−1 pm−1
max Rm(m−1)

pm
mindm(m−1)

)
+

(
m!mm−1 pm−1

max Rm(m−1)

pm
mindm(m−1)

)2

·
(
m∥φ∥2R2m

√
2πR + m∥ f ∥2R2m

√
2πR

)
·
(
m∥φ − φ̃∥2R2m

√
2πR + m∥ f − f̃ ∥2R2m

√
2πR

)
≤ 2m

(
∥φ∥2R2m

√
2πR + ∥ f ∥2R2m

√
2πR

) (m!mm−1 pm−1
max Rm(m−1)

pm
mindm(m−1)

)
+2m2

(
∥φ∥2R2m

√
2πR + ∥ f ∥2R2m

√
2πR

)2
(
m!mm−1 pm−1

max Rm(m−1)

pm
mindm(m−1)

)2

. (3.3)

We can further simplify it as
∥T − T̃∥∞ ≤ E + E2 (3.4)

where

E = 2mR2m
√

2πR (∥ f ∥2 + ∥φ∥2)
(
m!mm−1 pm−1

max Rm(m−1)

pm
mindm(m−1)

)
. (3.5)

When 0 < E < 1, the error in the position estimate is mainly controlled by E; when E > 1, the error
in the position estimate is mainly controlled by E2. □

4. Numerical simulation results

4.1. Numerical simulation for 2D

Let Ω be a circular disk centered at the origin and of radius r = 1. Then, the numerical implemen-
tation can be simplified as follow.

∂v j

∂ν
=
∂(x + iy) j

∂r
=
∂
(
reiθ

) j

∂r
= jr j−1eiθ j =

jr jeiθ j

r
=

jv j

r
.
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R(v j) = −
〈

f ,
∂v j

∂ν

〉
= −

�
Γ

f ·
∂v j

∂ν
dΓ

= −

� 2π

0
f ·

jv j

r
· rdθ

= − j
� 2π

0
f · v jdθ

= − j
� 2π

0
f ·

(
reiθ

) j
dθ,

where f is a function of θ on the boundary. We do not need to know the explicit form of f , but we can
measure as many points as possible on the boundary to get enough discretized function values of f .
Then, the above integral can be approximated by a Riemann sum.

The measurable values we want to use in the following are

β j = −
R(v j)

j
=

� 2π

0
f ·

(
reiθ

) j
dθ.

The Romberg algorithm is used to calculate the integral numerically.
We compare the efficacy of the harmonic function method in dipolar source reconstruction when

the perturbation level is 0, 0.001, 0.01, 0.1 and the number of dipoles is 1, 2, 3, 4, 5. It is shown that as
the perturbation level increases, the reconstruction error increases (see Figures 1–5).

Figure 1. The effect of the perturbation level on the reconstruction error of 1 dipole. As the
perturbation level increases, the reconstruction error increases. Here, the perturbation means
adding noise to the exact measurement. If the perturbation level is σ, then the perturbed
measurement is the exact measurement times (1±σ), where plus or minus signs are randomly
assigned to each channel. Also, the error is defined as the sum of position errors.
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Figure 2. The effect of the perturbation level on the reconstruction error of 2 dipoles. As the
perturbation level increases, the reconstruction error increases. Here, the perturbation means
adding noise to the exact measurement. If the perturbation level is σ, then the perturbed
measurement is the exact measurement times (1±σ), where plus or minus signs are randomly
assigned to each channel. Also, the error is defined as the sum of position errors.

Figure 3. The effect of the perturbation level on the reconstruction error of 3 dipoles. As the
perturbation level increases, the reconstruction error increases. Here, the perturbation means
adding noise to the exact measurement. If the perturbation level is σ, then the perturbed
measurement is the exact measurement times (1±σ), where plus or minus signs are randomly
assigned to each channel. Also, the error is defined as the sum of position errors.
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Figure 4. The effect of the perturbation level on the reconstruction error of 4 dipoles. As the
perturbation level increases, the reconstruction error increases. Here, the perturbation means
adding noise to the exact measurement. If the perturbation level is σ, then the perturbed
measurement is the exact measurement times (1±σ), where plus or minus signs are randomly
assigned to each channel. Also, the error is defined as the sum of position errors.

Figure 5. The effect of the perturbation level on the reconstruction error of 5 dipoles. As the
perturbation level increases, the reconstruction error increases. Here, the perturbation means
adding noise to the exact measurement. If the perturbation level is σ, then the perturbed
measurement is the exact measurement times (1±σ), where plus or minus signs are randomly
assigned to each channel. Also, the error is defined as the sum of position errors.
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In the following we show the results of source estimation, assuming there are 3 dipolar sources
(m = 3).

• Dipole 1: position (0.3,−0.3) and moment (0, 1).
• Dipole 2: position (0.6, 0.2) and moment (1, 1).
• Dipole 3: position (−0.5, 0.4) and moment (2, 2).

In the graphs (see Figure 6) we use a small circle and a red line segment to indicate the true value,
and use a cross sign and a green line segment to indicate the reconstructed values.

Figure 6. The effect of the perturbation level on the reconstruction error of 3 dipoles. As the
perturbation level increases, the reconstruction error increases

From error estimates we know that as the distance between two dipoles gets closer, the reconstruc-
tion error for the positions of dipoles gets larger (see Table 1 and Figure 7). This is verified by the
numerical simulations.

We randomly assign two dipoles with fixed distance, say 0.1, in the unit disk, then reconstruct their
positions. We fix the noise level for all experiments at σ = 0.001.
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Table 1. The effect of dipole distance on the reconstruction error. As two dipoles get closer,
the mean reconstruction error in the positions of the dipoles gets larger, which is consistent
with the result in the error estimate.

Exact Dipole Distance Reconstructed Dipole Distance
0.03 0.7429
0.05 0.3084
0.10 0.1200

Let di (i = 1, 2) be the distance between the ith exact dipole and the ith estimated dipole, and dmax

be the largest d.

Figure 7. The effect of dipole distance on the reconstruction error. As two dipoles get
closer, the reconstruction error in the positions of the dipoles gets larger, which is consistent
with the theoretical analysis in the error estimate. When dexact = 0.10, dest = 0.1200; when
dexact = 0.05, dest = 0.3084; when dexact = 0.03, dest = 0.7429

We repeat the experiment 10 times and show their performance on average over different dipole
distances.

The above experiment also provides a numerical example to show that the estimate given by us in
Theorem 3.1 provides a better error bound when the two poles are very close.

When the number of dipoles is m = 2, Chafik’s estimate is bounded by
C1

d
(see Inequality (3.1)),

while our estimate is bounded by
C2

d2 (see Inequality (3.4) and Eq (3.5)) where d is the smallest distance
between two dipoles and Ci (i = 1, 2) are constants independent of d. That is, when the distance is
halved, the error bound will be amplified by 2 in Chafik’s estimate and by 4 in our estimate.
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From the data simulation, we see that

0.05
0.03

= 1.67 <
0.7429
0.3084

= 2.41 < 1.672 = 2.79.

0.10
0.05

= 2 <
0.3084
0.1200

= 2.57 < 22 = 4.

0.10
0.03

= 3.33 <
0.7429
0.1200

= 6.19 < 3.332 = 11.09.

For example, when the distance between the two dipoles is reduced from 0.10 to 0.05, by Chafik’s
estimate the error should be amplified by 2, but in fact, the error is amplified by 2.57, which is bounded
by 4 in our estimate.

5. Conclusions

In this paper we studied a harmonic function method for the dipolar source reconstruction, derived
error estimate for the harmonic function method and compared our result with Chafik’s estimate. By
numerical simulations it is shown that the harmonic function method can quickly and accurately locate
active regions in EEG source reconstruction. In the future, we plan to extend the harmonic function
method to 3D case and applied this method to some real EEG data. The brain’s conductance variation
in different brain regions also leads to additional challenges in source localization [35]. Although these
tissue properties can be quantified through MRI methods, numerical methods such as finite element
method will be needed to solve the inverse problems. Since the estimation of the number of dipoles
relies on the calculation of the rank of the measurement matrix, which is significantly affected by the
noise, we hope to find some way to solve or circumvent this problem. In addition, the situation that
the number of exact dipoles is not equal to the estimated value could also be considered. Furthermore,
when two dipoles get close enough, it may be better to regard them as an equivalent dipole to avoid
increased error.
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