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Abstract: In this paper, we present a hybrid algorithm based on parareal and Schwarz waveform
relaxation (SWR) for solving time dependent partial differential equations. The parallelism can be si-
multaneously realized in the time direction by using a parareal and in the space direction via SWR. We
give a convergence analysis for the hybrid algorithm for a 1D model problem, the reaction-diffusion
equation. Weak scaling of the algorithm in terms of both the number of space subdomains and the
number of paralleled time intervals were investigated via theoretical analysis and numerical experi-
ments.
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1. Introduction

For time dependent partial differential equations (PDEs), Schwarz waveform relaxation (SWR) is a
powerful technique for realizing fast computation. It belongs to the widely used domain decomposition
(DD) methods [1,2] but with a completely new implementation strategy: the classical strategy employs
the alternating or parallel Schwarz method to the elliptic PDEs which result from semi-discretization
of the original PDEs in time [3–5]; but, in the SWR framework one directly decomposes the space-time
domain and solve each subproblem simultaneously or alternately. The main features (or say merits)
of the SWR algorithms are able to treat different subproblems numerically differently with an adapted
procedure for each subdomain. One can refer to [6–13] for more details about the SWR algorithm.

The aforementioned SWR algorithm realizes parallelism across space. Next, we introduce an-
other efficient parallel algorithm, namely ‘parareal’, which realizes parallelism across time steps. This
method was invented by Lions, Maday and Turinici in [14] as a numerical method to solve evolution
problems in parallel. The name was chosen to indicate that the algorithm is well suited for parallel
real time computations of evolution problems whose solution cannot be obtained in real time using one
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processor only. The method approximates successfully the solution later in time before having fully
accurate approximations from earlier times. Successful applications of this method include power sys-
tem simulations [15, 16], differential algebraic equations [17], complex chemical reactions [18, 19],
optimal control problems [20–23] and Volterra integro-differential equations [24–26]. Convergence
analysis of the parareal algorithm can be found in [27–30].

It is natural to combine a parareal with other algorithms to formulate a hybrid algorithm with higher
parallelism. For example, in [31–39] the classical waveform relaxation (WR) algorithm [40] is embed-
ded into the parareal framework to reduce the computational cost. The authors proposed the “parareal-
WR” algorithm and defined it by using the k0-iteration WR algorithm as the fine propagator for the
parareal algorithm. The algorithm is analyzed at a continuous level and superlinear and linear conver-
gence were proved on short and long time intervals, respectively. In this paper we combine the SWR
technique and the parareal algorithm to construct a hybrid algorithm, namely, Para-SWR, for time de-
pendent PDEs, which can realize parallelism both in space and time directions. Combining a parareal
with SWR has already been addressed in recent years; see, e.g., [41–43]. In those previous works, the
SWR algorithm was used as the so-called fine propagator for the parareal algorithm and this leads to
inner-outer iterations. This strategy is different from ours, since in our Para-SWR algorithm we use
a single iteration of the parareal as a time integrator for the SWR algorithm. This actually leads to a
special discrete SWR algorithm which can be used in parallel in terms of both space and time.

Here, we focus on analyzing the Para-SWR algorithm at the discrete level and deriving suitable
conditions for convergence. We also investigate how the convergence rate of the Para-SWR algorithm
behaves with respect to the number of subdomains and the number of parallelled time intervals. It
is inspiring to report that the proposed Para-SWR algorithm posses the weak scaling property, which
implies that increasing the number of subdomains and the number of parallelled time intervals has
no (or slight) influence on the convergence rate. An algorithm scales weakly if it can solve a larger
problem in reasonable time by increasing the number of processors.

The remainder of this paper is organized as follows. In Section 2, we describe the Para-SWR
algorithm investigated in this paper. In Section 3, we analyze the Para-SWR algorithm and present
suitable convergence conditions. Weak scaling of the algorithm is also investigated. Section 4 provides
some numerical results to validate our theoretical predictions. We finish this paper in Section 5 with
some conclusion remarks.

2. The Para-SWR hybrid algorithm

We consider the following 1-D linear reaction diffusion equation as the model problem
∂tu − ν2∂xxu + au = f (x, t), (x, t) ∈ (0, L) × R+,

u(0, t) = b1(t), t ≥ 0,
u(L, t) = b2(t), t ≥ 0,
u(x, 0) = u0(x), x ∈ [0, L],

(2.1)

where a and ν(, 0) are constants. Without loss of generality, we assume a > 0 since otherwise we
can make a change of variables v = ue−τt with τ + a > 0 which leads to (2.1) with a positive reaction
coefficient. We first introduce the SWR algorithm at a continuous level to (2.1). We let ∆x be a suitable
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small parameter and L = [N × (m − 1) + 2] × ∆x with some integers N(≥ 2) and m(≥ 2). We then
decompose the space domain [0, L] into N subdomains

Ω j := [L j,R j], L j = ( j − 1)(m − 1)∆x,R j = ( j(m − 1) + 2)∆x, j = 1, 2, . . . ,N. (2.2)

In this situation, the overlap size between every two adjacent subdomains is 2∆x. Then, the N-
subdomain SWR algorithm for (2.1) can be written as

x ∈ Ω1 :


∂tuk

1 − ν
2∂xxuk

1 + auk
1 = f (x, t),

uk
1(0, t) = b1(t),

(∂x + p)uk
1(R1, t) = (∂x + p)uk−1

2 (R1, t),
uk

1(x, 0) = u0(x),

x ∈ Ω j :


∂tuk

j − ν
2∂xxuk

j + auk
j = f (x, t),

(∂x − p)uk
j(L j, t) = (∂x − p)uk−1

j−1(L j, t),
(∂x + p)uk

j(R j, t) = (∂x + p)uk−1
j+1(R j, t),

uk
j(x, 0) = u0(x),

j = 2, 3, . . . ,N − 1,

x ∈ ΩN :


∂tuk

N − ν
2∂xxuk

N + auk
N = f (x, t),

(∂x − p)uk
N(LN , t) = (∂x − p)uk−1

N−1(LN , t),
uk

N(0, t) = b2(t),
uk

N(x, 0) = u0(x),

(2.3)

where p is a free parameter. Note that, the transmission condition

(∂x − p)uk
j(L j, t) = (∂x − p)uk−1

j−1(L j, t), (∂x + p)uk
j(R j, t) = (∂x + p)uk−1

j+1(R j, t)

can be equivalently rewritten as(
∂x

p
− 1

)
uk

j(L j, t) =

(
∂x

p
− 1

)
uk−1

j−1(L j, t),
(
∂x

p
+ 1

)
uk

j(R j, t) =

(
∂x

p
+ 1

)
uk−1

j+1(R j, t).

Hence, by letting p→ +∞ we get

uk
j(L j, t) = uk−1

j−1(L j, t), uk
j(R j, t) = uk−1

j+1(R j, t).

This is the so-called Dirichlet transmission condition and the corresponding algorithm is called clas-
sical SWR algorithm (see [9]). We next use the central finite difference method with mesh size ∆x to
discretize the SWR algorithm (2.3) and this leads to the following semi-discrete SWR algorithm:

∂tvk
j(i, t) − ν

2 vk
j(i−1,t)−2vk

j(i,t)+vk
j(i+1,t)

∆x2 + avk
j(i, t) = f (xi, t),

vk
j(( j−1)(m−1)+1,t)−vk

j(( j−1)(m−1),t)

∆x − pvk
j(( j − 1)(m − 1), t) =

vk−1
j−1(( j−1)(m−1)+1,t)−vk−1

j−1(( j−1)(m−1),t)

∆x − pvk−1
j−1(( j − 1)(m − 1), t),

vk
j( j(m−1)+2,t)−vk

j( j(m−1)+1,t)

∆x + pvk
j( j(m − 1) + 2, t) =

vk−1
j+1( j(m−1)+2,t)−vk−1

j+1( j(m−1)+1,t)

∆x + pvk−1
j+1( j(m − 1) + 2, t),

vk
j(i, 0) = u0(i∆x),

(2.4a)
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where i varies from ( j − 1)(m − 1) + 1 to j(m − 1) + 1 and j = 2, 3, . . . ,N − 1. Similarly, for the left
subdomain Ω1 and the right subdomain ΩN

i from 1 to m :
∂tvk

1(i, t) − ν2 vk
1(i−1,t)−2vk

1(i,t)+vk
1(i+1,t)

∆x2 + avk
1(i, t) = f (xi, t),

vk
1(0, t) = b0(t),

vk
1(m+1,t)−vk

1(m,t)
∆x + pvk

1(m + 1, t) =
vk−1

2 (m+1,t)−vk−1
2 (m,t)

∆x + pvk−1
2 (m + 1, t),

vk
1(i, 0) = u0(i∆x),

i from (N − 1)(m − 1) + 1 to N(m − 1) + 1 :

∂tvk
N(i, t) − ν2 vk

N (i−1,t)−2vk
N (i,t)+vk

N (i+1,t)
∆x2 + avk

N(i, t) = f (xi, t),
vk

N ((N−1)(m−1)+1,t)−vk
N ((N−1)(m−1),t)

∆x − pvk
N((N − 1)(m − 1), t) =

vk−1
N−1((N−1)(m−1)+1,t)−vk−1

N−1((N−1)(m−1),t)
∆x − pvk−1

N−1((N − 1)(m − 1), t),
vk

N(N(m − 1) + 2, t) = b1(t),
vk

N(i, 0) = u0(i∆x).

(2.4b)

Note that, vk
j(i, t) = uk

j(i∆x, t) + O(∆x2) if i∆x ∈ (L j,R j) and vk
j(i, t) = uk

j(i∆x, t) + O(∆x) if i∆x = L j or
i∆x = R j. However, upon convergence it holds that v∞j (i, t) = u∞j (i∆x, t) +O(∆x2) = u j(i∆x, t) +O(∆x2)
for i∆x ∈ [L j,R j], that is the discretization of the artificial boundary conditions does not effect the
accuracy of the converged solutions [44]. Define

f+(t) =


f (x1, t) + ν2

∆x2 b0(t)
f (x2, t)
...

f (xm, t)

 , f j(t) =


f (x( j−1)(m−1)+1, t)
f (x( j−1)(m−1)+2, t)

...

f (x j(m−1)+1, t)

 , f−(t) =


f (x(N−1)(m−1)+1, t)

...

f (xN(m−1), t)
f (xN(m−1)+1, t) + ν2

∆x2 b1(t)

 ,

q =
1

∆xp + 1
, A =

ν2

∆x2



−2 + q 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 + q


− aI,Vk

j (t) =


vk

j(( j − 1)(m − 1) + 1, t)
vk

j(( j − 1)(m − 1) + 2, t)
...

vk
j( j(m − 1) + 1, t)

 ,

A+ =
ν2

∆x2



−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 + q


− aI, A− =

ν2

∆x2



−2 + q 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2


− aI,

B+ =
ν2

∆x2



0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0
−q 1 0 · · · 0


, B− =

ν2

∆x2



0 · · · 0 1 −q
0 · · · 0 0 0
...

...
...

...
...

0 · · · 0 0 0
0 · · · 0 0 0


.

Electronic Research Archive Volume 30, Issue 11, 4086–4107.



4090

Then the semi-discrete SWR algorithm (2.4) can be equivalently rewritten as

∂tVk
j (t) = AVk

j (t) + B−Vk−1
j−1 (t) + B+Vk−1

j+1 (t) + f j(t), j = 2, 3, . . . ,N − 1,

∂tVk
1(t) = A+Vk

1(t) + B+Vk−1
2 (t) + f+(t), ∂tVk

N(t) = A−Vk
N(t) + B−Vk−1

N−1(t) + f−(t).
(2.5)

Clearly, this can be written in a more concise form

∂tV
k(t) = AVk(t) + BVk−1(t) + f̃ (t), (2.6)

where

f̃ (t) =



f+(t)
f2(t)
...

fN−1(t)
f−(t)


,Vk(t) =



Vk
1(t)

Vk
2(t)
...

Vk
N−1(t)
Vk

N(t)


,A =



A+

A
. . .

A

A−


, B =



O B+

B− O B+

. . .
. . .

. . .

B− O B+

B− O


. (2.7)

We next introduce the parareal algorithm. For a general system of ordinary differential equationsv′(t) = F(t, v(t)), t ∈ [0,T ],
v(0) = v0, t = 0,

(2.8)

the parareal algorithm can be described as follows. First, the whole time interval [0,T ] is divided
into Nt time slices [Tn,Tn+1], n = 0, 1, . . . ,Nt − 1. We suppose that all time slices are of uniform
size, i.e., Tn+1 − Tn = ∆T = T

Nt
. Second, each large time slice [Tn,Tn+1] is divided into J(≥ 2) small

time slices. Then, two numerical propagators G and F are assigned to the coarse and fine time grids,
respectively. We designate by the symbol 	 the time-sequential implementation, and by the symbol
⊕ the time parallel implementation. With the aforementioned introduction, the concrete parareal al-
gorithm (for Problem (2.8)) proposed by Lions, Maday and Turinici [14] is given in Algorithm 2.1.

Algorithm 2.1 Parareal Algorithm.

	 Initialization: Perform sequential computation v0
n+1 = G(Tn, v0

n,∆T ) for n = 0, 1, . . . ,Nt − 1;
For k = 0, 1, . . .

⊕ Step 1 In each subinterval [Tn,Tn+1], compute vn+
j+1
J

= F
(
Tn+

j
J
, vn+

j
J
, ∆T

J

)
with the initial value

vn = vk
n, where Tn+

j
J

= Tn +
j∆T

J and j = 0, 1, . . . , J − 1.

	 Step 2 Perform sequential corrections

vk+1
n+1 = G

(
Tn, vk+1

n ,∆T
)

+ vn+1 − G
(
Tn, vk

n,∆T
)
, vk+1

0 = v0, n = 0, 1, . . . ,Nt − 1.

	 Step 3 If
{
vk+1

n

}Nt

n=1
satisfy the stopping criteria, terminate the iteration; otherwise go to Step 1.
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Clearly, the argument ṽn+1 can be written as ṽn+1 = F J
(
Tn, vk

n,∆t
)

and therefore Algorithm 2.1 can
be written compactly as

vk+1
n+1 = G

(
Tn, vk+1

n ,∆T
)

+ F J
(
Tn, vk

n,∆t
)
− G

(
Tn, vk

n,∆T
)
, (2.9)

where ∆t = ∆T
J and F J

(
Tn, vk

n,∆t
)

denotes a value obtained by running J steps of the fine propagator
F with the initial value vk

n and the fine step size ∆t.
Our Para-SWR algorithm consists of applying the one-iteration parareal algorithm to System (2.6),

which is derived from the semi-discrete SWR algorithm. We use the backward Euler method as both
the coarse and the fine propagators. On each time interval [Tn,Tn+1], we need to provide a seed value
to start up the parallel computation and it is natural to use the Vk−1

n obtained in the previous iteration
as the seed. Then, the parallel computation in each subinterval [Tn,Tn+1] is

G − propagator :
Vk

n+1 −V
k−1
n

∆T
= AVk

n+1 + BVk−1
n+1 + f̃ (tn+1),

F − propagator :
Vk

n, j
J

− Vk
n, j−1

J

∆t
= AVk

n, j
J

+ BVk−1
n, j

J
+ f̃ (tn + j∆t), j = 1, 2, . . . , J,

(2.10)

where Vk
n,0 = Vk−1

n and ∆T = J∆t. From (2.10) we get

Vk
n+1 = (I − ∆TA)−1

(
Vk−1

n + ∆TBVk−1
n+1 + ∆T f̃ (tn+1)

)
,

Vk
n, j

J
= (I − ∆tA)−1

(
Vk

n, j−1
J

+ ∆tBVk−1
n, j

J
+ ∆t f̃ (tn + j∆t)

)
, j = 1, 2, . . . , J.

(2.11)

With the values Vk
n+1 and Vk

n,1, the serial correction is

Vk
n+1 = Vk

n+1 − G
(
Tn,V

k
n,∆T

)
+ Vk

n,1, (2.12)

where the argument G
(
Tn,V

k
n,∆T

)
denotes the value generated by the backward Euler method with

the starting valueVk
n, that is

G
(
Tn,V

k
n,∆T

)
= (I − ∆TA)−1

(
Vk

n + ∆TBVk−1
n+1 + ∆T f̃ (tn+1)

)
. (2.13)

It then follows by substituting (2.11) and (2.13) into (2.12) that

Vk
n+1 = (I − ∆TA)−1

(
Vk−1

n −Vk
n

)
+ Vk

n,1. (2.14)

Remark 1. The uniform formula (2.6) of the semi-discrete SWR algorithm leads to (2.14) which will
greatly facilitate the theoretical analysis done in the next section. In practical computation, it is con-
venient to directly apply the parareal algorithm on each subdomain Ω j × [0,T ], j = 1, 2, . . . ,N.

3. Analysis of the Para-SWR algorithm

In this section, we focus on investigating the theoretical property of the Para-SWR algorithm. The
analysis is divided into two parts, i.e., the convergence of the algorithm and the weak scaling of the
algorithm. In the sequel, we assume ∆xp ≥ 1 and this implies q ≥ 0.

Electronic Research Archive Volume 30, Issue 11, 4086–4107.



4092

3.1. Convergence analysis

To analyze the convergence of the Para-SWR iteration (2.14), for simplicity and without loss of
generality we set f̃ (t) = 0. Let

Āc = (I − ∆TA)−1, Ā f = (I − ∆tA)−1, (3.1)

and by using the relation Vk
n,0 = Vk−1

n we know from the second equality of (2.11) that

Vk
n, j

J
= Ā

j
fV

k−1
n +

j∑
i=1

∆tĀi
fBV

k−1
n, j−i+1

J
, j = 1, 2, . . . , J − 1. (3.2)

It then follows by substituting (3.2) into (2.14) that

Vk
n+1 = Āc

(
Vk

n −V
k−1
n

)
+ ĀJ

fV
k−1
n + ∆t

J∑
j=1

Ā
j
fBV

k−1
n, J− j+1

J︸                                 ︷︷                                 ︸
Vk

n,1

.
(3.3)

Define

λc =
∥∥∥(I − ∆TA)−1

∥∥∥
2
, λ f =

∥∥∥(I − ∆tA)−1
∥∥∥

2
, µ = ∆t‖B‖2, γ =

∥∥∥ĀJ
f − Āc

∥∥∥
2
,

D =



λ f

λ2
f

λ3
f
...

λJ
f


,E =



λ f

λ2
f λ f

λ3
f λ2

f λ f
...

. . .
. . .

. . .

λJ
f λJ−1

f λJ−2
f · · · λ f


, εk

n =



∥∥∥∥∥Vk
n, 1

J

∥∥∥∥∥
2∥∥∥∥∥Vk

n, 2
J

∥∥∥∥∥
2

...∥∥∥∥∥Vk
n, J

J

∥∥∥∥∥
2


.

(3.4)

Under the assumptions q ≥ 0 and a > 0, it is easy to know that λc < λ f < 1. From the second equality
of (3.2) we get

εk
n ≤ D

∥∥∥Vk−1
n

∥∥∥
2

+ µEεk−1
n . (3.5)

From (3.3) we have ∥∥∥Vk
n+1

∥∥∥
2
≤ λc

∥∥∥Vk
n

∥∥∥
2

+ γ
∥∥∥Vk−1

n

∥∥∥
2

+ µE1ε
k−1
n , (3.6)

where E1 denotes the last row of the matrix E. Define

Vk = max
n≥1

∥∥∥Vk
n

∥∥∥
2
, εk

j = max
n≥0

εk
n, j, ε

k =
(
εk

1 , ε
k
2 , . . . , ε

k
J

)T
. (3.7)

Then from (3.5) and (3.6) it is easy to get

Vk ≤
1

1 − λc

(
γVk−1 + µE1ε

k−1
)
,

εk ≤ DVk−1 + µEεk−1.

(3.8)
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Define

β =
γ

1 − λc
, η =

µ

1 − λc
,M =

(
β ηE1

D µE

)
=



β ηλJ
f ηλJ−1

f ηλJ−2
f · · · ηλ f

λ f µλ f

λ2
f µλ2

f µλ f

λ3
f µλ3

f µλ2
f µλ f

...
...

. . .
. . .

. . .

λJ
f µλJ

f µλJ−1
f µλJ−2

f · · · µλ f


. (3.9)

Let the vectors {zk} be generated by the following recurrence relation

zk = Mzk−1, (3.10)

with the initial vector z0 =

(
V0

ε0

)
. Since the matrix M is nonnegative, it is clear that

(
Vk

εk

)
≤ zk in the

component sense for all k ≥ 1. Thus, it is sufficient to investigate the convergence of the iteration
(3.10). It is well known that the iteration converges to zero if and only if the spectral radius of M is
less than one, i.e., ρ(M) < 1. To analyze the spectral radius of M, we need the following definitions
and lemmas concerning nonnegative matrices.

Definiton 1. [45, page 95] For n × n real matrices P, P1 and P2, the relation P = P1 − P2 is called a
regular splitting of P if P1 is nonsingular with P−1

1 ≥ 0 and P2 ≥ 0.

Definiton 2. [45, pages 53–54] Let P be a n× n real matrix and G(PB) be a directed graph associated
with the matrix P, which has n vertices and an edge from the vertex i to vertex j precisely when Pi j > 0.
Then the matrix P is irreducible if and only if its associated graph G(P) is strongly connected, that is
for any two vertices i and j of G(P), G(P) contains a path from i to j.

Lemma 1. [45, page 90] Let P = (pi j) be a n × n real matrix with pi j ≤ 0 for all i , j; then, the
following statements are equivalent:

1) P is nonsingular and P−1 ≥ 0;

2) the diagonal entries of P are positive real numbers and letting PD be the diagonal matrix whose
diagonal entries dii are defined as

dii := pii, 1 ≤ i ≤ n,

then the matrix PB := I − P−1
D P is nonnegative and ρ(PB) < 1.

Lemma 2. [45, page 51] Let P ∈ Rn×n and P = P1 − P2 be a regular splitting of P. Then P is
nonsingular with P−1 ≥ 0 if and only if ρ(P−1

1 P2) < 1.

Lemma 3. [45, page 50] Let P ∈ Rn×n be an irreducible non-negative matrix with the spectral radius
ρ(P). Then, the number ρ(P) is a positive real number and an eigenvalue of the matrix P, called the
Perron-Frobenius eigenvalue.
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Theorem 1. Let q ≥ 0, a > 0, µλ f < 1 and β < 1. Then the Para-SWR algorithm based on the
backward Euler method is convergent and the convergence rate can be bounded by ρ(M), provided the
following condition is satisfied

ηλJ
f

(
1 −

[
1 − µλ f

]J
)

µ(1 − β)(1 − µλ f )J < 1, (3.11)

where λ f and µ are defined by (3.4) and β and η are defined by (3.9).

Proof. It is sufficient to prove that Condition (3.11) implies ρ(M) < 1. In fact, this is an “if and only
if” condition. Let

D =



0
1 0

. . .
. . .

1 0
1 0


J×J

,Q =



1
λ f 1
λ2

f λ f 1
...

. . .
. . .

. . .

λJ−1
f · · · λ2

f λ f 1


J×J

. (3.12)

It is easy to check that Q = (I − λ f D)−1. Let X1 = ηλ fE
T
1 and X2 = λ f (I − λ f D)D and we have

M = P−1
1 P2, P1 =

(
1

I − λ f D

)
, P2 =

(
β XT

1
X2 µλ f I

)
. (3.13)

Define

P := P1 − P2 =



1 − β −ηλJ
f −ηλJ−1

f · · · −ηλ f

−λ f 1 − µλ f

0 −λ f 1 − µλ f
...

. . .
. . .

0 −λ f 1 − µλ f


, PD :=


1 − β

1 − µλ f
. . .

1 − µλ f

 .
Then we have

PB := I − P−1
D P =



0
ηλJ

f

1−β

ηλJ−1
f

1−β · · ·
ηλ f

1−β
λ f

1−µλ f
0
λ f

1−µλ f
0
. . .

. . .
λ f

1−µλ f
0


. (3.14)

From Definition 1, we know that P = P1 − P2 is a regular splitting of the matrix P. Since µλ f < 1
and β < 1, it is clear that the matrix PB is nonnegative. Hence, we have

ρ(PB) < 1 ⇐⇒
Lem.1

P−1 ≥ 0 ⇐⇒
Lem.2

ρ(P−1
1 P2) = ρ(M) < 1. (3.15)

Our ultimate goal is to prove that ρ(M) < 1, and that due to (3.15) it is sufficient to prove that ρ(PB) < 1.
Our proof toward ρ(PB) < 1 is divided into two parts.
Part 1: irreducibility of the matrix PB. The directed graph G(PB) associated with the matrix PB

defined by (3.14) is shown in Figure 1. For the arbitrarily chosen vertices i and j, the path from i to j
can be chosen as
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• if i > j: the path is (i→ i − 1→ i − 2→ · · · → j);
• if i < j: the path is (i→ i − 1→ i − 2→ · · · → 2→ 1→ j).

Hence, G(PB) is strongly connected. From Definition 2, we know that the matrix PB is irreducible.

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1
2

3

4

5 6

1

J+1

Figure 1. Directed graph G(PB) associated with the matrix PB defined by (3.14).

Part 2: the characteristic polynomial of the matrix PB. Let R(λ) = ∆(PB − λI) be the characteristic
polynomial of the matrix PB, where λ is a scale number and for any square matrix A, ∆(A) denotes the
determinant of A. To derive an explicit expression of R(λ), we recall a well known result which states
that

∆(PB − λI) = −λ∆(R1,1) −
ηλJ

f

1 − β
∆(R1,2) +

ηλJ−1
f

1 − β
∆(R1,3) + · · · + (−1)1+J ηλ f

1 − β
∆(R1,J+1), (3.16)

where R1, j is a J × J matrix obtained by removing the first row and the j-th column from the matrix
PB−λI. Clearly, ∆(R1,1) = (−λ)J and ∆(R1,2) =

λ f

1−µλ f
(−λ)J−1 since both R1,1 and R1,2 are lower triangular

matrices. But the matrices R1, j with 3 ≤ j ≤ J+1 are not lower triangular. For any j ∈ {3, 4, . . . , J, J+1},
we have

R1, j =



σ −λ
. . .

. . .

σ −λ

σ 0
0 −λ

σ −λ
. . .

. . .

σ −λ


, σ =

λ f

1 − µλ f
,

where the entries “σ, 0” corresponds to the ( j − 1)-th row of the matrix R1, j. It follows by applying the
expansion like (3.16) to R1, j that ∆(R1, j) = σ j−1(−λ)J− j+1. Hence, substituting these expressions into
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(3.16) gives

∆(PB − λI) = (−λ)J+1 +

J+1∑
j=2

(−1) j+1
ηλJ+1

f

(1 − µλ f ) j−1(1 − β)
(−λ)J− j+1

= λJ(−1)J+1

λ − ηλJ+1
f

1 − β

J+1∑
j=2

1
[(1 − µλ f )λ] j−1


= λJ(−1)J+1

λ − ηλJ+1
f

1 − β

J∑
j=1

1
[(1 − µλ f )λ] j

 .
(3.17)

From (3.17), we know that the nonzero root of ∆(PB − λI) = 0 satisfies

λ =
ηλJ+1

f

1 − β

J∑
j=1

1
[(1 − µλ f )λ] j . (3.18)

Now, by combining Parts 1 and 2 and by using Lemma 3 we get

ρ(PB) < 1⇔
ηλJ+1

f

1 − β

J∑
j=1

1
(1 − µλ f ) j < 1

⇔
ηλJ

f

(
1 −

[
1 − µλ f

]J
)

µ(1 − β)(1 − µλ f )J < 1

 , (3.19)

since
∑J

j=1
1

[(1−µλ f )λ] j is a decreasing function of λ for λ > 0.

Remark 2 (speed-up analysis). On each time grid, let Te and te be the CPU time spent for applying
the backward Euler method directly to the original PDE and the PDE on a subdomain, respectively.
Since the number of subdomains is N and the overlap size is small, it holds that te ≈

Te
N . Now, assume

we have Nt × N processors at our disposal, where Nt processors are assigned to the parareal method
and N processors are assigned to the SWR method. The overall cost of the Para-SWR algorithm for
per iteration is given by the cost of applying the fine and the coarse propagators simultaneously on
each processor—(J + 1)te, the cost of applying the coarse propagator G sequentially—Ntte and some
necessary communication cost—Tc; in total

TPara-SWR := Jte + Ntte + Tc. (3.20)

At the current iteration, say the k-th iteration, the communication cost Tc spent on each coarse time
grid Tn mainly comes from transmission of solutions on fine time grids between adjacent subdomains.
For example, the processor Pn,i—assigned to the n-th coarse time grid Tn and the i-th subdomain, needs
to get fine solutions VTn,1,2,...,J(i−1) and VTn,1,2,...,J(i+1) from its neighboring processor Pn,i−1 and Pn,i+1,
respectively. Also, it needs to broadcast the solutions VTn,1,2,...,J(i) to its two neighboring processors.
Clearly, this process can be done simultaneously in all parallelled time intervals. In the longitudinal
direction, this can be done sequentially by two steps: first the N processors simultaneously transmit
the fine solutions along the upward direction and then along the downward direction (see Figure 2 for
illustration). Let δ be the unit cost spent to communicate a float number between two processors. Then,
the total communication time Tc can be written as

Tc = 2 × J × m × δ, (3.21)
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where m is the number of space mesh points on a spatial subdomain. Substituting Tc into (3.20) gives

TPara-SWR = (J + Nt)te + 2Jmδ ≈ (J + Nt)
Te

N
+ 2Jmδ (3.22)

The cost of applying the fine propagator sequentially and directly to the large circuit is

TSequent := Nt × J × Te. (3.23)

We therefore obtain a speed-up of using the Para-SWR algorithm as

TSequent

TPara-SWR
=

Nt × J × Te

Kmax

(
(J + Nt)Te

N + 2Jmδ
) ≈ NNtJ

Kmax(J + Nt)
(if Te � 2Jmδ), (3.24)

where Kmax is the number of iterations performed to meet the stopping criterion. The condition Te �

2Jmδ occurs naturally if the space domain of the original PDE is large and the discretization mesh ∆x
is small.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1 PararealTn−1

VTn,1,2,...,J (1)

VTn,1,2,...,J (2)

VTn,1,2,...,J (N)

Tn Tn+1

SWR

VTn−1,1,2,..,J(N )

VTn+1,1,2,...,J (1)

VTn+1,1,2,...,J (3)

VTn+1,1,2,...,J (N )

VTn,1,2,...,J (3)

VTn+1,1,2,...,J (2)

VTn−1,1,2,...,J (1)

VTn−1,1,2,...,J (2)

VTn−1,1,2,...,J (3)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1 Parareal

VTn−1,1,2,...,J (1)

Tn−1

VTn,1,2,...,J (1)

VTn,1,2,...,J (N)

Tn Tn+1

SWR

VTn,1,2,...,J (2)

VTn,1,2,...,J (3)

VTn+1,1,2,...,J (N )

VTn+1,1,2,...,J (3)

VTn+1,1,2,...,J (2)

VTn+1,1,2,...,J (1)

VTn−1,1,2,...,J (N )

VTn−1,1,2,...,J (3)

VTn−1,1,2,...,J (2)

Figure 2. Upward and downward transmission of the solutions at fine time grids between
subdomains.

3.2. Weak scaling

The analysis given above is performed on sufficiently long time domains and therefore ρ(M) is
independent of Nt, the number of paralleled time intervals. We now focus on proving that ρ(M) is
robust with respect to N, the number of subdomains. We assume a > 0 and consider the case q = 0.
Let ∆t, J, ∆x and L (the length of the space domain) be fixed constants, and then we claim that the
arguments λ f and λc decrease as N increases. Indeed, since q = 0 we have A+ = A− = A and the
eigenvalues are given by

λi(A) = −

(
2ν2

∆x2 + a
)

+ 2
ν2

∆x2 cos
( iπ
m + 1

)
= −a −

4ν2

∆x2 sin2
(

jπ
2(m + 1)

)
, j = 1, 2, . . . ,m, (3.25)

where m = L/∆x−2
N + 1. From (3.25), we have

λ f =
1

1 + ∆t
(
a + 4ν2

∆x2 sin2
(

π
2(m+1)

)) , λc =
1

1 + ∆T
(
a + 4ν2

∆x2 sin2
(

π
2(m+1)

)) . (3.26)
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Clearly, both λ f and λc increase as m increases, i.e., λ f and λc decrease as N increases, since L =

[N × (m− 1) + 2]×∆x is constant. For the matrix B defined by (2.7) it is easy to know that the quantity
‖B‖2 is independent of the number m and equal to ν2

∆x2 since q = 0. Hence, we get µ = ∆t ν2

∆x2 for all
possible N.

Now, for the iteration matrix M defined by (3.9) the aforementioned analysis implies that, except
for β, all of the other elements decrease as N increases. From (3.25), we also have

∥∥∥ĀJ
f − Āc

∥∥∥
2

= max
1≤i≤m

∣∣∣∣∣∣∣∣ 1(
1 + ∆t

(
a + 4ν2

∆x2 sin2
(

iπ
2(m+1)

)))J −
1

1 + ∆T
(
a + 4ν2

∆x2 sin2
(

iπ
2(m+1)

))
∣∣∣∣∣∣∣∣

≤ max
z≥0

Γ(J),

(3.27)

where Γ(J) = max
z≥0

∣∣∣∣ 1
1+Jz −

1
(1+z)J

∣∣∣∣. The function Γ(J) is shown in Figure 3, and it holds that Γ(J) ≤ 0.205

for J ∈ {2, 3, . . . , 500}. We therefore can bound β as β ≤ Γ(J)
1−λc

for all possible N.

Figure 3. Quantity Γ(J) as a function of J for J ∈ {2, 3, . . . , 500}.

Corollary 1 (weak scaling). Let q = 0 and a > 0. Then, for a fixed ∆t, J, ∆x and L, the Para-
SWR algorithm converges linearly on sufficiently long time intervals and the convergence rate can be
bounded by ρ(M∗), which is independent of the number of subdomains, provided Condition (3.11) is
satisfied with

λ∗f =
1

1 + ∆t
(
a + 4ν2

∆x2 sin2
(

π
2(mmax+1)

)) , λ∗c =
1

1 + ∆T
(
a + 4ν2

∆x2 sin2
(

π
2(mmax+1)

)) ,
β∗ =

Γ(J)
1 − λ∗c

, µ∗ =
ν2∆t
∆x2 , η

∗ =
µ∗

1 − λ∗c
,

(3.28)

where the matrix M∗ is derived from M by letting λ f = λ∗f , λc = λ∗c, η = η∗, β = β∗ and µ = µ∗, and

mmax = 1 +
[

L
2∆x

]
and

[
L

2∆x

]
denote the integer part of L

2∆x .

Proof. Since N ≥ 2 and the length of the space domain L = [N × (m − 1) + 2]∆x is fixed, it is easy to
know that the maximal integer m in (3.26) is mmax = 1 +

[
L

2∆x

]
. Hence, for any possible integer N it
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holds thatM ≤ M∗. Since bothM andM∗ are nonnegative matrices, we know from [45, Theorem 2.21,
p. 51] that ρ(M) ≤ ρ(M∗).

Note that, the choice q = 0 corresponds to p = ∞ and in this case the transmission condition used
in (2.3) reduces to the Dirichlet transmission condition. For the general Robin transmission condition,
i.e., q ∈ (0,+∞), it is difficult to prove a similar conclusion like Corollary 1.

We next investigate how the convergence rate of the Para-SWR algorithm behaves with respect to
the quantities ν2

∆x2 and a. It is difficult to make a theoretical analysis, and we have to rely on numerical
investigation. Since ρ(M∗) is a suitable upper bound of ρ(M) and independent of the number of sub-
domains, we plotted it in Figure 4 on the top of the quantity ρ(M∗) as a function of ν2

∆x2 and a, where
J = 50 and ∆T = 0.1 are considered. We see that ρ(M∗) decreases as a increases or ν2

∆x2 decreases. This
provides us with two possible acceleration strategies for the Para-SWR algorithm. The first one is the
change of variables that we have described at the beginning of Section 2. For the model problem (2.1),
by letting u(x, t) = v(x, t)eτt we get

∂tv − ν2∂xxv + (a + τ)v = e−τt f (x, t), (x, t) ∈ (0, L) × R+,

v(0, t) = e−τtb1(t), t ≥ 0,
v(L, t) = e−τtb2(t), t ≥ 0,
v(x, 0) = u0(x), x ∈ [0, L],

(3.29)

and this is essentially the same PDE as (2.1), but with a new reaction parameter a + τ. Due
to the plot shown in Figure 4 on the top, it seems that the Para-SWR algorithm for (3.29) con-
verges very fast if we choose a very large τ. However, this is a false prediction. Briefly speak-
ing, for a large τ, we find numerically that even though max

j, n

∥∥∥Vk(x j,Tn) − V(x j,Tn)
∥∥∥

2
is already

very small, max
j, n

∥∥∥Uk(x j,Tn) − U(x j,Tn)
∥∥∥

2
is still a huge number, where Uk(x j,Tn) is calculated by

Uk(x j,Tn) = eτTnVk(x j,Tn); we denote Vk as the numerical solutions generated by the Para-SWR algo-
rithm after k iterations for the transformed PDE (3.29). To illustrate this, by using the example given
in (4.1) with a = 1, ν = 0.01, T = 5, ∆T = 0.1, J = 50 and N = 8, we plotted the diminution history
of max

j, n

∥∥∥Vk(x j,Tn) − V(x j,Tn)
∥∥∥

2
and max

j, n

∥∥∥Uk(x j,Tn) − U(x j,Tn)
∥∥∥

2
in Figure 4 on the bottom for two

choices of τ.
The second possibility is the change of space coordinates. Note that, if we let x = ωx̃ the PDE

problem (2.1) is transformed to

∂tu(x̃, t) − (ων)2∂2
x̃u(x̃, t) + au(x̃, t) = f (x̃, t), (x̃, t) ∈ (0, L̃) × R+, (3.30)

where L̃ = L
ω

. The new diffusion coefficient ων can be sufficiently small by choosing a small positive
ω, which implies that the Para-SWR algorithm converges significantly fast. However, in the meantime
the computational domain

(
0, L

ω

)
will become large and to maintain a required spatial accuracy, a

uniform step size ∆x should be used for all ω. Hence, for a fixed N—the number of subdomains, the
computational cost at each iteration will also significantly increase. To reduce the computational cost
at each iteration, we can increase the number of subdomains to Ñ = N

[
1
ω

]
. Since the convergence

rate of the Para-SWR algorithm is robust with respect to the number of subdomains, we know that the
total computational cost for the Para-SWR algorithm will be evidently reduced by using a small ω. In
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Figure 4. Top: the quantity ρ(M∗) as a function of ν2

∆x2 and a, where J = 50
and ∆T = 0.1. Bottom: diminution of max

j, n

∥∥∥Vk(x j,Tn) − V(x j,Tn)
∥∥∥

2
(solid line) and

max
j, n

∥∥∥Uk(x j,Tn) − U(x j,Tn)
∥∥∥

2
(dash-dot line).

practical computation, we can choose ω = 1
2 ,

1
4 ,

1
8 , . . . , since in this way it is convenient to increase the

subdomains multiplicatively, as Ñ = 2N, 4N, 8N, . . . .

4. Numerical results

In this section, we show several numerical experiments to test the efficiency of the Para-SWR al-
gorithm proposed in this paper. We focus on observing how the convergence rate of this algorithm
behaves with respect to N—the number of subdomains, Nt—the number of paralleled time intervals
and J—the multiplication ratio between ∆T and ∆t. We consider the following PDE problem

∂tu − ν2∂xxu + au = 5
sin

(
3
[√

(t−0.5T )2+(10(x−0.5))2
])

√
(t−0.5T )2+(10(x−0.5))2

, (x, t) ∈ (0, 1) × (0,T ),

u(0, t) = u(1, t) = 0, t ≥ 0,
u(x, 0) = 0, x ∈ [0, 1],

(4.1)
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where ν = 0.01 and a = 6. The space discretization parameter ∆x is fixed as ∆x = 1
128 and the initial

solution for the Para-SWR algorithm is chosen randomly in the interval [0,T ]. For all experiments the
iteration stops when the maximal error between the current iteration and the converged solution arrives
at a prescribed tolerance.
Example 4.1 (Dirichlet transmission condition). We first consider the Dirichlet transmission condi-
tion, i.e., q = 0. Let J = 50 and ∆T = 0.1, and then it is easy to get ρ(M∗) = 0.8465. Hence, Corollary
1 implies that the convergence rate of the Para-SWR algorithm is robust with respect to N, the number
of subdomains. The results shown in Figure 5 on the top indicate that this theoretical predication is
correct. The other two panels of Figure 5 are concerned with the dependence of the convergence rate
of the algorithm on the multiplication ratio J (bottom left) and the number of parallelled time intervals
(bottom right). We see that the convergence rate is also robust with respect to J and Nt. The results
shown in Figure 5 imply that the Para-SWR algorithm really scales weakly, and that this strong robust-
ness indicates that the strategy of change of space coordinates mentioned in Subsection 3.2 is viable.
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Figure 5. Illustration of the robustness of the Para-SWR algorithm with respect to N (top),
J (bottom left) and Nt (bottom right).

Example 4.2 (Robin transmission condition). We next consider the Robin transmission condition.
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For the SWR algorithm, it is well known that the Robin transmission condition is more powerful than
the Dirichlet transmission condition; see, e.g., [8, 9]. For T = 9, J = 50 and ∆T = 0.1, we show in
Figure 6, on the top, the argument ρ(M) as a function of the parameter q

(
= 1

∆xp−1

)
. We see that ρ(M)

attains its minimum at q = 0, i.e., p = ∞, which corresponds to the Dirichlet transmission condition.
Does this predict the practical computation well? In Figure 6 on the bottom, we show the errors
obtained by running the Para-SWR algorithms with Robin transmission conditions after k iterations
and various choices of the free parameters q. We see that, indeed, q = 0 is the best choice; therefore,
these numerical results confirm our theoretical predication shown on the top.
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Figure 6. Errors obtained by running the Para-SWR algorithms with Robin transmission
conditions after k iterations and various choices of the free parameters q. From left to right,
N = 2, N = 16 and N = 64.

The plot shown in Figure 6 on the top also predicts that increasing q has a negative effect on the
convergence rate of the Para-SWR algorithm, and that, for a very large q the algorithm will not con-
verge. This is verified in Figures 7 and 8. In Figure 7, we show on the top row the third, the fourth and
the fifth iterations of the 8-subdomain Para-SWR algorithm with q = 0, and below we show the same
iterations for the algorithm with q = 4. This clearly shows that the choice q = 0 is more advisable than
q > 0, which confirms the prediction shown in Figure 6 on the top.

In Figure 8, we show the measured convergence rate of the Para-SWR algorithm in the case of two
subdomains and 32 subdomains. The results shown in this figure imply that a large q really slows down
the convergence rate; note how the iteration stagnates for q = 100.

5. Conclusions

In this paper, we have presented a hybrid algorithm based on the well understood parareal algorithm
and the SWR algorithm. The algorithm, namely, Para-SWR, has been defined by first applying the
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Figure 7. From left to right, the solution generated by the Para-SWR algorithm after 3, 4 or
5 iterations. Top row: q = 0 (the Dirichlet transmission condition). Bottom row: q = 0 (the
Robin transmission condition with p = 5

4∆xp ).
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Figure 8. Convergence history of the Para-SWR algorithm under different choices of q. Left:
two subdomain case. Right: 32 subdomain case.

SWR algorithm to time-dependent PDEs in the case of general N subdomains and then applying the
one-iteration parareal algorithm to each subproblem. Convergence of the algorithm was analyzed, and
it has been shown theoretically and numerically that the convergence rate is robust with respect to
the number of subdomains and the number of parallelled time intervals. This implies that, compared
to the parareal algorithm and the SWR algorithm, the proposed hybrid algorithm really brings more
parallelism.

There are still some important problems that need to be answered in further work. First of all, the
spectral radius ρ(M) is not a good bound of the practical convergence rate. It is conservative and even
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invalid in some cases. Briefly speaking, for the case ν2

∆x2 /a � 1 we found that ρ(M) > 1, while the
Para-SWR algorithm still converges. For example, by letting a = 0 in (4.1) (i.e., the heat equation),
ν = 0.01, T = 10,∆x = 1

128 , ∆T = 0.1 and J = 50, we have ρ(M) > 1 for all q ≥ 0 and ν2

∆x2 > 0, but the
numerical results indicate that the Para-SWR algorithm is actually convergent.

The other problem is how to generalize current work to other numerical methods, such as the
Runge-Kutta (RK) methods. Such a generalization is not straightforward: if we choose an s-stage RK

method with s̃ off-steps
(
the intermediary nodes located in the fine time slice

(
Tn+

j∆t
J
,Tn+

( j+1)∆t
J

))
, the it-

eration matrix M would be a (1 + s̃ + J) × (1 + s̃ + J) matrix and its structure would be completely
different from the one given by (3.9). Therefore, the current approach for proving ρ(M) < 1 is not
applicable. However, one can check that the proof can be straightforwardly generalized to the linear–θ
method, which can be regarded as a family of simple RK methods with s̃ = 0.
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