Electronic
Research Archive

Research article

Entire positive k-convex solutions to k-Hessian type equations and systems

Shuangshuang Bai ${ }^{1}$, Xuemei Zhang ${ }^{1, *}$ and Meiqiang Feng ${ }^{2}$

${ }^{1}$ School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
${ }^{2}$ School of Applied Science, Beijing Information Science \& Technology University, Beijing 100192, China

* Correspondence: Email: zxm74@sina.com.

Abstract: In this paper, we study the existence of entire positive solutions for the k-Hessian type equation

$$
\mathrm{S}_{k}\left(D^{2} u+\alpha I\right)=p(|x|) f^{k}(u), \quad x \in \mathbb{R}^{n}
$$

and system

$$
\begin{cases}\mathrm{S}_{k}\left(D^{2} u+\alpha I\right)=p(|x|) f^{k}(v), & x \in \mathbb{R}^{n}, \\ \mathrm{~S}_{k}\left(D^{2} v+\alpha I\right)=q(|x|) g^{k}(u), & x \in \mathbb{R}^{n},\end{cases}
$$

where $D^{2} u$ is the Hessian of u and I denotes unit matrix. The arguments are based upon a new monotone iteration scheme.

Keywords: k-Hessian type equation and system; entire positive k-convex solution; monotone iterative; existence

1. Introduction

Consider the existence of entire positive k-convex solutions to the following k-Hessian type equation

$$
\begin{equation*}
S_{k}\left(D^{2} u+\alpha I\right)=p(|x|) f^{k}(u), \quad x \in \mathbb{R}^{n}, \tag{E}
\end{equation*}
$$

and system

$$
\begin{cases}S_{k}\left(D^{2} u+\alpha I\right)=p(|x|) f^{k}(v), & x \in \mathbb{R}^{n}, \tag{S}\\ S_{k}\left(D^{2} v+\alpha I\right)=q(|x|) g^{k}(u), & x \in \mathbb{R}^{n},\end{cases}
$$

where $k \in\{1,2, \ldots, n\}, \alpha \geq 0$ is a constant, I is the identity function and p, q are continuous functions on $[0,+\infty)$. Letting $D^{2} u=\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)$ denote the Hessian of $u \in C^{2}\left(\mathbb{R}^{n}\right)$ and $\lambda_{i}(i \in\{1,2, \ldots, n\})$ denote the
eigenvalues of $D^{2} u$, then

$$
S_{k}\left(D^{2} u+\alpha I\right)=\sum_{\substack{1 \leq i_{1}<\ldots<i_{k} \leq n \\ 1 \leq j_{1}<\ldots<j_{k} \leq n}} \frac{1}{k!} \delta_{j_{1}, j_{2}, \ldots, j_{2}, \ldots, j_{k}}^{i_{k}}\left(\lambda_{i_{1}}+\alpha\right)\left(\lambda_{i_{2}}+\alpha\right) \ldots\left(\lambda_{i_{k}}+\alpha\right),
$$

where $\delta_{j_{1}, j_{2}, \ldots, j_{k}}^{i_{1}, j_{k}, i_{k}}$ is the generalized Kronecker symbol, is the k-Hessian type operator. When $\alpha=0$, $S_{k}\left(D^{2} u\right)$ is the standard k-Hessian operator.

Denote

$$
\Gamma_{k}:=\left\{\lambda \in \mathbb{R}^{n}: S_{j}(\lambda)>0,1 \leq j \leq k\right\} .
$$

We call a function $u \in C^{2}\left(\mathbb{R}^{n}\right) k$-convex in \mathbb{R}^{n} if $\lambda\left(D^{2} u(x)+\alpha I\right) \in \Gamma_{k}$ for all $x \in \mathbb{R}^{n}$.
In particular,

$$
\begin{aligned}
& S_{1}\left(D^{2} u+\alpha I\right)=\sum_{i=1}^{n} \lambda_{i}=\Delta u \\
& S_{n}\left(D^{2} u+\alpha I\right)=\prod_{i=1}^{n} \lambda_{i}=\operatorname{det}\left(D^{2} u+\alpha I\right) .
\end{aligned}
$$

The k-Hessian equation is fully nonlinear PDEs for $k \neq 1$ (see Urbas [1] and Wang [2]), and there are many important applications in fluid mechanics, geometric problems and other applied subjects. Many authors have demonstrated increasing interest in k-Hessian equations by different methods, for instance, see ([3-9]) and the references cited therein([10-15]). In particular, problem (E) reduces to the problems studied by Keller [16] and Osserman [17] when $k=1, p(|x|)=1$ on \mathbb{R}^{n} and $f:[0, \infty) \rightarrow$ $[0, \infty)$ is continuous and increasing. The authors studied a necessary and sufficient condition

$$
\int_{1}^{\infty} \frac{d t}{\sqrt{2 F(t)}}=\infty, \quad F(t)=\int_{0}^{t} f(s) d s
$$

for the existence of entire large positive radial solutions to (E). When $k=1, f(u)=u^{\gamma}(\gamma \in(0,1])$ and $p:[0, \infty) \rightarrow[0, \infty)$ is continuous, Lair and Wood [18] showed that (E) admits infinitely many entire large positive radial solutions if and only if

$$
\int_{0}^{\infty} r p(r) d r=\infty .
$$

For the case $k=1$, system (S) reduces to the following problem

$$
\left\{\begin{align*}
& \Delta u=p(|x|) f(v), \tag{1.1}\\
& \Delta v \in \mathbb{R}^{n}, \\
& \Delta v(|x|) g(u), x \in \mathbb{R}^{n} .
\end{align*}\right.
$$

Lair and Wood [19] analyzed the existence and nonexistence of entire positive radial solutions to Eq (1.1) when $f(v)=\nu^{\beta}, g(u)=u^{\gamma}(0<\beta \leq \gamma)$. For the further results, we can see [20-23] and the reference therein.

When $\alpha=0$, Zhang and Zhou [24] considered the existence of entire positive k-convex solutions to problem (E) and system (S).

For the case $k=n$, Zhang and Liu [25] studied the existence of entire radial large solutions for a Monge-Ampère type equation

$$
\begin{equation*}
\operatorname{det}\left(D^{2} u\right)-\alpha \Delta u=a(|x|) f(u), x \in \mathbb{R}^{n} \tag{1.2}
\end{equation*}
$$

and system

$$
\left\{\begin{array}{l}
\operatorname{det}\left(D^{2} u\right)-\alpha \Delta u=a(|x|) f(v), x \in \mathbb{R}^{n} \tag{1.3}\\
\operatorname{det}\left(D^{2} v\right)-\beta \Delta v=b(|x|) g(u), x \in \mathbb{R}^{n}
\end{array}\right.
$$

Their results have been improved by Covei [26].
Recently, when $p(|x|) \equiv 1$ on \mathbb{R}^{n}, Dai [27] showed that there exists a subsolution $u \in C^{2}\left(\mathbb{R}^{n}\right)$ of (E) if and only if

$$
\int^{\infty}\left(\int_{0}^{\tau} f(t) d t\right)^{-\frac{1}{k+1}} d \tau=\infty
$$

holds.
Motivated by these works mentioned above, in this paper we will obtain some new results on the existence of entire positive k-convex radial solutions for equation (E) and system (S). The arguments are based upon a new monotone iteration scheme.

Let α_{0} denote a positive constant. In the following, we always suppose that

$$
\begin{equation*}
\alpha_{0}>\frac{n}{k}\left(\frac{n C_{n-1}^{k-1}}{k}\right)^{\frac{1}{k}} \alpha=\frac{n}{k}\left(C_{n}^{k}\right)^{\frac{1}{k}} \alpha . \tag{1.4}
\end{equation*}
$$

We give the following conditions:
$(f 1) f, g:[0, \infty) \rightarrow\left(\alpha_{0}, \infty\right)$ are continuous and nondecreasing;
$(f 2) p, q:[0, \infty) \rightarrow(0, \infty)$ are continuous and nondecreasing.
Define

$$
\begin{align*}
& P(\infty):=\lim _{r \rightarrow \infty} P(r), \quad P(r):=\int_{0}^{r}\left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} p(s) d s\right)^{\frac{1}{k}} d t, r \geq 0 ; \tag{1.5}\\
& Q(\infty):=\lim _{r \rightarrow \infty} Q(r), \quad Q(r):=\int_{0}^{r}\left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} q(s) d s\right)^{\frac{1}{k}} d t, r \geq 0, \tag{1.6}
\end{align*}
$$

where

$$
C_{0}=\frac{C_{n-1}^{k-1}}{k} .
$$

For an arbitrary $a>0$, we also define

$$
\begin{align*}
& H_{1 a}(\infty):=\lim _{r \rightarrow \infty} H_{1 a}(r), \quad H_{1 a}(r):=\int_{a}^{r} \frac{d \tau}{f(\tau)}, r \geq a \tag{1.7}\\
& H_{2 a}(\infty):=\lim _{r \rightarrow \infty} H_{2 a}(r), \quad H_{2 a}(r):=\int_{a}^{r} \frac{d \tau}{f(\tau)+g(\tau)}, r \geq a, \tag{1.8}
\end{align*}
$$

and we see that

$$
H_{1 a}^{\prime}(r)=\frac{1}{f(r)}>0, \quad H_{2 a}^{\prime}(r)=\frac{1}{f(r)+g(r)}>0, \forall r>a,
$$

and $H_{1 a}, H_{2 a}$ admit the inverse functions $H_{1 a}^{-1}$ and $H_{2 a}^{-1}$ on $\left[0, H_{1 a}(\infty)\right)$ and $\left[0, H_{2 a}(\infty)\right)$ respectively.
The main results of this paper can be stated as follows.

Theorem 1.1. Suppose that $(f 1)$ and $(f 2)$ hold. If $\alpha=0$, then $E q(E)$ admits an entire positive k-convex radial solution $u \in C^{2}\left(\mathbb{R}^{n}\right)$ satisfying

$$
a+\alpha_{0} P(r) \leq u \leq H_{1 a}^{-1}(P(r)), \forall r \geq 0 .
$$

Moreover, if $P(\infty)=\infty$ and $H_{1 a}(\infty)=\infty$, then $\lim _{r \rightarrow \infty} u(r)=\infty$; if $P(\infty)<H_{1 a}(\infty)<\infty$, then u is bounded.
If $\alpha>0$ and $p(|x|) \geq 1$, then $E q(E)$ admits an entire positive k-convex radial solution $u \in C^{2}\left(\mathbb{R}^{n}\right)$ satisfying

$$
a+\alpha_{0} P(r)-\frac{\alpha}{2} r^{2} \leq u \leq H_{1 a}^{-1}(P(r)), \forall r \geq 0
$$

If further suppose $H_{1 a}(\infty)=\infty$, then $\lim _{r \rightarrow \infty} u(r)=\infty$.
Theorem 1.2. Suppose that $(f 1)$ and $(f 2)$ hold. If $\alpha=0$, then system (S) admits an entire positive k-convex radial solution $(u, v) \in C^{2}\left(\mathbb{R}^{n}\right) \times C^{2}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\begin{aligned}
& \frac{a}{2}+\alpha_{0} P(r) \leq u \leq H_{2 a}^{-1}(P(r)+Q(r)), \quad \forall r \geq 0 \\
& \frac{a}{2}+\alpha_{0} Q(r) \leq v \leq H_{2 a}^{-1}(P(r)+Q(r)), \quad \forall r \geq 0
\end{aligned}
$$

Moreover, if $P(\infty)=\infty=Q(\infty)$ and $H_{2 a}(\infty)=\infty$, then $\lim _{r \rightarrow \infty} u(r)=\lim _{r \rightarrow \infty} v(r)=\infty$; if $P(\infty)+Q(\infty)<$ $H_{2 a}(\infty)<\infty$, then u and v are bounded.
If $\alpha>0$ and $p(|x|) \geq 1, q(|x|) \geq 1$, then system (S) admits an entire positive k-convex radial solution $(u, v) \in C^{2}\left(\mathbb{R}^{n}\right) \times C^{2}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\begin{aligned}
& \frac{a}{2}+\alpha_{0} P(r)-\frac{\alpha}{2} r^{2} \leq u \leq H_{2 a}^{-1}(P(r)+Q(r)), \quad \forall r \geq 0 \\
& \frac{a}{2}+\alpha_{0} Q(r)-\frac{\alpha}{2} r^{2} \leq v \leq H_{2 a}^{-1}(P(r)+Q(r)), \quad \forall r \geq 0
\end{aligned}
$$

If further suppose $H_{2 a}(\infty)=\infty, \lim _{r \rightarrow \infty} u(r)=\lim _{r \rightarrow \infty} v(r)=\infty$.

2. Preliminary lemmas

For convenience, we give some lemmas for the radial functions before proving the main results.
Let $r=|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$ and $B_{R}:=\left\{x \in \mathbb{R}^{n}:|x|<R\right\}$ for $R \in(0, \infty]$.
Lemma 2.1. (Lemma 2.1, [25]) Suppose that $\varphi \in C^{2}[0, R)$ with $\varphi^{\prime}(0)=0$. Then, for $u(x)=\varphi(r)$, we have $u(x) \in C^{2}\left(B_{R}\right)$, and the eigenvalues of $D^{2} u+\alpha I$ are

$$
\lambda\left(D^{2} u+\alpha I\right)=\left\{\begin{array}{l}
\left(\varphi^{\prime \prime}(r)+\alpha, \frac{\varphi^{\prime}(r)}{r}+\alpha, \ldots, \frac{\varphi^{\prime}(r)}{r}+\alpha\right), \quad r \in(0, R), \\
\left(\varphi^{\prime \prime}(0)+\alpha, \varphi^{\prime \prime}(0)+\alpha, \ldots, \varphi^{\prime \prime}(0)+\alpha\right), \quad r=0,
\end{array}\right.
$$

and so

$$
S_{k}\left(D^{2} u+\alpha I\right)=\left\{\begin{array}{l}
C_{n-1}^{k-1}\left(\varphi^{\prime \prime}(r)+\alpha\right) \frac{\left(\varphi^{\prime}(r)+\alpha r\right)^{k-1}}{r^{k-1}}+C_{n-1}^{k} \frac{\left(\varphi^{\prime}(r)+\alpha r\right)^{k}}{r^{k}}, r \in(0, R), \\
C_{n}^{k}\left(\varphi^{\prime \prime}(0)+\alpha\right)^{k}, \quad r=0
\end{array}\right.
$$

By Lemma 2.1, we can conclude that $u(x)=\varphi(r)$ is a C^{2} radial solution of (E) if and only if $\varphi(r)$ satisfies

$$
\begin{equation*}
C_{n-1}^{k-1}\left(\varphi^{\prime \prime}(r)+\alpha\right) \frac{\left(\varphi^{\prime}(r)+\alpha r\right)^{k-1}}{r^{k-1}}+C_{n-1}^{k} \frac{\left(\varphi^{\prime}(r)+\alpha r\right)^{k}}{r^{k}}=p(r) f^{k}(\varphi(r)), r \in(0, R) \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Suppose that $(f 1)$ and (f2) hold. For any positive number a, let $\varphi \in C[0, R) \cap C^{1}(0, R)$ be a solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\varphi^{\prime}(r)=\left(\frac{r^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} p(s) f^{k}(\varphi(s)) d s\right)^{\frac{1}{k}}-\alpha r, r>0 \tag{2.2}\\
\varphi(0)=a>0
\end{array}\right.
$$

Then $\varphi \in C^{2}[0, R)$, and it satisfies (2.1) with $\varphi^{\prime}(0)=0$.

Proof. Firstly, we have

$$
\begin{aligned}
\varphi^{\prime}(0) & =\lim _{r \rightarrow 0} \frac{\varphi(r)-\varphi(0)}{r-0} \\
& =\lim _{r \rightarrow 0} \varphi^{\prime}(r) \\
& =\lim _{r \rightarrow 0}\left(\frac{r^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} p(s) f^{k}(\varphi(s)) d s\right)^{\frac{1}{k}}-\alpha r=0
\end{aligned}
$$

Since

$$
\lim _{r \rightarrow 0} \varphi^{\prime}(r)=\lim _{r \rightarrow 0}\left(\frac{r^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} p(s) f^{k}(\varphi(s)) d s\right)^{\frac{1}{k}}-\alpha r=0=\varphi^{\prime}(0)
$$

This shows that $\varphi(r) \in C^{1}[0, R)$.
Secondly,

$$
\begin{aligned}
\varphi^{\prime \prime}(0) & =\lim _{r \rightarrow 0} \frac{\varphi^{\prime}(r)-\varphi^{\prime}(0)}{r-0} \\
& =\lim _{r \rightarrow 0} \frac{\left(\frac{f^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} p(s) f^{k}(\varphi(s)) d s\right)^{\frac{1}{k}}-\alpha r}{r} \\
& =\lim _{r \rightarrow 0} \frac{\left.\frac{\frac{k-n}{C_{0}} r^{k-n-1} \int_{0}^{r} s^{n-1} p(s) f^{k}(\varphi(s)) d s+\frac{r^{k-1}}{C_{0}} p(r) f^{k}(\varphi(r))}{r^{k}}\right)^{\frac{1}{k}}-\alpha}{} \\
& =\left(\frac{1}{n C_{0}} p(0)\right)^{\frac{1}{k}} f(\varphi(0))-\alpha .
\end{aligned}
$$

It is easy to know that $\varphi(r) \in C^{2}(0, R)$ for $r \in(0, R)$. By calculating,

$$
\begin{aligned}
\lim _{r \rightarrow 0} \varphi^{\prime \prime}(r) & =\lim _{r \rightarrow 0} \frac{k-n}{k} r^{-\frac{n}{k}}\left(\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} d s\right)^{\frac{1}{k}} \\
& +\lim _{r \rightarrow 0} \frac{1}{k C_{0}} r^{\frac{k-n}{k}}\left(\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} d s\right)^{\frac{1}{k}-1} r^{n-1} p(r) f^{k}(\varphi(r))-\alpha
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k-n}{k}\left(\frac{1}{n C_{0}} p(0)\right)^{\frac{1}{k}} f(\varphi(0))+\frac{n}{k}\left(\frac{1}{n C_{0}} p(0)\right)^{\frac{1}{k}} f(\varphi(0))-\alpha \\
& =\left(\frac{1}{n C_{0}} p(0)\right)^{\frac{1}{k}} f(\varphi(0))-\alpha
\end{aligned}
$$

Hence, $\varphi(r) \in C^{2}[0, R)$. And by direct calculation, we can prove that $\varphi(r)$ satisfies (2.1).
Remark 2.3. When $p(r) \equiv 1$, Lemma 2.2 is consistent with Lemma 2.3 in [25].
Lemma 2.4. (Lemma 2.2, [25]) Suppose that $(f 1),(f 2)$ hold and $\varphi(r) \in C^{2}[0, R)$ satifies (2.1) with $\varphi^{\prime}(0)=0$. Then $\varphi^{\prime}(r) \geq 0$ and $\varphi^{\prime \prime}(r)+\alpha>0$.

Proof. From (2.1), we have

$$
C_{n-1}^{k-1}\left(r^{n-k}\left(\varphi^{\prime}(r)+\alpha r\right)^{k}\right)^{\prime}=k r^{n-1} p(r) f^{k}(\varphi(r)) .
$$

Noticing that $\varphi^{\prime}(0)=0$ and intergrating from 0 to r, combining with (1.7), we have

$$
\varphi^{\prime}(r)=\left(\frac{r^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} p(s) f^{k}(\varphi(s)) d s\right)^{\frac{1}{k}}-\alpha r
$$

If $\alpha=0$, then we can easily prove that $\varphi^{\prime}(r)>0$; if $\alpha>0$ and $p(|x|)>1$, then we have

$$
\begin{aligned}
\varphi^{\prime}(r) & \geq \alpha_{0}\left(\frac{r^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} d s\right)^{\frac{1}{k}}-\alpha r \\
& >\left(n C_{0}\right)^{-\frac{1}{k}} \frac{n}{k}\left(n C_{0}\right)^{\frac{1}{k}} \alpha r-\alpha r \\
& =\alpha\left(\frac{n}{k}-1\right) r \geq 0 .
\end{aligned}
$$

On the other hand, by calculating, for $0<s<r$, we have

$$
\begin{aligned}
\varphi^{\prime \prime}(r)+\alpha & =\frac{k-n}{k} r^{-\frac{n}{k}}\left(\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} d s\right)^{\frac{1}{k}} \\
& +\frac{1}{k C_{0}} r^{\frac{k-n}{k}}\left(\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} d s\right)^{\frac{1}{k}-1} r^{n-1} p(r) f^{k}(\varphi(r)) \\
& =r^{-\frac{n}{k}}\left(\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} d s\right)^{\frac{1}{k}-1}\left[\frac{k-n}{k} \int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} d s\right. \\
& \left.+\frac{1}{k C_{0}} r^{n} p(r) f^{k}(\varphi(r))\right] \\
& \geq r^{-\frac{n}{k}}\left(\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} d s\right)^{\frac{1}{k}-1}\left[\frac{k-n}{k} \frac{1}{C_{0}} p(r) f^{k}(\varphi(r)) \frac{r^{n}}{n}\right. \\
& \left.+\frac{1}{k C_{0}} r^{n} p(r) f^{k}(\varphi(r))\right] \\
& =r^{-\frac{n}{k}}\left(\int_{0}^{r} \frac{1}{C_{0}} p(s) f^{k}(\varphi(s)) s^{n-1} d s\right)^{\frac{1}{k}-1}\left[\frac{1}{n C_{0}} r^{n} p(r) f^{k}(\varphi(r))\right] \\
& >0 .
\end{aligned}
$$

This gives the proof of Lemma 2.4.

Remark 2.5. When $p(r) \equiv 1$, Lemma 2.4 is consistent with Lemma 2.2 in [25].

3. Proof of the main results

In this section, we prove Theorems 1.1 and 1.2.
Proof of Theorem 1.1. Firstly, we consider the equations

$$
\begin{array}{r}
C_{n-1}^{k-1}\left(u^{\prime \prime}(r)+\alpha\right) \frac{\left(u^{\prime}(r)+\alpha r\right)^{k-1}}{r^{k-1}}+C_{n-1}^{k} \frac{\left(u^{\prime}(r)+\alpha r\right)^{k}}{r^{k}}=p(r) f^{k}(u(r)), r>0, \\
u^{\prime}(r)=\left(\frac{r^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} p(s) f^{k}(u(s)) d s\right)^{\frac{1}{k}}-\alpha r, r>0, u(0)=a, \tag{3.2}
\end{array}
$$

and

$$
\begin{equation*}
u(r)=a+\int_{0}^{r}\left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} p(s) f^{k}(u(s)) d s\right)^{\frac{1}{k}} d t-\frac{\alpha}{2} r^{2}, r \geq 0 \tag{3.3}
\end{equation*}
$$

Apparently, solutions in $C[0, \infty)$ to (3.3) are solutions in $C[0, \infty) \cap C^{1}(0, \infty)$ to (3.2).
Let $\left\{u_{m}\right\}_{m \geq 1}$ be the sequences of positive continuous functions defined on $[0, \infty)$ by

$$
u_{0}(r)=a, u_{m}(r)=a+\int_{0}^{r}\left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} p(s) f^{k}\left(u_{m-1}(s)\right) d s\right)^{\frac{1}{k}} d t-\frac{\alpha}{2} r^{2}, r \geq 0
$$

Obviously, for all $r \geq 0$ and $m \in \mathbb{N}$, we have

$$
\begin{aligned}
u_{m}(r) & =a+\int_{0}^{r}\left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} p(s) f^{k}\left(u_{m-1}(s)\right) d s\right)^{\frac{1}{k}} d t-\frac{\alpha}{2} r^{2} \\
& \geq a+\alpha_{0} \int_{0}^{r}\left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} p(s) d s\right)^{\frac{1}{k}} d t-\frac{\alpha}{2} r^{2} \\
& \geq a+\alpha_{0} P(r)-\frac{\alpha}{2} r^{2}
\end{aligned}
$$

Therefore, $u_{m}(r) \geq a$, and $u_{0}(r)<u_{1}(r)$. Since ($f 1$) holds, we have $u_{1}(r)<u_{2}(r)$ for $r \geq 0$. According to the above reasons, we obtain that the sequences $\left\{u_{m}\right\}$ is increasing on $[0, \infty)$. Also, we obtain by ($f 1$) and $(f 2)$ that for each $r>0$

$$
\begin{aligned}
u_{m}^{\prime}(r) & =\left(\frac{r^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} p(s) f^{k}\left(u_{m-1}(s)\right) d s\right)^{\frac{1}{k}}-\alpha r \\
& \leq f\left(u_{m}(r)\right)\left(\frac{r^{k-n}}{C_{0}} \int_{0}^{r} s^{n-1} p(s) d s\right)^{\frac{1}{k}}-\alpha r \\
& \leq f\left(u_{m}(r)\right) P^{\prime}(r) .
\end{aligned}
$$

Therefore,

$$
\int_{a}^{u_{m}(r)} \frac{1}{f(\tau)} d \tau \leq P(r), r>0
$$

This shows that

$$
\begin{equation*}
H_{1 a}\left(u_{m}(r)\right) \leq P(r), \forall r \geq 0, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{m}(r) \leq H_{1 a}^{-1}(P(r)), \quad \forall r \geq 0 . \tag{3.5}
\end{equation*}
$$

It follows that the sequences $\left\{u_{m}\right\},\left\{u_{m}^{\prime}\right\}$ are bounded on $\left[0, R_{0}\right]$ for an arbitrary $R_{0}>0$. By ArzelàAscoli theorem, $\left\{u_{m}\right\}$ has subsequences converging uniformly to u on $\left[0, R_{0}\right]$. Since $\left\{u_{m}\right\}$ is increasing on $[0, \infty)$, we see that $\left\{u_{m}\right\}$ itself converges uniformly to u on $\left[0, R_{0}\right]$. By arbitrariness of R_{0} and Lemma 2.2 , we get that u is an entire positive k-convex radial solution to (E), and u satisfies

$$
\begin{equation*}
a+\alpha_{0} P(r)-\frac{\alpha}{2} r^{2}<u(r) \leq H_{1 a}^{-1}(P(r)), \quad \forall r \geq 0 . \tag{3.6}
\end{equation*}
$$

If $\alpha=0$, by (3.6), it is easy to obtain that if $P(\infty)=\infty$ and $H_{1 a}(\infty)=\infty$, then $\lim _{r \rightarrow \infty} u(r)=\infty$; if $P(\infty)<H_{1 a}(\infty)<\infty$, then u is bounded. If $\alpha>0$, combining the fact that $p(|x|) \geq 1, \alpha_{0}>\frac{n}{k}\left(C_{n}^{k}\right)^{\frac{1}{k}} \alpha$ and $H_{1 a}(\infty)=\infty$, it is obvious that $\lim _{r \rightarrow \infty} u(r)=\infty$. This finishes the proof of Theorem 1.1.
Remark 3.1. Theorem 1.1 generalizes Theorem 1.1 with $\alpha>0$ in [24]. In the case $\alpha>0$, since $P(\infty)=\infty$ for the positivity of u, it is difficult to ensure if there is bounded positive entire solution of (E).

Proof of Theorem 1.2. Consider the following systems

$$
\left\{\begin{array}{l}
C_{n-1}^{k-1}\left(u^{\prime \prime}(r)+\alpha\right) \frac{\left(u^{\prime}(r)+\alpha r\right)^{k-1}}{r^{k-1}}+C_{n-1}^{k} \frac{\left(u^{\prime}(r)+\alpha r\right)^{k}}{r^{k}}=p(r) f^{k}(v(r)), r>0, \\
C_{n-1}^{k-1}\left(v^{\prime \prime}(r)+\alpha\right) \frac{v^{\prime}(r)+(r)}{r^{k-1}}+C_{n-1}^{k} \frac{\left.v^{k}(r)+\alpha r\right)^{k}}{r^{k}}=q(r) g^{k}(u(r)), r>0,
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
u(r)=\frac{a}{2}+\int_{0}^{r}\left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} p(s) f^{k}(v(s)) d s\right)^{\frac{1}{k}} d t-\frac{\alpha}{2} r^{2}, r \geq 0 \\
v(r)=\frac{a}{2}+\int_{0}^{r}\left(\frac{k^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} q(s) g^{k}(u(s)) d s\right)^{\frac{1}{k}} d t-\frac{\alpha}{2} r^{2}, r \geq 0
\end{array}\right.
$$

Let $\left\{u_{m}\right\}_{m \geq 1}$ and $\left\{v_{m}\right\}_{m \geq 1}$ be the sequences of positive continuous functions defined on $[0, \infty)$ by

$$
\left\{\begin{array}{l}
v_{0}=\frac{a}{2} \\
u_{m}(r)=\frac{a}{2}+\int_{0}^{r}\left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} p(s) f^{k}\left(v_{m-1}(s)\right) d s\right)^{\frac{1}{k}} d t-\frac{\alpha}{2} r^{2}, r \geq 0 \\
v_{m}(r)=\frac{a}{2}+\int_{0}^{r}\left(\frac{t^{k-n}}{C_{0}} \int_{0}^{t} s^{n-1} q(s) g^{k}\left(u_{m}(s)\right) d s\right)^{\frac{1}{k}} d t-\frac{\alpha}{2} r^{2}, r \geq 0
\end{array}\right.
$$

Similarly, for all $r \geq 0$ and $m \in \mathbb{N}$, when $m \geq 1$, we have

$$
\begin{aligned}
& u_{m}(r)>\frac{a}{2}+\alpha_{0} P(r)-\frac{\alpha}{2} r^{2} \\
& v_{m}(r)>\frac{a}{2}+\alpha_{0} Q(r)-\frac{\alpha}{2} r^{2} .
\end{aligned}
$$

Therefore, $u_{m}(r) \geq \frac{a}{2}, v_{m}(r) \geq \frac{a}{2}$ and $v_{0}(r)<v_{1}(r)$. Since f, g are continuous and nondecreasing, we have $u_{1}(r)<u_{2}(r), \forall r \geq 0$, and $v_{1}(r)<v_{2}(r), \forall r \geq 0$. According to the above reasons, we obtain that the sequences $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ are increasing on $[0, \infty)$.

Moreover, for $r>0$, by ($f 1$) and ($f 2$), one can prove that

$$
u_{m}^{\prime}(r) \leq\left(f\left(v_{m}(r)+u_{m}(r)\right)+g\left(v_{m}(r)+u_{m}(r)\right)\right) P^{\prime}(r) ;
$$

$$
v_{m}^{\prime}(r) \leq\left(f\left(v_{m}(r)+u_{m}(r)\right)+g\left(v_{m}(r)+u_{m}(r)\right)\right) Q^{\prime}(r),
$$

and

$$
u_{m}^{\prime}(r)+v_{m}^{\prime}(r) \leq\left[f\left(v_{m}(r)+u_{m}(r)\right)+g\left(v_{m}(r)+u_{m}(r)\right)\right]\left(P^{\prime}(r)+Q^{\prime}(r)\right) .
$$

Therefore,

$$
\int_{a}^{u_{m}(r)+v_{m}(r)} \frac{1}{f(\tau)+g(\tau)} d \tau \leq P(r)+Q(r), \quad r>0,
$$

which shows that

$$
H_{2 a}\left(u_{m}(r)+v_{m}(r)\right) \leq P(r)+Q(r), \quad \forall r \geq 0,
$$

and

$$
u_{m}(r)+v_{m}(r) \leq H_{2 a}^{-1}(P(r)+Q(r)), \quad \forall r \geq 0 .
$$

It so follows that the sequences $\left\{u_{m}\right\},\left\{u_{m}^{\prime}\right\}$ and $\left\{v_{m}\right\},\left\{v_{m}^{\prime}\right\}$ are bounded on $\left[0, R_{0}\right]$ for an arbitrary $R_{0}>0$. By Arzelà-Ascoli theorem, $\left\{u_{m}\right\}$ and $\left\{v_{m}\right\}$ have subsequences converging uniformly to u and v respectively on $\left[0, R_{0}\right]$. Since $\left\{u_{m}\right\},\left\{v_{m}\right\}$ are increasing on $[0, \infty)$, we see that $\left\{u_{m}\right\}$ itself converges uniformly to u on $\left[0, R_{0}\right]$, so is $\left\{v_{m}\right\}$. By arbitrariness of R_{0} and Lemma 2.2, we get that (u, v) is an entire positive k-convex radial solution to (S).

The rest proof is similar to that of Theorem 1.1. So we omit it here.

4. Conclusions

In this paper, we use a new monotone iteration scheme to obtain some new existence results of entire positive solutions for a k-Hessian type equation and system.

Acknowledgments

S. Bai, X. Zhang and M. Feng are partially supported by the Beijing Natural Science Foundation of China (1212003).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. J. I. E. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, Indiana U. Math. J., 39 (1990), 355-382. https://doi.org/10.1512/iumj.1990.39.39020
2. X. Wang, A class of fully nonlinear elliptic equations and related functionals, Indiana U. Math. J., 43 (1994), 25-54. https://doi.org/10.1512/iumj.1994.43.43002
3. L. Caffarelli, Interior $W^{2, p}$ estimates for solutions of the Monge-Ampère equation, Ann. Math., 131 (1990), 135-150.
4. S. Cheng, S. Yau, On the regularity of the Monge-Ampère equation $\operatorname{det}\left(\left(\partial^{2} u / \partial x_{i} \partial x_{j}\right)\right)=F(x, u)$, Comm. Pure Appl. Math., 30 (1977), 41-68. https://doi.org/10.1002/cpa.3160300104
5. Z. Zhang, Large solutions to the Monge-Ampère equations with nonlinear gradient terms: Existence and boundary behavior, J. Differ. Equations, 264 (2018), 263-296. https://doi.org/10.1016/j.jde.2017.09.010
6. W. Wei, Existence and multiplicity for negative solutions of k-Hessian equations, J. Differ. Equations, 263 (2017), 615-640. https://doi.org/10.1016/j.jde.2017.02.049
7. X. Zhang, P. Xu, Y. Wu, The eigenvalue problem of a singular k-Hessian equation, Appl. Math. Lett., 124 (2022), 107666. https://doi.org/10.1016/j.aml.2021.107666
8. X. Zhang, J. Jiang, Y. Wu, B. Wiwatanapataphee, Iterative properties of solution for a general singular n-Hessian equation with decreasing nonlinearity, Appl. Math. Lett., 112 (2021), 106826. https://doi.org/10.1016/j.aml.2020.106826
9. X. Zhang, L. Liu, Y. Wu, Y. Cui, A sufficient and necessary condition of existence of blow-up radial solutions for a k-Hessian equation with a nonlinear operator, Nonlinear Anal.-Model., 25 (2020), 126-143. 10.15388/namc.2020.25.15736
10. L. Liu, Existence and nonexistence of radial solutions of Dirichlet problem for a class of general k-Hessian equations, Nonlinear Anal.-Model., 23 (2018), 475-492. https://doi.org/10.15388/NA.2018.4.2
11. X. Zhang, J. Xu, J. Jiang, Y. Wu, Y. Cui, The convergence analysis and uniqueness of blowup solutions for a Dirichlet problem of the general k-Hessian equations, Appl. Math. Lett., 102 (2020), 106124. https://doi.org/10.1016/j.aml.2019.106124
12. X. Zhang, M. Feng, The existence and asymptotic behavior of boundary blow-up solutions to the k-Hessian equation, J. Differ. Equations, 267 (2019), 4626-4672. https://doi.org/10.1016/j.jde.2019.05.004
13. X. Zhang, Y. Du, Sharp conditions for the existence of boundary blow-up solutions to the Monge-Ampère equation, Calc. Var. Partial Differ. Equations, 57 (2018), 30. https://doi.org/10.1007/s00526-018-1312-3
14. X. Zhang, M. Feng, Boundary blow-up solutions to the Monge-Ampère equation: Sharp conditions and asymptotic behavior, Adv. Nonlinear Anal., 9 (2020), 729-744. https://doi.org/10.1515/anona-2020-0023
15. M. Feng, X. Zhang, On a k-Hessian equation with a weakly superlinear nonlinearity and singular weights, Nonlinear Anal., 190 (2020), 111601. https://doi.org/10.1016/j.na.2019.111601
16. J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure. Appl. Math., 10 (1957), 503-510. https://doi.org/10.1002/cpa.3160100402
17. R. Osserman, On the inequality $\Delta u \geq f(u)$, Pacific J. Math., 7 (1957), 1641-1647. https://doi.org/10.2140/pjm.1957.7.1641
18. A.V. Lair, A.W. Wood, Large solutions of semilinear elliptic problems, Nonlinear Anal., 37 (1999), 805-812. https://doi.org/10.1016/S0362-546X(98)00074-1
19. A.V. Lair, A. W. Wood, Existence of entire large positive solutions of semilinear elliptic systems, J. Differ. Equations, 164 (2000), 380-394. https://doi.org/10.1006/jdeq.2000.3768
20. L. Dupaigne, M. Ghergu, O. Goubet, G. Warnault, Entire large solutions for semilinear elliptic equations, J. Differ. Equations, 253 (2012), 2224-2251. https://doi.org/10.1016/j.jde.2012.05.024
21. A. B. Dkhil, Positive solutions for nonlinear elliptic systems, Electron. J. Differ. Equations, 239 (2012), 1-10.
22. A.V. Lair, Entire large solutions to semilinear elliptic systems, J. Math. Anal. Appl., 382 (2011), 324-333. https://doi.org/10.1016/j.jmaa.2011.04.051
23. H. Li, P. Zhang, Z. Zhang, A remark on the existence of entire positive solutions for a class of semilinear elliptic systems, J. Math. Anal. Appl., 365 (2010), 338-341. https://doi.org/10.1016/j.jmaa.2009.10.036
24. Z. Zhang, S. Zhou, Existence of entire positive k-convex radial solutions to Hessian equations and systems with weights, Appl. Math. Lett., 50 (2015), 48-55. https://doi.org/10.1016/j.aml.2015.05.018
25. Z. Zhang, H. Liu, Existence of entire radial large solutions for a class of Monge-Ampère type equations and systems, Rocky Mt., 2019. https://doi.org/10.1216/rmj.2020.50.1893
26. D. P. Covei, A remark on the existence of positive radial solutions to a Hessian system, AIMS Math., 6 (2021), 14035-14043. https://doi.org/10.3934/math. 2021811
27. L. Dai, Existence and nonexistence of subsolutions for augmented Hessian equations, Discrete Contin. Dyn. Syst., 40 (2020), 579-596. https://doi.org/10.3934/dcds. 2020023
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
