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Abstract: In this paper, we study the existence of entire positive solutions for the k-Hessian type
equation

Sk(D2u + αI) = p(|x|) f k(u), x ∈ Rn

and system Sk(D2u + αI) = p(|x|) f k(v), x ∈ Rn,

Sk(D2v + αI) = q(|x|)gk(u), x ∈ Rn,

where D2u is the Hessian of u and I denotes unit matrix. The arguments are based upon a new monotone
iteration scheme.
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1. Introduction

Consider the existence of entire positive k-convex solutions to the following k-Hessian type equation

S k(D2u + αI) = p(|x|) f k(u), x ∈ Rn, (E)

and system S k(D2u + αI) = p(|x|) f k(v), x ∈ Rn,

S k(D2v + αI) = q(|x|)gk(u), x ∈ Rn,
(S )

where k ∈ {1, 2, . . . , n}, α ≥ 0 is a constant, I is the identity function and p, q are continuous functions
on [0,+∞). Letting D2u = ( ∂2u

∂xi∂x j
) denote the Hessian of u ∈ C2(Rn) and λi (i ∈ {1, 2, . . . , n}) denote the
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eigenvalues of D2u, then

S k(D2u + αI) =
∑

1≤i1<...<ik≤n
1≤ j1<...< jk≤n

1
k!
δi1,i2,...,ik

j1, j2,..., jk
(λi1 + α)(λi2 + α)...(λik + α),

where δi1,i2,...,ik
j1, j2,..., jk

is the generalized Kronecker symbol, is the k-Hessian type operator. When α = 0,
S k(D2u) is the standard k-Hessian operator.

Denote
Γk := {λ ∈ Rn : S j(λ) > 0, 1 ≤ j ≤ k}.

We call a function u ∈ C2(Rn) k-convex in Rn if λ(D2u(x) + αI) ∈ Γk for all x ∈ Rn.
In particular,

S 1(D2u + αI) =

n∑
i=1

λi = ∆u;

S n(D2u + αI) =

n∏
i=1

λi = det(D2u + αI).

The k-Hessian equation is fully nonlinear PDEs for k , 1 (see Urbas [1] and Wang [2]), and there
are many important applications in fluid mechanics, geometric problems and other applied subjects.
Many authors have demonstrated increasing interest in k-Hessian equations by different methods, for
instance, see ( [3–9]) and the references cited therein( [10–15]). In particular, problem (E) reduces to
the problems studied by Keller [16] and Osserman [17] when k = 1, p(|x|) = 1 on Rn and f : [0,∞)→
[0,∞) is continuous and increasing. The authors studied a necessary and sufficient condition∫ ∞

1

dt
√

2F(t)
= ∞, F(t) =

∫ t

0
f (s)ds

for the existence of entire large positive radial solutions to (E). When k = 1, f (u) = uγ (γ ∈ (0, 1]) and
p : [0,∞) → [0,∞) is continuous, Lair and Wood [18] showed that (E) admits infinitely many entire
large positive radial solutions if and only if∫ ∞

0
rp(r)dr = ∞.

For the case k = 1, system (S ) reduces to the following problem∆u = p(|x|) f (v), x ∈ Rn,

∆v = q(|x|)g(u), x ∈ Rn.
(1.1)

Lair and Wood [19] analyzed the existence and nonexistence of entire positive radial solutions to Eq
(1.1) when f (v) = vβ, g(u) = uγ (0 < β ≤ γ). For the further results, we can see [20–23] and the
reference therein.

When α = 0, Zhang and Zhou [24] considered the existence of entire positive k-convex solutions to
problem (E) and system (S ).
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For the case k = n, Zhang and Liu [25] studied the existence of entire radial large solutions for a
Monge-Ampère type equation

det(D2u) − α∆u = a(|x|) f (u), x ∈ Rn (1.2)

and system det(D2u) − α∆u = a(|x|) f (v), x ∈ Rn,

det(D2v) − β∆v = b(|x|)g(u), x ∈ Rn.
(1.3)

Their results have been improved by Covei [26].
Recently, when p(|x|) ≡ 1 on Rn, Dai [27] showed that there exists a subsolution u ∈ C2(Rn) of (E)

if and only if ∫ ∞ ( ∫ τ

0
f (t)dt

)− 1
k+1

dτ = ∞

holds.
Motivated by these works mentioned above, in this paper we will obtain some new results on the

existence of entire positive k-convex radial solutions for equation (E) and system (S ). The arguments
are based upon a new monotone iteration scheme.

Let α0 denote a positive constant. In the following, we always suppose that

α0 >
n
k

(
nCk−1

n−1

k
)

1
kα =

n
k

(Ck
n)

1
kα. (1.4)

We give the following conditions:
( f 1) f , g :[0,∞)→ (α0,∞) are continuous and nondecreasing;
( f 2) p, q :[0,∞)→ (0,∞) are continuous and nondecreasing.
Define

P(∞) := lim
r→∞

P(r), P(r) :=
∫ r

0

( tk−n

C0

∫ t

0
sn−1 p(s)ds

) 1
k

dt, r ≥ 0; (1.5)

Q(∞) := lim
r→∞

Q(r), Q(r) :=
∫ r

0

( tk−n

C0

∫ t

0
sn−1q(s)ds

) 1
k

dt, r ≥ 0, (1.6)

where

C0 =
Ck−1

n−1

k
.

For an arbitrary a > 0, we also define

H1a(∞) := lim
r→∞

H1a(r), H1a(r) :=
∫ r

a

dτ
f (τ)

, r ≥ a; (1.7)

H2a(∞) := lim
r→∞

H2a(r), H2a(r) :=
∫ r

a

dτ
f (τ) + g(τ)

, r ≥ a, (1.8)

and we see that
H′1a(r) =

1
f (r)

> 0, H′2a(r) =
1

f (r) + g(r)
> 0, ∀r > a,

and H1a,H2a admit the inverse functions H−1
1a and H−1

2a on [0,H1a(∞)) and [0,H2a(∞)) respectively.
The main results of this paper can be stated as follows.
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Theorem 1.1. Suppose that ( f 1) and ( f 2) hold. If α = 0, then Eq (E) admits an entire positive k-convex
radial solution u ∈ C2(Rn) satisfying

a + α0P(r) ≤ u ≤ H−1
1a (P(r)), ∀r ≥ 0.

Moreover, if P(∞) = ∞ and H1a(∞) = ∞, then lim
r→∞

u(r) = ∞; if P(∞) < H1a(∞) < ∞, then u is
bounded.
If α > 0 and p(|x|) ≥ 1, then Eq (E) admits an entire positive k-convex radial solution u ∈ C2(Rn)
satisfying

a + α0P(r) −
α

2
r2 ≤ u ≤ H−1

1a (P(r)), ∀r ≥ 0.

If further suppose H1a(∞) = ∞, then lim
r→∞

u(r) = ∞.

Theorem 1.2. Suppose that ( f 1) and ( f 2) hold. If α = 0, then system (S ) admits an entire positive
k-convex radial solution (u, v) ∈ C2(Rn) ×C2(Rn) satisfying

a
2

+ α0P(r) ≤ u ≤ H−1
2a (P(r) + Q(r)), ∀r ≥ 0;

a
2

+ α0Q(r) ≤ v ≤ H−1
2a (P(r) + Q(r)), ∀r ≥ 0.

Moreover, if P(∞) = ∞ = Q(∞) and H2a(∞) = ∞, then lim
r→∞

u(r) = lim
r→∞

v(r) = ∞; if P(∞) + Q(∞) <
H2a(∞) < ∞, then u and v are bounded.
If α > 0 and p(|x|) ≥ 1, q(|x|) ≥ 1, then system (S ) admits an entire positive k-convex radial solution
(u, v) ∈ C2(Rn) ×C2(Rn) satisfying

a
2

+ α0P(r) −
α

2
r2 ≤ u ≤ H−1

2a (P(r) + Q(r)), ∀r ≥ 0;
a
2

+ α0Q(r) −
α

2
r2 ≤ v ≤ H−1

2a (P(r) + Q(r)), ∀r ≥ 0.

If further suppose H2a(∞) = ∞, lim
r→∞

u(r) = lim
r→∞

v(r) = ∞.

2. Preliminary lemmas

For convenience, we give some lemmas for the radial functions before proving the main results.

Let r = |x| =
√

x2
1 + ... + x2

n and BR := {x ∈ Rn : |x| < R} for R ∈ (0,∞].

Lemma 2.1. (Lemma 2.1, [25]) Suppose that ϕ ∈ C2[0,R) with ϕ′(0) = 0. Then, for u(x) = ϕ(r), we
have u(x) ∈ C2(BR), and the eigenvalues of D2u + αI are

λ(D2u + αI) =

(ϕ′′(r) + α, ϕ
′(r)
r + α, ..., ϕ

′(r)
r + α), r ∈ (0,R),

(ϕ′′(0) + α, ϕ′′(0) + α, ..., ϕ′′(0) + α), r = 0,

and so

S k(D2u + αI) =

Ck−1
n−1(ϕ′′(r) + α) (ϕ′(r)+αr)k−1

rk−1 + Ck
n−1

(ϕ′(r)+αr)k

rk , r ∈ (0,R),
Ck

n(ϕ′′(0) + α)k, r = 0.
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By Lemma 2.1, we can conclude that u(x) = ϕ(r) is a C2 radial solution of (E) if and only if ϕ(r)
satisfies

Ck−1
n−1(ϕ′′(r) + α)

(ϕ′(r) + αr)k−1

rk−1 + Ck
n−1

(ϕ′(r) + αr)k

rk = p(r) f k(ϕ(r)), r ∈ (0,R). (2.1)

Lemma 2.2. Suppose that ( f 1) and ( f 2) hold. For any positive number a, let ϕ ∈ C[0,R) ∩ C1(0,R)
be a solution of the Cauchy problemϕ

′(r) =

(
rk−n

C0

∫ r

0
sn−1 p(s) f k(ϕ(s))ds

) 1
k

− αr, r > 0,

ϕ(0) = a > 0.
(2.2)

Then ϕ ∈ C2[0,R), and it satisfies (2.1) with ϕ′(0) = 0.

Proof. Firstly, we have

ϕ′(0) = lim
r→0

ϕ(r) − ϕ(0)
r − 0

= lim
r→0

ϕ′(r)

= lim
r→0

(rk−n

C0

∫ r

0
sn−1 p(s) f k(ϕ(s))ds

) 1
k

− αr = 0.

Since

lim
r→0

ϕ′(r) = lim
r→0

(rk−n

C0

∫ r

0
sn−1 p(s) f k(ϕ(s))ds

) 1
k

− αr = 0 = ϕ′(0).

This shows that ϕ(r) ∈ C1[0,R).
Secondly,

ϕ′′(0) = lim
r→0

ϕ′(r) − ϕ′(0)
r − 0

= lim
r→0

(
rk−n

C0

∫ r

0
sn−1 p(s) f k(ϕ(s))ds

) 1
k

− αr

r

= lim
r→0

( k−n
C0

rk−n−1
∫ r

0
sn−1 p(s) f k(ϕ(s))ds + rk−1

C0
p(r) f k(ϕ(r))

rk

) 1
k

− α

=

( 1
nC0

p(0)
) 1

k

f (ϕ(0)) − α.

It is easy to know that ϕ(r) ∈ C2(0,R) for r ∈ (0,R). By calculating,

lim
r→0

ϕ′′(r) = lim
r→0

k − n
k

r−
n
k (
∫ r

0

1
C0

p(s) f k(ϕ(s))sn−1ds)
1
k

+ lim
r→0

1
kC0

r
k−n

k (
∫ r

0

1
C0

p(s) f k(ϕ(s))sn−1ds)
1
k−1rn−1 p(r) f k(ϕ(r)) − α
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=
k − n

k

( 1
nC0

p(0)
) 1

k

f (ϕ(0)) +
n
k

( 1
nC0

p(0)
) 1

k

f (ϕ(0)) − α

=

( 1
nC0

p(0)
) 1

k

f (ϕ(0)) − α.

Hence, ϕ(r) ∈ C2[0,R). And by direct calculation, we can prove that ϕ(r) satisfies (2.1).

Remark 2.3. When p(r) ≡ 1, Lemma 2.2 is consistent with Lemma 2.3 in [25].

Lemma 2.4. (Lemma 2.2, [25]) Suppose that ( f 1), ( f 2) hold and ϕ(r) ∈ C2[0,R) satifies (2.1) with
ϕ′(0) = 0. Then ϕ′(r) ≥ 0 and ϕ′′(r) + α > 0.

Proof. From (2.1), we have

Ck−1
n−1(rn−k(ϕ′(r) + αr)k)′ = krn−1 p(r) f k(ϕ(r)).

Noticing that ϕ′(0) = 0 and intergrating from 0 to r, combining with (1.7), we have

ϕ′(r) =

(rk−n

C0

∫ r

0
sn−1 p(s) f k(ϕ(s))ds

) 1
k

− αr.

If α = 0, then we can easily prove that ϕ′(r) > 0; if α > 0 and p(|x|) > 1, then we have

ϕ′(r) ≥ α0

(rk−n

C0

∫ r

0
sn−1ds

) 1
k

− αr

> (nC0)−
1
k
n
k

(nC0)
1
kαr − αr

= α(
n
k
− 1)r ≥ 0.

On the other hand, by calculating, for 0 < s < r, we have

ϕ′′(r) + α =
k − n

k
r−

n
k (
∫ r

0

1
C0

p(s) f k(ϕ(s))sn−1ds)
1
k

+
1

kC0
r

k−n
k (

∫ r

0

1
C0

p(s) f k(ϕ(s))sn−1ds)
1
k−1rn−1 p(r) f k(ϕ(r))

= r−
n
k (
∫ r

0

1
C0

p(s) f k(ϕ(s))sn−1ds)
1
k−1

[k − n
k

∫ r

0

1
C0

p(s) f k(ϕ(s))sn−1ds

+
1

kC0
rn p(r) f k(ϕ(r))

]
≥ r−

n
k (
∫ r

0

1
C0

p(s) f k(ϕ(s))sn−1ds)
1
k−1

[k − n
k

1
C0

p(r) f k(ϕ(r))
rn

n
(2.3)

+
1

kC0
rn p(r) f k(ϕ(r))

]
= r−

n
k (
∫ r

0

1
C0

p(s) f k(ϕ(s))sn−1ds)
1
k−1

[ 1
nC0

rn p(r) f k(ϕ(r))
]

> 0.

This gives the proof of Lemma 2.4.
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Remark 2.5. When p(r) ≡ 1, Lemma 2.4 is consistent with Lemma 2.2 in [25].

3. Proof of the main results

In this section, we prove Theorems 1.1 and 1.2.
Proof of Theorem 1.1. Firstly, we consider the equations

Ck−1
n−1(u′′(r) + α)

(u′(r) + αr)k−1

rk−1 + Ck
n−1

(u′(r) + αr)k

rk = p(r) f k(u(r)), r > 0, (3.1)

u′(r) =

(rk−n

C0

∫ r

0
sn−1 p(s) f k(u(s))ds

) 1
k

− αr, r > 0, u(0) = a, (3.2)

and

u(r) = a +

∫ r

0

( tk−n

C0

∫ t

0
sn−1 p(s) f k(u(s))ds

) 1
k

dt −
α

2
r2, r ≥ 0. (3.3)

Apparently, solutions in C[0,∞) to (3.3) are solutions in C[0,∞) ∩C1(0,∞) to (3.2).
Let {um}m≥1 be the sequences of positive continuous functions defined on [0,∞) by

u0(r) = a, um(r) = a +

∫ r

0

( tk−n

C0

∫ t

0
sn−1 p(s) f k(um−1(s))ds

) 1
k

dt −
α

2
r2, r ≥ 0.

Obviously, for all r ≥ 0 and m ∈ N, we have

um(r) = a +

∫ r

0

( tk−n

C0

∫ t

0
sn−1 p(s) f k(um−1(s))ds

) 1
k

dt −
α

2
r2

≥ a + α0

∫ r

0

( tk−n

C0

∫ t

0
sn−1 p(s)ds

) 1
k

dt −
α

2
r2

≥ a + α0P(r) −
α

2
r2.

Therefore, um(r) ≥ a, and u0(r) < u1(r). Since ( f 1) holds, we have u1(r) < u2(r) for r ≥ 0. According
to the above reasons, we obtain that the sequences {um} is increasing on [0,∞). Also, we obtain by ( f 1)
and ( f 2) that for each r > 0

u′m(r) =

(rk−n

C0

∫ r

0
sn−1 p(s) f k(um−1(s))ds

) 1
k

− αr

≤ f (um(r))
(rk−n

C0

∫ r

0
sn−1 p(s)ds

) 1
k

− αr

≤ f (um(r))P′(r).

Therefore, ∫ um(r)

a

1
f (τ)

dτ ≤ P(r), r > 0.

This shows that
H1a(um(r)) ≤ P(r), ∀r ≥ 0, (3.4)
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and
um(r) ≤ H−1

1a (P(r)), ∀r ≥ 0. (3.5)

It follows that the sequences {um}, {u′m} are bounded on [0,R0] for an arbitrary R0 > 0. By Arzelà-
Ascoli theorem, {um} has subsequences converging uniformly to u on [0,R0]. Since {um} is increasing
on [0,∞), we see that {um} itself converges uniformly to u on [0,R0]. By arbitrariness of R0 and Lemma
2.2, we get that u is an entire positive k-convex radial solution to (E), and u satisfies

a + α0P(r) −
α

2
r2 < u(r) ≤ H−1

1a (P(r)), ∀r ≥ 0. (3.6)

If α = 0, by (3.6), it is easy to obtain that if P(∞) = ∞ and H1a(∞) = ∞, then lim
r→∞

u(r) = ∞; if

P(∞) < H1a(∞) < ∞, then u is bounded. If α > 0, combining the fact that p(|x|) ≥ 1, α0 >
n
k (Ck

n)
1
kα

and H1a(∞) = ∞, it is obvious that lim
r→∞

u(r) = ∞. This finishes the proof of Theorem 1.1.
Remark 3.1. Theorem 1.1 generalizes Theorem 1.1 with α > 0 in [24]. In the case α > 0, since
P(∞) = ∞ for the positivity of u, it is difficult to ensure if there is bounded positive entire solution of
(E).
Proof of Theorem 1.2. Consider the following systemsCk−1

n−1(u′′(r) + α) (u′(r)+αr)k−1

rk−1 + Ck
n−1

(u′(r)+αr)k

rk = p(r) f k(v(r)), r > 0,
Ck−1

n−1(v′′(r) + α) (v′(r)+αr)k−1

rk−1 + Ck
n−1

(v′(r)+αr)k

rk = q(r)gk(u(r)), r > 0,

and 
u(r) = a

2 +
∫ r

0

(
tk−n

C0

∫ t

0
sn−1 p(s) f k(v(s))ds

) 1
k

dt − α
2 r2, r ≥ 0,

v(r) = a
2 +

∫ r

0

(
tk−n

C0

∫ t

0
sn−1q(s)gk(u(s))ds

) 1
k

dt − α
2 r2, r ≥ 0.

Let {um}m≥1 and {vm}m≥1 be the sequences of positive continuous functions defined on [0,∞) by
v0 = a

2 ,

um(r) = a
2 +

∫ r

0

(
tk−n

C0

∫ t

0
sn−1 p(s) f k(vm−1(s))ds

) 1
k

dt − α
2 r2, r ≥ 0,

vm(r) = a
2 +

∫ r

0

(
tk−n

C0

∫ t

0
sn−1q(s)gk(um(s))ds

) 1
k

dt − α
2 r2, r ≥ 0.

Similarly, for all r ≥ 0 and m ∈ N, when m ≥ 1, we have

um(r) >
a
2

+ α0P(r) −
α

2
r2;

vm(r) >
a
2

+ α0Q(r) −
α

2
r2.

Therefore, um(r) ≥ a
2 , vm(r) ≥ a

2 and v0(r) < v1(r). Since f , g are continuous and nondecreasing, we
have u1(r) < u2(r), ∀r ≥ 0, and v1(r) < v2(r), ∀r ≥ 0. According to the above reasons, we obtain that
the sequences {um} and {vm} are increasing on [0,∞).

Moreover, for r > 0, by ( f 1) and ( f 2), one can prove that

u′m(r) ≤ ( f (vm(r) + um(r)) + g(vm(r) + um(r)))P′(r);
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v′m(r) ≤ ( f (vm(r) + um(r)) + g(vm(r) + um(r)))Q′(r),

and
u′m(r) + v′m(r) ≤ [ f (vm(r) + um(r)) + g(vm(r) + um(r))](P′(r) + Q′(r)).

Therefore, ∫ um(r)+vm(r)

a

1
f (τ) + g(τ)

dτ ≤ P(r) + Q(r), r > 0,

which shows that
H2a(um(r) + vm(r)) ≤ P(r) + Q(r), ∀r ≥ 0,

and
um(r) + vm(r) ≤ H−1

2a (P(r) + Q(r)), ∀r ≥ 0.

It so follows that the sequences {um}, {u′m} and {vm}, {v′m} are bounded on [0,R0] for an arbitrary
R0 > 0. By Arzelà-Ascoli theorem, {um} and {vm} have subsequences converging uniformly to u and
v respectively on [0,R0]. Since {um}, {vm} are increasing on [0,∞), we see that {um} itself converges
uniformly to u on [0,R0], so is {vm}. By arbitrariness of R0 and Lemma 2.2, we get that (u, v) is an
entire positive k-convex radial solution to (S ).

The rest proof is similar to that of Theorem 1.1. So we omit it here.

4. Conclusions

In this paper, we use a new monotone iteration scheme to obtain some new existence results of
entire positive solutions for a k-Hessian type equation and system.
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