

ERA, 30(2): 481–491. DOI: 10.3934/era.2022025 Received: 15 December 2021 Revised: 14 January 2022 Accepted: 21 January 2022 Published: 08 February 2022

http://www.aimspress.com/journal/era

Research article

Entire positive *k*-convex solutions to *k*-Hessian type equations and systems

Shuangshuang Bai¹, Xuemei Zhang^{1,*}and Meiqiang Feng²

- ¹ School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
- ² School of Applied Science, Beijing Information Science & Technology University, Beijing 100192, China
- * Correspondence: Email: zxm74@sina.com.

Abstract: In this paper, we study the existence of entire positive solutions for the k-Hessian type equation

$$\mathbf{S}_k(D^2u + \alpha I) = p(|x|)f^k(u), \ x \in \mathbb{R}^n$$

and system

$$\begin{cases} S_k(D^2u + \alpha I) = p(|x|)f^k(v), & x \in \mathbb{R}^n, \\ S_k(D^2v + \alpha I) = q(|x|)g^k(u), & x \in \mathbb{R}^n, \end{cases}$$

where $D^2 u$ is the Hessian of u and I denotes unit matrix. The arguments are based upon a new monotone iteration scheme.

Keywords: *k*-Hessian type equation and system; entire positive *k*-convex solution; monotone iterative; existence

1. Introduction

Consider the existence of entire positive k-convex solutions to the following k-Hessian type equation

$$S_k(D^2u + \alpha I) = p(|x|)f^k(u), \ x \in \mathbb{R}^n,$$
(E)

and system

$$\begin{cases} S_k(D^2u + \alpha I) = p(|x|)f^k(v), & x \in \mathbb{R}^n, \\ S_k(D^2v + \alpha I) = q(|x|)g^k(u), & x \in \mathbb{R}^n, \end{cases}$$
(S)

where $k \in \{1, 2, ..., n\}$, $\alpha \ge 0$ is a constant, *I* is the identity function and *p*, *q* are continuous functions on $[0, +\infty)$. Letting $D^2 u = (\frac{\partial^2 u}{\partial x_i \partial x_j})$ denote the Hessian of $u \in C^2(\mathbb{R}^n)$ and λ_i $(i \in \{1, 2, ..., n\})$ denote the eigenvalues of D^2u , then

$$S_{k}(D^{2}u + \alpha I) = \sum_{\substack{1 \le i_{1} \le \dots \le i_{k} \le n \\ 1 \le j_{1} \le \dots \le j_{k} \le n}} \frac{1}{k!} \delta_{j_{1}, j_{2}, \dots, j_{k}}^{i_{1}, i_{2}, \dots, i_{k}} (\lambda_{i_{1}} + \alpha) (\lambda_{i_{2}} + \alpha) \dots (\lambda_{i_{k}} + \alpha),$$

where $\delta_{j_1,j_2,...,j_k}^{i_1,i_2,...,i_k}$ is the generalized Kronecker symbol, is the *k*-Hessian type operator. When $\alpha = 0$, $S_k(D^2u)$ is the standard *k*-Hessian operator.

Denote

$$\Gamma_k := \{\lambda \in \mathbb{R}^n : S_i(\lambda) > 0, 1 \le j \le k\}$$

We call a function $u \in C^2(\mathbb{R}^n)$ k-convex in \mathbb{R}^n if $\lambda(D^2u(x) + \alpha I) \in \Gamma_k$ for all $x \in \mathbb{R}^n$. In particular,

$$S_1(D^2u + \alpha I) = \sum_{i=1}^n \lambda_i = \Delta u;$$

$$S_n(D^2u + \alpha I) = \prod_{i=1}^n \lambda_i = \det(D^2u + \alpha I).$$

The k-Hessian equation is fully nonlinear PDEs for $k \neq 1$ (see Urbas [1] and Wang [2]), and there are many important applications in fluid mechanics, geometric problems and other applied subjects. Many authors have demonstrated increasing interest in k-Hessian equations by different methods, for instance, see ([3–9]) and the references cited therein([10–15]). In particular, problem (*E*) reduces to the problems studied by Keller [16] and Osserman [17] when k = 1, p(|x|) = 1 on \mathbb{R}^n and $f : [0, \infty) \rightarrow$ $[0, \infty)$ is continuous and increasing. The authors studied a necessary and sufficient condition

$$\int_{1}^{\infty} \frac{dt}{\sqrt{2F(t)}} = \infty, \quad F(t) = \int_{0}^{t} f(s)ds$$

for the existence of entire large positive radial solutions to (*E*). When k = 1, $f(u) = u^{\gamma}$ ($\gamma \in (0, 1]$) and $p : [0, \infty) \rightarrow [0, \infty)$ is continuous, Lair and Wood [18] showed that (*E*) admits infinitely many entire large positive radial solutions if and only if

$$\int_0^\infty rp(r)dr = \infty.$$

For the case k = 1, system (S) reduces to the following problem

$$\begin{cases} \Delta u = p(|x|)f(v), \ x \in \mathbb{R}^n, \\ \Delta v = q(|x|)g(u), \ x \in \mathbb{R}^n. \end{cases}$$
(1.1)

Lair and Wood [19] analyzed the existence and nonexistence of entire positive radial solutions to Eq (1.1) when $f(v) = v^{\beta}$, $g(u) = u^{\gamma}$ ($0 < \beta \le \gamma$). For the further results, we can see [20–23] and the reference therein.

When $\alpha = 0$, Zhang and Zhou [24] considered the existence of entire positive *k*-convex solutions to problem (*E*) and system (*S*).

Electronic Research Archive

For the case k = n, Zhang and Liu [25] studied the existence of entire radial large solutions for a Monge-Ampère type equation

$$\det(D^2 u) - \alpha \Delta u = a(|x|)f(u), \ x \in \mathbb{R}^n$$
(1.2)

and system

$$\begin{cases} \det(D^2 u) - \alpha \Delta u = a(|x|) f(v), \ x \in \mathbb{R}^n, \\ \det(D^2 v) - \beta \Delta v = b(|x|) g(u), \ x \in \mathbb{R}^n. \end{cases}$$
(1.3)

Their results have been improved by Covei [26].

Recently, when $p(|x|) \equiv 1$ on \mathbb{R}^n , Dai [27] showed that there exists a subsolution $u \in C^2(\mathbb{R}^n)$ of (*E*) if and only if

$$\int^{\infty} \left(\int_{0}^{\tau} f(t) dt \right)^{-\frac{1}{k+1}} d\tau = \infty$$

holds.

Motivated by these works mentioned above, in this paper we will obtain some new results on the existence of entire positive k-convex radial solutions for equation (E) and system (S). The arguments are based upon a new monotone iteration scheme.

Let α_0 denote a positive constant. In the following, we always suppose that

$$\alpha_0 > \frac{n}{k} \left(\frac{nC_{n-1}^{k-1}}{k}\right)^{\frac{1}{k}} \alpha = \frac{n}{k} (C_n^k)^{\frac{1}{k}} \alpha.$$
(1.4)

We give the following conditions:

(*f*1) *f*, *g* :[0, ∞) \rightarrow (α_0 , ∞) are continuous and nondecreasing; (*f*2) *p*, *q* :[0, ∞) \rightarrow (0, ∞) are continuous and nondecreasing. Define

$$P(\infty) := \lim_{r \to \infty} P(r), \quad P(r) := \int_0^r \left(\frac{t^{k-n}}{C_0} \int_0^t s^{n-1} p(s) ds \right)^{\frac{1}{k}} dt, \ r \ge 0; \tag{1.5}$$

$$Q(\infty) := \lim_{r \to \infty} Q(r), \quad Q(r) := \int_0^r \left(\frac{t^{k-n}}{C_0} \int_0^t s^{n-1} q(s) ds\right)^{\frac{1}{k}} dt, \ r \ge 0, \tag{1.6}$$

where

$$C_0 = \frac{C_{n-1}^{k-1}}{k}.$$

For an arbitrary a > 0, we also define

$$H_{1a}(\infty) := \lim_{r \to \infty} H_{1a}(r), \quad H_{1a}(r) := \int_{a}^{r} \frac{d\tau}{f(\tau)}, \ r \ge a;$$
(1.7)

$$H_{2a}(\infty) := \lim_{r \to \infty} H_{2a}(r), \quad H_{2a}(r) := \int_{a}^{r} \frac{d\tau}{f(\tau) + g(\tau)}, \quad r \ge a,$$
(1.8)

and we see that

$$H'_{1a}(r) = \frac{1}{f(r)} > 0, \quad H'_{2a}(r) = \frac{1}{f(r) + g(r)} > 0, \ \forall r > a,$$

and H_{1a} , H_{2a} admit the inverse functions H_{1a}^{-1} and H_{2a}^{-1} on $[0, H_{1a}(\infty))$ and $[0, H_{2a}(\infty))$ respectively.

The main results of this paper can be stated as follows.

Electronic Research Archive

Theorem 1.1. Suppose that (f_1) and (f_2) hold. If $\alpha = 0$, then Eq (E) admits an entire positive k-convex radial solution $u \in C^2(\mathbb{R}^n)$ satisfying

$$a + \alpha_0 P(r) \le u \le H_{1a}^{-1}(P(r)), \ \forall r \ge 0.$$

Moreover, if $P(\infty) = \infty$ and $H_{1a}(\infty) = \infty$, then $\lim_{r \to \infty} u(r) = \infty$; if $P(\infty) < H_{1a}(\infty) < \infty$, then u is bounded.

If $\alpha > 0$ and $p(|x|) \ge 1$, then Eq (E) admits an entire positive k-convex radial solution $u \in C^2(\mathbb{R}^n)$ satisfying

$$a + \alpha_0 P(r) - \frac{\alpha}{2}r^2 \le u \le H_{1a}^{-1}(P(r)), \ \forall r \ge 0.$$

If further suppose $H_{1a}(\infty) = \infty$ *, then* $\lim_{n \to \infty} u(r) = \infty$ *.*

Theorem 1.2. Suppose that (f1) and (f2) hold. If $\alpha = 0$, then system (S) admits an entire positive *k*-convex radial solution $(u, v) \in C^2(\mathbb{R}^n) \times C^2(\mathbb{R}^n)$ satisfying

$$\begin{aligned} &\frac{a}{2} + \alpha_0 P(r) \le u \le H_{2a}^{-1}(P(r) + Q(r)), \ \forall r \ge 0; \\ &\frac{a}{2} + \alpha_0 Q(r) \le v \le H_{2a}^{-1}(P(r) + Q(r)), \ \forall r \ge 0. \end{aligned}$$

Moreover, if $P(\infty) = \infty = Q(\infty)$ and $H_{2a}(\infty) = \infty$, then $\lim_{r \to \infty} u(r) = \lim_{r \to \infty} v(r) = \infty$; if $P(\infty) + Q(\infty) < H_{2a}(\infty) < \infty$, then u and v are bounded.

If $\alpha > 0$ and $p(|x|) \ge 1$, $q(|x|) \ge 1$, then system (S) admits an entire positive k-convex radial solution $(u, v) \in C^2(\mathbb{R}^n) \times C^2(\mathbb{R}^n)$ satisfying

$$\frac{a}{2} + \alpha_0 P(r) - \frac{\alpha}{2} r^2 \le u \le H_{2a}^{-1}(P(r) + Q(r)), \ \forall r \ge 0;$$

$$\frac{a}{2} + \alpha_0 Q(r) - \frac{\alpha}{2} r^2 \le v \le H_{2a}^{-1}(P(r) + Q(r)), \ \forall r \ge 0.$$

If further suppose $H_{2a}(\infty) = \infty$, $\lim_{r \to \infty} u(r) = \lim_{r \to \infty} v(r) = \infty$.

2. Preliminary lemmas

For convenience, we give some lemmas for the radial functions before proving the main results. Let $r = |x| = \sqrt{x_1^2 + ... + x_n^2}$ and $B_R := \{x \in \mathbb{R}^n : |x| < R\}$ for $R \in (0, \infty]$.

Lemma 2.1. (Lemma 2.1, [25]) Suppose that $\varphi \in C^2[0, R)$ with $\varphi'(0) = 0$. Then, for $u(x) = \varphi(r)$, we have $u(x) \in C^2(B_R)$, and the eigenvalues of $D^2u + \alpha I$ are

$$\lambda(D^2u+\alpha I) = \begin{cases} (\varphi^{\prime\prime}(r)+\alpha,\frac{\varphi^{\prime}(r)}{r}+\alpha,...,\frac{\varphi^{\prime}(r)}{r}+\alpha), & r \in (0,R), \\ (\varphi^{\prime\prime}(0)+\alpha,\varphi^{\prime\prime}(0)+\alpha,...,\varphi^{\prime\prime}(0)+\alpha), & r = 0, \end{cases}$$

and so

$$S_{k}(D^{2}u + \alpha I) = \begin{cases} C_{n-1}^{k-1}(\varphi^{\prime\prime}(r) + \alpha)\frac{(\varphi^{\prime}(r) + \alpha r)^{k-1}}{r^{k-1}} + C_{n-1}^{k}\frac{(\varphi^{\prime}(r) + \alpha r)^{k}}{r^{k}}, & r \in (0, R), \\ C_{n}^{k}(\varphi^{\prime\prime}(0) + \alpha)^{k}, & r = 0. \end{cases}$$

Electronic Research Archive

By Lemma 2.1, we can conclude that $u(x) = \varphi(r)$ is a C^2 radial solution of (*E*) if and only if $\varphi(r)$ satisfies

$$C_{n-1}^{k-1}(\varphi''(r)+\alpha)\frac{(\varphi'(r)+\alpha r)^{k-1}}{r^{k-1}}+C_{n-1}^k\frac{(\varphi'(r)+\alpha r)^k}{r^k}=p(r)f^k(\varphi(r)), \ r\in(0,R).$$
(2.1)

Lemma 2.2. Suppose that (f1) and (f2) hold. For any positive number a, let $\varphi \in C[0, R) \cap C^1(0, R)$ be a solution of the Cauchy problem

$$\begin{cases} \varphi'(r) = \left(\frac{r^{k-n}}{C_0} \int_0^r s^{n-1} p(s) f^k(\varphi(s)) ds\right)^{\frac{1}{k}} - \alpha r, \ r > 0, \\ \varphi(0) = a > 0. \end{cases}$$
(2.2)

Then $\varphi \in C^2[0, R)$, and it satisfies (2.1) with $\varphi'(0) = 0$.

Proof. Firstly, we have

$$\begin{aligned} \varphi'(0) &= \lim_{r \to 0} \frac{\varphi(r) - \varphi(0)}{r - 0} \\ &= \lim_{r \to 0} \varphi'(r) \\ &= \lim_{r \to 0} \left(\frac{r^{k-n}}{C_0} \int_0^r s^{n-1} p(s) f^k(\varphi(s)) ds \right)^{\frac{1}{k}} - \alpha r = 0. \end{aligned}$$

Since

$$\lim_{r \to 0} \varphi'(r) = \lim_{r \to 0} \left(\frac{r^{k-n}}{C_0} \int_0^r s^{n-1} p(s) f^k(\varphi(s)) ds \right)^{\frac{1}{k}} - \alpha r = 0 = \varphi'(0).$$

This shows that $\varphi(r) \in C^1[0, R)$.

Secondly,

$$\begin{split} \varphi''(0) &= \lim_{r \to 0} \frac{\varphi'(r) - \varphi'(0)}{r - 0} \\ &= \lim_{r \to 0} \frac{\left(\frac{r^{k-n}}{C_0} \int_0^r s^{n-1} p(s) f^k(\varphi(s)) ds\right)^{\frac{1}{k}} - \alpha r}{r} \\ &= \lim_{r \to 0} \left(\frac{\frac{k-n}{C_0} r^{k-n-1} \int_0^r s^{n-1} p(s) f^k(\varphi(s)) ds + \frac{r^{k-1}}{C_0} p(r) f^k(\varphi(r))}{r^k}\right)^{\frac{1}{k}} - \alpha \\ &= \left(\frac{1}{nC_0} p(0)\right)^{\frac{1}{k}} f(\varphi(0)) - \alpha. \end{split}$$

It is easy to know that $\varphi(r) \in C^2(0, R)$ for $r \in (0, R)$. By calculating,

$$\lim_{r \to 0} \varphi''(r) = \lim_{r \to 0} \frac{k - n}{k} r^{-\frac{n}{k}} \left(\int_0^r \frac{1}{C_0} p(s) f^k(\varphi(s)) s^{n-1} ds \right)^{\frac{1}{k}} + \lim_{r \to 0} \frac{1}{kC_0} r^{\frac{k - n}{k}} \left(\int_0^r \frac{1}{C_0} p(s) f^k(\varphi(s)) s^{n-1} ds \right)^{\frac{1}{k} - 1} r^{n-1} p(r) f^k(\varphi(r)) - \alpha$$

Electronic Research Archive

$$= \frac{k-n}{k} \left(\frac{1}{nC_0} p(0)\right)^{\frac{1}{k}} f(\varphi(0)) + \frac{n}{k} \left(\frac{1}{nC_0} p(0)\right)^{\frac{1}{k}} f(\varphi(0)) - \alpha$$
$$= \left(\frac{1}{nC_0} p(0)\right)^{\frac{1}{k}} f(\varphi(0)) - \alpha.$$

Hence, $\varphi(r) \in C^2[0, R)$. And by direct calculation, we can prove that $\varphi(r)$ satisfies (2.1). **Remark 2.3.** When $p(r) \equiv 1$, Lemma 2.2 is consistent with Lemma 2.3 in [25]. **Lemma 2.4.** (Lemma 2.2, [25]) Suppose that (f1), (f2) hold and $\varphi(r) \in C^2[0, R)$ satisfies (2.1) with $\varphi'(0) = 0$. Then $\varphi'(r) \ge 0$ and $\varphi''(r) + \alpha > 0$.

Proof. From (2.1), we have

$$C_{n-1}^{k-1}(r^{n-k}(\varphi'(r)+\alpha r)^k)'=kr^{n-1}p(r)f^k(\varphi(r)).$$

Noticing that $\varphi'(0) = 0$ and intergrating from 0 to r, combining with (1.7), we have

$$\varphi'(r) = \left(\frac{r^{k-n}}{C_0}\int_0^r s^{n-1}p(s)f^k(\varphi(s))ds\right)^{\frac{1}{k}} - \alpha r$$

If $\alpha = 0$, then we can easily prove that $\varphi'(r) > 0$; if $\alpha > 0$ and p(|x|) > 1, then we have

$$\varphi'(r) \ge \alpha_0 \left(\frac{r^{k-n}}{C_0} \int_0^r s^{n-1} ds\right)^{\frac{1}{k}} - \alpha r$$
$$> (nC_0)^{-\frac{1}{k}} \frac{n}{k} (nC_0)^{\frac{1}{k}} \alpha r - \alpha r$$
$$= \alpha (\frac{n}{k} - 1) r \ge 0.$$

On the other hand, by calculating, for 0 < s < r, we have

$$\begin{split} \varphi''(r) + \alpha &= \frac{k-n}{k} r^{-\frac{n}{k}} (\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} ds)^{\frac{1}{k}} \\ &+ \frac{1}{kC_{0}} r^{\frac{k-n}{k}} (\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} ds)^{\frac{1}{k}-1} r^{n-1} p(r) f^{k}(\varphi(r)) \\ &= r^{-\frac{n}{k}} (\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} ds)^{\frac{1}{k}-1} \left[\frac{k-n}{k} \int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} ds \\ &+ \frac{1}{kC_{0}} r^{n} p(r) f^{k}(\varphi(r)) \right] \\ &\geq r^{-\frac{n}{k}} (\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} ds)^{\frac{1}{k}-1} \left[\frac{k-n}{k} \frac{1}{C_{0}} p(r) f^{k}(\varphi(r)) \frac{r^{n}}{n} \end{split}$$
(2.3)
$$&+ \frac{1}{kC_{0}} r^{n} p(r) f^{k}(\varphi(r)) \right] \\ &= r^{-\frac{n}{k}} (\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} ds)^{\frac{1}{k}-1} \left[\frac{1}{nC_{0}} r^{n} p(r) f^{k}(\varphi(r)) \right] \\ &> 0. \end{split}$$

This gives the proof of Lemma 2.4.

Electronic Research Archive

Remark 2.5. When $p(r) \equiv 1$, Lemma 2.4 is consistent with Lemma 2.2 in [25].

3. Proof of the main results

In this section, we prove Theorems 1.1 and 1.2. **Proof of Theorem 1.1.** Firstly, we consider the equations

$$C_{n-1}^{k-1}(u''(r)+\alpha)\frac{(u'(r)+\alpha r)^{k-1}}{r^{k-1}}+C_{n-1}^k\frac{(u'(r)+\alpha r)^k}{r^k}=p(r)f^k(u(r)),\ r>0,$$
(3.1)

$$u'(r) = \left(\frac{r^{k-n}}{C_0} \int_0^r s^{n-1} p(s) f^k(u(s)) ds\right)^{\frac{1}{k}} - \alpha r, \ r > 0, \ u(0) = a, \tag{3.2}$$

and

$$u(r) = a + \int_0^r \left(\frac{t^{k-n}}{C_0} \int_0^t s^{n-1} p(s) f^k(u(s)) ds\right)^{\frac{1}{k}} dt - \frac{\alpha}{2} r^2, \ r \ge 0.$$
(3.3)

Apparently, solutions in $C[0, \infty)$ to (3.3) are solutions in $C[0, \infty) \cap C^1(0, \infty)$ to (3.2).

Let $\{u_m\}_{m\geq 1}$ be the sequences of positive continuous functions defined on $[0, \infty)$ by

$$u_0(r) = a, \ u_m(r) = a + \int_0^r \left(\frac{t^{k-n}}{C_0} \int_0^t s^{n-1} p(s) f^k(u_{m-1}(s)) ds\right)^{\frac{1}{k}} dt - \frac{\alpha}{2}r^2, \ r \ge 0.$$

Obviously, for all $r \ge 0$ and $m \in \mathbb{N}$, we have

$$u_{m}(r) = a + \int_{0}^{r} \left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} p(s) f^{k}(u_{m-1}(s)) ds\right)^{\frac{1}{k}} dt - \frac{\alpha}{2}r^{2}$$

$$\geq a + \alpha_{0} \int_{0}^{r} \left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} p(s) ds\right)^{\frac{1}{k}} dt - \frac{\alpha}{2}r^{2}$$

$$\geq a + \alpha_{0}P(r) - \frac{\alpha}{2}r^{2}.$$

Therefore, $u_m(r) \ge a$, and $u_0(r) < u_1(r)$. Since (f1) holds, we have $u_1(r) < u_2(r)$ for $r \ge 0$. According to the above reasons, we obtain that the sequences $\{u_m\}$ is increasing on $[0, \infty)$. Also, we obtain by (f1) and (f2) that for each r > 0

$$u'_{m}(r) = \left(\frac{r^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} p(s) f^{k}(u_{m-1}(s)) ds\right)^{\frac{1}{k}} - \alpha r$$

$$\leq f(u_{m}(r)) \left(\frac{r^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} p(s) ds\right)^{\frac{1}{k}} - \alpha r$$

$$\leq f(u_{m}(r)) P'(r).$$

Therefore,

$$\int_{a}^{u_m(r)} \frac{1}{f(\tau)} d\tau \leq P(r), \ r > 0.$$

This shows that

$$H_{1a}(u_m(r)) \le P(r), \ \forall r \ge 0, \tag{3.4}$$

Electronic Research Archive

and

$$u_m(r) \le H_{1a}^{-1}(P(r)), \ \forall r \ge 0.$$
 (3.5)

It follows that the sequences $\{u_m\}$, $\{u'_m\}$ are bounded on $[0, R_0]$ for an arbitrary $R_0 > 0$. By Arzelà-Ascoli theorem, $\{u_m\}$ has subsequences converging uniformly to u on $[0, R_0]$. Since $\{u_m\}$ is increasing on $[0, \infty)$, we see that $\{u_m\}$ itself converges uniformly to u on $[0, R_0]$. By arbitrariness of R_0 and Lemma 2.2, we get that u is an entire positive k-convex radial solution to (E), and u satisfies

$$a + \alpha_0 P(r) - \frac{\alpha}{2} r^2 < u(r) \le H_{1a}^{-1}(P(r)), \quad \forall r \ge 0.$$
(3.6)

If $\alpha = 0$, by (3.6), it is easy to obtain that if $P(\infty) = \infty$ and $H_{1a}(\infty) = \infty$, then $\lim_{r \to \infty} u(r) = \infty$; if $P(\infty) < H_{1a}(\infty) < \infty$, then *u* is bounded. If $\alpha > 0$, combining the fact that $p(|x|) \ge 1$, $\alpha_0 > \frac{n}{k} (C_n^k)^{\frac{1}{k}} \alpha$ and $H_{1a}(\infty) = \infty$, it is obvious that $\lim_{n \to \infty} u(r) = \infty$. This finishes the proof of Theorem 1.1.

Remark 3.1. Theorem 1.1 generalizes Theorem 1.1 with $\alpha > 0$ in [24]. In the case $\alpha > 0$, since $P(\infty) = \infty$ for the positivity of *u*, it is difficult to ensure if there is bounded positive entire solution of *(E)*.

Proof of Theorem 1.2. Consider the following systems

(

$$\begin{cases} C_{n-1}^{k-1}(u^{\prime\prime}(r)+\alpha)\frac{(u^{\prime}(r)+\alpha r)^{k-1}}{r^{k-1}}+C_{n-1}^k\frac{(u^{\prime}(r)+\alpha r)^k}{r^k}=p(r)f^k(v(r)),\ r>0,\\ C_{n-1}^{k-1}(v^{\prime\prime}(r)+\alpha)\frac{(v^{\prime}(r)+\alpha r)^{k-1}}{r^{k-1}}+C_{n-1}^k\frac{(v^{\prime}(r)+\alpha r)^k}{r^k}=q(r)g^k(u(r)),\ r>0,\end{cases}$$

and

$$\begin{cases} u(r) = \frac{a}{2} + \int_0^r \left(\frac{t^{k-n}}{C_0} \int_0^t s^{n-1} p(s) f^k(v(s)) ds \right)^{\frac{1}{k}} dt - \frac{\alpha}{2} r^2, \ r \ge 0, \\ v(r) = \frac{a}{2} + \int_0^r \left(\frac{t^{k-n}}{C_0} \int_0^t s^{n-1} q(s) g^k(u(s)) ds \right)^{\frac{1}{k}} dt - \frac{\alpha}{2} r^2, \ r \ge 0. \end{cases}$$

Let $\{u_m\}_{m\geq 1}$ and $\{v_m\}_{m\geq 1}$ be the sequences of positive continuous functions defined on $[0,\infty)$ by

$$\begin{cases} v_0 = \frac{a}{2}, \\ u_m(r) = \frac{a}{2} + \int_0^r \left(\frac{t^{k-n}}{C_0} \int_0^t s^{n-1} p(s) f^k(v_{m-1}(s)) ds \right)^{\frac{1}{k}} dt - \frac{\alpha}{2} r^2, \ r \ge 0, \\ v_m(r) = \frac{a}{2} + \int_0^r \left(\frac{t^{k-n}}{C_0} \int_0^t s^{n-1} q(s) g^k(u_m(s)) ds \right)^{\frac{1}{k}} dt - \frac{\alpha}{2} r^2, \ r \ge 0. \end{cases}$$

Similarly, for all $r \ge 0$ and $m \in \mathbb{N}$, when $m \ge 1$, we have

$$u_m(r) > \frac{a}{2} + \alpha_0 P(r) - \frac{\alpha}{2}r^2;$$

$$v_m(r) > \frac{a}{2} + \alpha_0 Q(r) - \frac{\alpha}{2}r^2.$$

Therefore, $u_m(r) \ge \frac{a}{2}$, $v_m(r) \ge \frac{a}{2}$ and $v_0(r) < v_1(r)$. Since *f*, *g* are continuous and nondecreasing, we have $u_1(r) < u_2(r)$, $\forall r \ge 0$, and $v_1(r) < v_2(r)$, $\forall r \ge 0$. According to the above reasons, we obtain that the sequences $\{u_m\}$ and $\{v_m\}$ are increasing on $[0, \infty)$.

Moreover, for r > 0, by (f1) and (f2), one can prove that

$$u'_{m}(r) \le (f(v_{m}(r) + u_{m}(r)) + g(v_{m}(r) + u_{m}(r)))P'(r);$$

Electronic Research Archive

$$v'_m(r) \le (f(v_m(r) + u_m(r)) + g(v_m(r) + u_m(r)))Q'(r),$$

and

$$u'_{m}(r) + v'_{m}(r) \le [f(v_{m}(r) + u_{m}(r)) + g(v_{m}(r) + u_{m}(r))](P'(r) + Q'(r)).$$

Therefore,

$$\int_a^{u_m(r)+v_m(r)}\frac{1}{f(\tau)+g(\tau)}d\tau \leq P(r)+Q(r), \ r>0,$$

which shows that

$$H_{2a}(u_m(r) + v_m(r)) \le P(r) + Q(r), \quad \forall r \ge 0,$$

and

$$u_m(r) + v_m(r) \le H_{2a}^{-1}(P(r) + Q(r)), \quad \forall r \ge 0.$$

It so follows that the sequences $\{u_m\}$, $\{u'_m\}$ and $\{v_m\}$, $\{v'_m\}$ are bounded on $[0, R_0]$ for an arbitrary $R_0 > 0$. By Arzelà-Ascoli theorem, $\{u_m\}$ and $\{v_m\}$ have subsequences converging uniformly to u and v respectively on $[0, R_0]$. Since $\{u_m\}$, $\{v_m\}$ are increasing on $[0, \infty)$, we see that $\{u_m\}$ itself converges uniformly to u on $[0, R_0]$, so is $\{v_m\}$. By arbitrariness of R_0 and Lemma 2.2, we get that (u, v) is an entire positive k-convex radial solution to (S).

The rest proof is similar to that of Theorem 1.1. So we omit it here.

4. Conclusions

In this paper, we use a new monotone iteration scheme to obtain some new existence results of entire positive solutions for a *k*-Hessian type equation and system.

Acknowledgments

S. Bai, X. Zhang and M. Feng are partially supported by the Beijing Natural Science Foundation of China (1212003).

Conflict of interest

The authors declare there is no conflict of interest.

References

- 1. J. I. E. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, *Indiana U. Math. J.*, **39** (1990), 355–382. https://doi.org/10.1512/iumj.1990.39.39020
- X. Wang, A class of fully nonlinear elliptic equations and related functionals, *Indiana U. Math. J.*, 43 (1994), 25–54. https://doi.org/10.1512/iumj.1994.43.43002
- L. Caffarelli, Interior W^{2,p} estimates for solutions of the Monge-Ampère equation, *Ann. Math.*, 131 (1990), 135–150.
- 4. S. Cheng, S. Yau, On the regularity of the Monge-Ampère equation $det((\partial^2 u/\partial x_i \partial x_j)) = F(x, u)$, *Comm. Pure Appl. Math.*, **30** (1977), 41–68. https://doi.org/10.1002/cpa.3160300104

Electronic Research Archive

- 5. Z. Zhang, Large solutions to the Monge-Ampère equations with nonlinear gradient terms: Existence and boundary behavior, *J. Differ. Equations*, **264** (2018), 263–296. https://doi.org/10.1016/j.jde.2017.09.010
- 6. W. Wei, Existence and multiplicity for negative solutions of *k*-Hessian equations, *J. Differ. Equations*, **263** (2017), 615–640. https://doi.org/10.1016/j.jde.2017.02.049
- 7. X. Zhang, P. Xu, Y. Wu, The eigenvalue problem of a singular *k*-Hessian equation, *Appl. Math. Lett.*, **124** (2022), 107666. https://doi.org/10.1016/j.aml.2021.107666
- X. Zhang, J. Jiang, Y. Wu, B. Wiwatanapataphee, Iterative properties of solution for a general singular *n*-Hessian equation with decreasing nonlinearity, *Appl. Math. Lett.*, **112** (2021), 106826. https://doi.org/10.1016/j.aml.2020.106826
- X. Zhang, L. Liu, Y. Wu, Y. Cui, A sufficient and necessary condition of existence of blow-up radial solutions for a *k*-Hessian equation with a nonlinear operator, *Nonlinear Anal.-Model.*, 25 (2020), 126–143. 10.15388/namc.2020.25.15736
- L. Liu, Existence and nonexistence of radial solutions of Dirichlet problem for a class of general k-Hessian equations, *Nonlinear Anal.-Model.*, 23 (2018), 475–492. https://doi.org/10.15388/NA.2018.4.2
- X. Zhang, J. Xu, J. Jiang, Y. Wu, Y. Cui, The convergence analysis and uniqueness of blowup solutions for a Dirichlet problem of the general k-Hessian equations, *Appl. Math. Lett.*, 102 (2020), 106124. https://doi.org/10.1016/j.aml.2019.106124
- 12. X. Zhang, M. Feng, The existence and asymptotic behavior of boundary blow-up solutions to the *k*-Hessian equation, *J. Differ. Equations*, **267** (2019), 4626–4672. https://doi.org/10.1016/j.jde.2019.05.004
- X. Zhang, Y. Du, Sharp conditions for the existence of boundary blow-up solutions to the Monge-Ampère equation, *Calc. Var. Partial Differ. Equations*, 57 (2018), 30. https://doi.org/10.1007/s00526-018-1312-3
- X. Zhang, M. Feng, Boundary blow-up solutions to the Monge-Ampère equation: Sharp conditions and asymptotic behavior, *Adv. Nonlinear Anal.*, 9 (2020), 729–744. https://doi.org/10.1515/anona-2020-0023
- 15. M. Feng, X. Zhang, On a *k*-Hessian equation with a weakly superlinear nonlinearity and singular weights, *Nonlinear Anal.*, **190** (2020), 111601. https://doi.org/10.1016/j.na.2019.111601
- 16. J. B. Keller, On solutions of $\Delta u = f(u)$, Comm. Pure. Appl. Math., **10** (1957), 503–510. https://doi.org/10.1002/cpa.3160100402
- 17. R. Osserman, On the inequality $\Delta u \ge f(u)$, *Pacific J. Math.*, 7 (1957), 1641–1647. https://doi.org/10.2140/pjm.1957.7.1641
- 18. A.V. Lair, A.W. Wood, Large solutions of semilinear elliptic problems, *Nonlinear Anal.*, **37** (1999), 805–812. https://doi.org/10.1016/S0362-546X(98)00074-1
- A.V. Lair, A. W. Wood, Existence of entire large positive solutions of semilinear elliptic systems, J. Differ. Equations, 164 (2000), 380–394. https://doi.org/10.1006/jdeq.2000.3768
- 20. L. Dupaigne, M. Ghergu, O. Goubet, G. Warnault, Entire large solutions for semilinear elliptic equations, J. Differ. Equations, 253 (2012), 2224–2251. https://doi.org/10.1016/j.jde.2012.05.024

- 21. A. B. Dkhil, Positive solutions for nonlinear elliptic systems, *Electron. J. Differ. Equations*, **239** (2012), 1–10.
- 22. A.V. Lair, Entire large solutions to semilinear elliptic systems, *J. Math. Anal. Appl.*, **382** (2011), 324–333. https://doi.org/10.1016/j.jmaa.2011.04.051
- 23. H. Li, P. Zhang, Z. Zhang, A remark on the existence of entire positive solutions for a class of semilinear elliptic systems, *J. Math. Anal. Appl.*, **365** (2010), 338–341. https://doi.org/10.1016/j.jmaa.2009.10.036
- 24. Z. Zhang, S. Zhou, Existence of entire positive *k*-convex radial solutions to Hessian equations and systems with weights, *Appl. Math. Lett.*, **50** (2015), 48–55. https://doi.org/10.1016/j.aml.2015.05.018
- 25. Z. Zhang, H. Liu, Existence of entire radial large solutions for a class of Monge-Ampère type equations and systems, *Rocky Mt.*, 2019. https://doi.org/10.1216/rmj.2020.50.1893
- 26. D. P. Covei, A remark on the existence of positive radial solutions to a Hessian system, *AIMS Math.*, **6** (2021), 14035–14043. https://doi.org/10.3934/math.2021811
- 27. L. Dai, Existence and nonexistence of subsolutions for augmented Hessian equations, *Discrete Contin. Dyn. Syst.*, **40** (2020), 579–596. https://doi.org/10.3934/dcds.2020023

 \bigcirc 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)