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Abstract: This paper describes a system that can automatically determine the result of the slag dart 
input to the converter during tapping of basic oxygen furnace (BOF), by directly observing and 
tracking the behavior of the pouring molten steel at the tapping hole after the dart is injected. First, we 
propose an algorithm that detects and tracks objects, then automatically calculates the width of the 
tapping stream from slag-detection system (SDS) images collected in real time. Second, we develop a 
time-series model that can determine whether the slag dart was properly seated on the tap hole; this 
model uses the sequential width and brightness data of the tapping stream. To test the model accuracy, 
an experiment was performed using SDS data collected in a real BOF. When the number of sequential 
images was 11 and oversampling was 2:1, the classification accuracy in the test data set was 99.61%. 
Cases of success and failure of dart injection were quantified in connection with operation data such 
as ladle weight and tilt angle. A pilot system was constructed; it increases the reliability of prevention 
of slag carry-over during tapping, and can reduce the operator’s workload by as much as 30%. This 
system can reduce the secondary refining cost by reducing the dart-misclassification rate, and thereby 
increase the productivity of the steel mill. Finally, the system can contribute to real-time process 
control and management by automatically linking the task of determining the input of darts to the work 
of minimizing slag carry-over in a BOF. 

Keywords: object detection; object tracking; recurrent neural network; steelmaking; tapping operation; 
slag detection system  
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1. Introduction 

To manufacture high-purity steel, the steel-making process includes a refining operation to 
oxidize and remove silicon and phosphorus from molten iron by blowing oxygen and flux containing 
quicklime (CaO) into the converter [1,2]. After the refining operation, the converter is tilted to pour 
out the liquid steel. It is then tapped into a ladle, in which a secondary refining process is performed 
to adjust chemical composition and temperature of the molten steel before it is used in continuous 
casting. During the refining operation, silicon oxide, quicklime, magnesium oxide and iron oxide 
separate from molten steel and slag as a result of the difference in density. The amount of slag 
generated in this process is usually about 20−30 tons in a 250-ton converter [3−5]. This amount is 
about 80 to 120 kg per ton of molten steel, so the slag carry-over should be minimized as much as 
possible during tapping to ensure the cleanliness of the final molten steel and to maximize the grade 
of the steel.  

The slag flows out with the molten steel when the converter is tilted after the blowing operation 
is completed. To minimize slag carry-over during tapping of molten steel made in a converter, the end 
point of tapping must be identified, but this is a difficult task [6−8]. When the completion of tapping 
is delayed, slag and other impurities enter the ladle with the molten steel, and its quality is degraded 
due to an increase in the slag carry-over amount; therefore, the time to the end point of the tapping 
process should be shortened. However, when the tapping operation is stopped too early, molten steel 
remains in the converter, so productivity is reduced. To balance this trade-off between slag carry-over 
and productivity, the duration of the tapping process must be optimized. Many converter processes use 
slag-inflow-prevention and slag-detection systems to minimize slag carry-over [6,9,10], but the 
identification of the end point of tapping still depends on the operator’s expertise [11−13].  

A Slag Detection System (SDS) is a convenient non-contact method to prevent and detect slag at 
the tapping hole of the basic oxygen furnace (BOF) [9,10]. The SDS exploits the difference in the 
emissivity of metal and slag [14,15]. SDS uses an infrared camera to monitor the flow of molten steel 
discharged from the tapping hole of the converter during tapping, then calculates the amount of slag 
contained in the molten steel. However, the existing SDS system does not enable checking whether 
the slag dart has properly seated in the tapping hole after middle of the tapping operation, and does not 
enable tracking and analysis of the pouring behavior of the liquid steel. In addition, the SDS is mainly 
used to detect slag carry-over at the end of tapping operation, and cannot support a worker’s proactive 
response. Therefore, directly observation of whether or not the slag dart is seated in the tapping hole 
should be provided to help the operator in decision-making [11,16]. To determine the completion time 
of tapping operation, the workers need information about the tapping stream after the slag dart is 
inserted, rather than about the amount of slag at a specific point. 

Therefore, this study presents a system that uses artificial intelligence (AI) to automatically 
determine whether a slag dart has been seated in the tapping hole of the BOF, by analyzing the shape 
of the tapping stream from SDS video collected in real time, and that can proactively respond to slag 
carry-over. The proposed model uses computer vision and deep learning to enable direct observation 
and analysis of the behavior of poured molten steel at the tapping hole after the dart is injected. The 
dart-input judgment using the behavior tracking of the tapping stream in the SDS image data can 
minimize the amount of slag carry-over by identifying situations in which the dart behavior changes 
on the surface of the molten steel in the converter, i.e., in an area that cannot be observed. The method 
proposed in this study has a lower misclassification rate than the method that uses the existing dart 
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image, and provides information on the tapping flow after inserting the slag dart, and therefore can 
reduce the workload of the operator. 

Our goal is to minimize slag carry-over by automatically analyzing the slag dart input result 
during tapping, First, we develop an object-detection algorithm that automatically calculates the width 
of a tapping stream from SDS images collected in real time. Second, we suggest that changes in the 
width and brightness of the pouring stream can signal changes in the rate at which molten steel falls 
from the converter into the ladle. Third, we develop a time-series model that can trace the behavior of 
the pouring stream from SDS images by calculating the sequential width and brightness data. Finally, 
we develop an AI model that uses computer vision and is trained using data about the behavior of 
molten steel over time as an independent variable, and data about success or failure of the dart input 
as a dependent variable. To check the effectiveness of the proposed model, we performed an 
experiment to test the accuracy by using SDS data collected in a real foundry. We analyzed cases of 
success and failure of dart injection in connection with operation data such as ladle weight and tilt 
angle. We also quantify the effectiveness of the proposed method by comparing SDS data to actual 
darting success/failure results collected during the same period. Finally, to minimize slag carry-over 
during tapping, we constructed a pilot system that uses SDS images to automatically classify whether 
the slag dart has hit. 

2. Literature review 

2.1. Technology to detect and stop slag during tapping 

When molten steel made from a converter is tapped, the slag outflow is largely divided into early, 
middle, and end of tapping. During the early stage, the slag mixes in the exit hole due to the tilt of the 
converter, and during the middle stage the slag mixes due to vortex formation [7,12,17]. At the end of 
tapping, the slag flows out with the small amount of remaining molten steel [15,18,19]; this process is 
called ‘slag carry-over’. The slag includes many oxidized compounds such as P2O5 and FeO, so when 
Al is added during the subsequent secondary refining process, most of the slag is reduced to molten 
steel, and this process degrades its quality. Representative methods to reduce slag carry-over include 
using a floating material such as a slag-check ball [20,21], inserting a slag dart during tapping to stop 
slag leakage [11,21], blasting gas over on the upper surface of molten steel during tapping [22], and 
using a sliding gate or stopper to control tapping [10,23].  

During the steelmaking process, a slag dart is often injected after the middle of the tapping 
process [11,21]. A slag darts is a spindle-shaped plug composed of a refractory material, and is 
mechanically inserted into the exit hole of the converter, to stop slag inflow caused by vortex 
formation, and thereby minimize slag carry-over into the ladle. Whether the slag dart is properly 
seated at the exit hole of the BOF provides information that allows the operator to anticipate when 
the tapping operation will be completed [21,24]. The injection of the slag dart into the BOF is 
monitored and judged by an operator who watches video from a CCTV. The operator’s decision of 
whether the injected dart has or has not inserted into the hole is dependent on his/her expertise, and 
the timing varies among operators.  

A deep neural network (DNN) model has been used to quantify the operator’s qualitative 
judgment of whether the injected slag dart had entered the hole; the model was trained on real-time 
videos collected from CCTV [11]. Compared with the existing system that relied on the visual 
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judgment of the operator, the accuracy of dart judgement increased by 10%, and the human workload 
decreased by 30%. However, the physical change of the molten steel cannot be observed directly at 
the tapping hole because the study discriminates the success and failure of the dart injection by 
considering the continuous shape of the dart dropped into the molten steel from the lance. 

At the end of the tapping process, the levels of slag and molten steel reverse quickly, so a 
slag-stopper technology [10] linked with an SDS is generally used. It applies a high-resolution 
thermal imaging camera to monitor the flow of molten steel pouring from the converter during the 
tapping process, and detects in real time the amount of slag contained in the molten steel [9,15]. 
Infrared cameras can accurately distinguish between these two materials because they have very 
different radiative properties. The amount of slag carry-over can be calculated effectively in real 
time by evaluating the thermal image information. This information is provided to operators in 
real time to enable quick termination of tapping to prevent excessive slag inflow into the ladle 
from the BOF. However, the information does not help the operator to respond proactively to 
minimize slag carry-over. 

2.2. Artificial neural networks that use computer vision and object tracking 

In Computer Vision (CV), the key is to understand the image [25]. Research in the field is 
evolving from “understanding images” to “understanding video”. A video is a series of images and 
provides more context than a single image. Object detection is a computer vision technology to identify 
or classify different types of objects in digital images and images [26,27]. Object-detection technology 
is developing very rapidly with the development of convolutional neural networks (CNNs) and of deep 
learning algorithms, and the increase in the computing power of GPUs [28]. 

Existing studies for detecting objects in camera images mainly applied modeling based on 
background removal, image segmentation techniques, and object detection algorithms using deep 
learning [29]. Random Sample Consensus (RANSAC) [30], Bayesian filtering [31], and optical 
flow [32] have been developed as the most common the background extraction techniques to detect 
moving objects in images captured by a camera. Object detection using image segmentation is a 
technique that detects objects by dividing the image into perceptually-similar regions [33]. 

Object detection using deep learning uses a CNN in a method to detect and recognize objects. 
The methods can use a two-stage detector or a one stage detector [34]. The two-stage detector 
method performs candidate region extraction and classification sequentially; it has high accuracy 
but has the disadvantage of slow speed. Representative two-stage algorithms include R-CNN [35], 
Fast R-CNN [36], and Faster R-CNN [35]. The one-stage detector method performs candidate 
region extraction and classification simultaneously; compared to the two-stage detector method, the 
one-stage method has slightly lower accuracy, but is faster, so it is more suitable for real-time 
detection. Representative one-stage algorithms include YOLOv3 [37], SSD [35], RetinaNet [38], 
YOLOv4 [39], and YOLOv5 [40]. 

Artificial neural networks (ANNs) that process computer vision data are widely used in the 
steel industry. They apply deep learning (DL), which is a machine-learning technique that uses 
multiple layers of neural networks (NNs); it can solve problems by using pattern recognition [35−37]. 
DL that uses CNNs has been used for many visual detection tasks including recognition of slab 
identification number (SIN) [41,42], determination of dart shape in BOF [11], diagnosis of surface 
defect in steel products [43,44], and segmentation of phase in complex microstructures [45]. The 
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efficient use of graphic processing units and the development of new algorithms such as Rectified 
Linear Unit (ReLU) [46] and deep convolutional [37,39,40] have yielded excellent results for image 
classification and object detection.  

However, traditional NNs function on the assumption that all inputs are independent, so the 
networks cannot easily process time-series data. Therefore, CNNs are not sufficient for object tracking, 
which recognizes a moving object in sequential images, and tracks its motion by calculating its position 
in them [47]. This task requires customized algorithms for such subtasks as image preprocessing [47], 
point detection [48], and background subtraction [49], so implementation of an object-tracking system 
is a difficult task.  

2.3. Time-series model that can analyze object behavior 

Object tracking is a technique the image processing field to detect and track a region of interest 
and an object of interest [50]. The technique recognizes an object in one frame of video and compares 
this information with the next frame to match object information. The movement paths of objects 
detected during the object-tracking process are time-series data that change over time.  

Recurrent neural networks (RNNs) are effective for time series data analysis because RNNs 
include a memory that stores past shapes in the model [51]. The RNN has an output determined 
according to the previous state, and input stored in each cell, and learns using backpropagation. By 
using the trained data, the RNN can learn the movement path of an object and predict its next position. 
However, RNNs have a problem called gradient vanishing, which may cause the gradient near the 
input layer to gradually decrease during the backpropagation process as the network gets deeper. To 
solve this problem, the attention mechanism was originally proposed in the field of natural language 
processing and machine translation to overcome the limitations of the Seq2Seq model implemented 
on RNNs [52,53]. The technique does not refer to the entire input at the same rate, but by giving weight 
to a specific part and proceeding with learning, it solves the problem and improves the model’s 
accuracy at the same time [52−54]. This process can be equally applied to general image-recognition 
or object-detection problems. 

Several other NN architectures have been developed to increase the accuracy of identifying object 
behavior in successive images. Residual attention networks (RANs) [55] modularize the NN to which 
attention is applied and stack it in several layers. This architecture increased image-recognition 
accuracy but its complex structure increased the amount of computation. Subsequently, Squeeze and 
excitation network (SENet) [56] reduced model error considerably by using compression and 
readjustment to extract only important features from each channel of the image, and by learning by 
weighting them. Convolutional block attention module (CBAM) [57] achieved increased accuracy and 
shortened learning time by adding attention-focused computation for spatial information as well as 
channel information. Efficient channel attention networks (ECA-Nets) [58] increased the attention-
focusing calculation for the channel by excluding dimensionality reduction. Most of the research is 
progressing in the direction of improving accuracy while minimizing overhead and model complexity 
by modularizing attention-intensive operations and embedding them in general NNs. 

Long short-term memory (LSTM) is a model that compensates for the shortcomings of RNNs [51], 
and is a kind of RNN architecture that can remember old or recent data by using memory cells and 
three gates. The memory cells are responsible for storing information, and the three gates are 
responsible for controlling the addition and removal of information. Memory cells should be 
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configured to forget what is to be forgotten and to store what is to be stored. They have limited capacity, 
so the most efficient approach is to remember only important information. The memory of LSTM 
consists of a cell state and a hidden state. The cell state is activated before the input vector (processed 
information) is stored in the current state (hidden state) along with the old hidden state according to 
the timestep. In this process, the three gates (input, output, forget) determine whether the cell state 
is activated. 

SDS detects and monitors transported slag from the tapping process in BOF [9,14]. The infrared 
image detection method [59−64] converts the infrared radiation temperature of molten steel to a 
grayscale to show the flow of molten steel as an image. Methods have been developed to correct the 
temperature threshold used to distinguish molten steel from slag in a specific environment [59−61], 
and to design and construct experimental equipment [62−64], but very few studies have considered 
object tracking in the field of infrared slag monitoring and detection. In this study, the LSTM model is 
used instead of the attention-focusing technique, because the image collected from the SDS is not used 
as an input, but the necessary features (left/right position, brightness) are extracted and analyzed from 
the image. 

3. The proposed system 

 

Figure 1. Proposed tapping-stream tacking system to minimize slag carry-over in BOF. 

This research proposes a system that uses a model that integrates object detection/tracking and an 
RNN to recognize automatically whether the slag dart has seated in the tapping hole of the BOF. The 
research was composed of four steps conducted sequentially (Figure 1).  

The first step is to collect image data from SDS video. The SDS is a device used to monitor and 
reduce slag carry-over in a steel-production facility. In real time, it monitors and stores the flow of 
molten steel discharged through the tap of the BOF, and calculates the amount of slag contained in 
the molten steel. Molten steel and slag can be distinguished according a large difference of emissivity 
in the far-infrared band. A correction method for the temperature threshold can be designed to 
distinguish molten steel from slag in a specific environment, and to calculate the amount of slag in 
real time. This SDS stores a video recording of all tapping operations. Images of the operation are 
extracted from the SDS video and stored for later use to recognize and analyze the progress of 
individual tapping operations. 

The second step is to pre-process the collected data. For analysis of the behavior of the tapping 
stream in the BOF, unnecessary information is removed from the collected images to facilitate effective 
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time-series learning. In this study, the features required for time-series learning were generated in three 
steps: box removal, smoothing, and full width at half maximum (FWHM) calculation. To measure the 
thickness of tapping stream in the image collected from SDS, a region of interest (ROI) is selected 
from the original image, then visible noise (box removal) included in the ROI is removed, and the 
noise or edge with a large change rate of the brightness value is eliminated from the image to soften 
the entire image. Finally, the FWHM is used in the brightness graph to calculate the width of the 
tapping stream for object detection and tracking in the smoothed image. FWHM quantifies the width 
of a function, and indicates the difference between the values of two independent variables when each 
of their values is half of its maximum value [65]. 

The third step is to decide whether the slag dart has successfully seated in the tapping hole of 
the converter. For this purpose, we developed a technique to detect and track the behavior of molten 
steel in SDS images as it pours from the converter. The width and brightness of the tapping stream 
are extracted from the SDS images collected in real time, then input to LSTM in the form of 
sequential data (Figure 2). The sequential information to be input to the LSTM consists of images 
from the time at which the slag dart is inserted. When the slag darts properly occupy the tapping hole, 
the width of the tapping stream is reduced. The dart’s movement is sequentially calculated from the 
moment the dart is inserted, so the judgment about whether it has hit the hole is continuously affected 
by the characteristics of the first image. This method can detect changes in the width and brightness of 
the consecutive tapping stream, and is therefore more reliable than using a single image. Finally, the 
final output is converted to a probability to recognize success or failure of slag dart insertion. 

 

Figure 2. Proposed RNN Architecture for judgement of slag dart injection from SDS images. 

The fourth step is to check the effectiveness of the computer vision and artificial NN tapping-
stream tracking model. For this purpose, a prototype system was implemented; it uses the sampled 
SDS video data to monitor the thickness of the tapping stream, and uses the thickness to judge the 
success or failure of slag-dart injection. In this study, we used the Keras library [66] with Python 
and TensorFlow to train and test the proposed model. To develop the prototype system Python 3.5.0 
and Python-related libraries were used to develop components such as data preprocessing calculation 
module, graphical user interface (GUI), and graphing the output. To identify and correct possible 
causes of problems, small-scale testing was performed before real-world implementation; i.e., the field 
applicability of the proposed model is tested by analyzing actual foundry data, and the system is 
upgraded in response to relevant feedback. 
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4. Materials and methods 

4.1. Data collection 

Each converter is equipped with a high-resolution video camera to monitor the input of darts, and 
an infrared camera to monitor the tapping stream, and uses these two cameras to record and save the 
entire tapping process as real-time video (Figure 3). These collected video data are stored in the system 
in mp4 format for up to one month. The duration of the total tapping operation is variable depending 
on the amount of filling per charge, so the playing time of the video data is between 4 and 7 min. The 
image size of the collected SDS video is 1000 × 510 × 3, and it is saved at 20 frames per second (fps).  

 

Figure 3. Schematic diagram of converter with a CCTV for darting and an IR camera for tapping. 

This study used data from 1900 tapping operations conducted between February 1 and March 30, 
2020. Data were divided into two classes: success (1697) and failure (203). Images were extracted 
at 1 fps from each SDS video file. The maximum number of images included in 1900 SDS videos 
is 1283 and the minimum number is 346, with a total of 940,198. Operational data such as tilting 
angle and ladle weight were also collected. The tilting angle indicates the angle at which the 
converter is tilted to discharge the molten steel from the tapping hole of the converter to the ladle. 
The ladle weight is obtained by calculating the mass of the molten steel taken from the converter to 
the ladle. These two types of data were used to determine the end point of the analysis on the width 
and brightness of the tapping stream. 

4.2. Data preprocessing 

To detect and track the tapping stream as an object in the images collected from SDS, a rectangular 
area of 830 × 100 pixels in each image (Figure 4, red line) was selected as the ROI. To identify and 
calculate accurately the width of the tapping stream in the ROI, the brightness values must be 
integrated in the vertical direction after detecting and excluding the image region (or noise) in which 
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the brightness changes rapidly. Therefore, in this study, sequential data for time series analysis were 
generated using three steps: box removal, smoothing, and calculation of FWHM.  

First, the brightness is sharply high at about 280 and 500 pixels in the graph where the brightness 
values are integrated, because the image includes a white dotted line (Figure 4), which is the ROI 
selected to analyze the slag content contained the molten in the SDS system. Therefore, vertical and 
horizontal white box lines were detected using the find_peaks function [67] supported by the Python 
library for scientific and technological calculations, and excluded from the vertical brightness 
calculation. Second, the image was smoothed to remove high-frequency components that correspond 
to noise [68]. In the image, regions in which the brightness changes rapidly are regarded as edges or 
contours. Blocking these components can minimize the variance of the image. Low-pass frequency 
filtering removes high-frequency components that represent edges or contours are removed, so the 
entire image is smoothed [68,69]. Finally, FWHM was used to calculate the width of the tapping 
stream in the brightness graph of the smoothed images (Figure 4). In the brightness graph, the 
maximum value is 3300 and the minimum value is 200, so the FWHM is 1550. Objects were 
recognized and tracked in the ROI of each image collected by using this value as a reference point 
for the width of the tapping stream. 

 

Figure 4. Schematic diagram of the process of detecting the tapping stream in SDS images. 
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In addition, sequential data about changes in the width and brightness of tapping stream were 
generated using one frame per second in all video files. Direct comparison of the width and brightness 
of the stream is difficult because the scales differ. In modeling, parameter distortion might occur due 
to different scales between variables [70]. In this study, MinMaxScaler [71] was used to standardize 
the scale between 0 and 1 for the input variable and the dependent variable. First, the initial data of the 
vector 𝑥 =  (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) were normalized as 𝑥௜ᇱ =  ௫೔ିெ௜௡(௫೔)ெ௔௫(௫೔)ିெ௜௡(௫೔)         (1) 

where 𝑥௜ᇱ  represents the normalized value of 𝑥௜ , 𝑀𝑎𝑥(𝑥௜)  is its highest value and 𝑀𝑖𝑛(𝑥௜)  is its 
lowest value. 

5. Case study 

5.1. Time series analysis 

The program was built using the Keras library that uses Python and TensorFlow to train and 
evaluate the proposed model. The model was trained in a Windows 10 64-bit environment with two 
GTX 2080 Ti graphics cards and an Intel i7-6700K processor and. Experimental data were partitioned 
as 60% training, 20% validation, and 20% testing, and were not used redundantly in any stage of 
training, validation, or testing. The goal is not simply to find model that fits the training data, but to 
find one that fits the test data, which were not used for training [11,72]. The training data were used 
use to train the model; this process ultimately entails estimating coefficients such as weights and biases. 
The validation data were used to fine-tune the hyper-parameters of the model, and the test data were 
used to evaluate the accuracy of the trained and validated model.  

Input included two data that indicated the left and right sides of the tapping stream and one datum 
that represented its brightness in the form of [Batch_size, n_seq, 3]. Two inputs were used to train the 
recognition of tapping stream from SDS images, and three inputs including one brightness datum were 
used to learn the behavior of the pouring stream over time. A hidden layer was composed of two LSTM 
layers with 64 units each, and one affine layer (Figure 1). The hyper-parameters were set as batch size 
= 256, epoch number = 500, and learning rate = 0.0001 after the value of the cost function was 
minimized by learning the proposed model iteratively. The Adam optimizer was applied to make the 
learning fast and stable. In the output layer, the logistic sigmoid function [73] was applied to transform 
the output value to the probability of success or failure of slag dart input. Drop-out and early stopping 
techniques were also used to prevent overfitting.  

Another requirement is to determine the input length (number of sequence) of the RNN for 
optimal time series analysis. The number of sequences was repeatedly learned and evaluated while 
changing values of length from five to 21 (Figure 5). The classification accuracy of success and failure 
was highest when the number of sequences = 11, so this number of sequences used. When this number 
of sequences was applied, the classification accuracy in the test data set was 99.61%.  

The number of failure data was limited, because successes (1697) were much more common than 
failures (203). Therefore, we evaluated the effect of resampling on unbalanced data, either by under-
sampling or by oversampling. Under-sampling solves data imbalance by reducing the number of data 
in the most abundant class in an unbalanced data set. This method dramatically reduces the total 
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number of data available for training, and this reduction can degrade prediction accuracy. When one 
datum is selected as a sampled from a database with ratio 3:1 (success:fail), the probability of success 
is 0.75 and of failure is 0.25. If the size of the batch is 16, the probability that all 16 are successful 
is (3/4)16 = 1%; i.e., the probability of at least one failure is 99%. A ratio of 3:1 was adopted so that 
at least one failure case was almost always included in a batch. To verify this choice, the accuracy of 
dart-insertion identification was evaluated using three data sets that had success: failure ratios of 3:1 
(609:203), 4:1 (812:203), and 5:1 (1015:203). The 3:1 first data set had the highest accuracy (Table 1). 

 

Figure 5. Length optimization of the input data for time-series analysis. 

In contrast, oversampling is a way to resolve data imbalances by increasing the amount of data in 
low-rate classes. In this study, new data were generated using the nearest neighbors of low-ratio class 
data, by Synthetic Minority Over-sampling Technique (SMOTE). In the case of SDS where the failure 
data are scarce compared to success data, oversampling reduces precision because the rate of predicting 
failures increases. Conversely, the proportion of errors that are identified increases. Therefore, SMOTE 
was used, paying attention to the method of lowering the decrease in precision and increasing the 
increase in recall. In oversampling, three conditions were evaluated: 1:1 (1697:1697), 2:1 (1697:849), 
and 3:1 (1697:566). The second sampling method with a 2:1 ratio had the highest accuracy (Table 2). 
Over-sampling was considered to be a better solution than under-sampling. Therefore, a second dataset 
oversampled at a 2:1 ratio was used for training and evaluation to recognize and track the tapping 
stream in SDS images.  

To quantify the reliability of the model’s prediction, we used five evaluation indicators: confusion 
matrix, accuracy, recall, precision, and F1 score. The predicted class and the observed class are 
classified into negative (0) and positive (1) values, and divided into True Negative (TN; i.e., correct 
identification of a failure of the dart to insert), False Negative (FN; incorrect identification of failure), 
True Positive (TP; correct identification of insertion), and False Positive (FP; incorrect identification 
of insertion). The confusion matrix (error matrix) classifies the types of prediction error (Table 2). 
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Table 1. Comparison of classification analysis after over- and under-sampling. 

 Over-sampling Under-sampling 
Ratio 1:1 2:1 3:1 3:1 4:1 5:1 
No. of test 679 509 453 163 203 244 
No. of error 4 2 3 5 7 9 
Accuracy 99.41% 99.61% 99.34% 96.93% 96.55% 96.31% 

Accuracy [74] indicates the similarity of predicted data to real data; i.e., the total number of 
correct identifications as a proportion of all observations: Accuracy =  ்௉ା்ே்ேାிேା்௉ାிே        (2) 

Recall [74], also called sensitivity, refers to the ratio of number of images correctly identified as 
positive, to the true total number of positives: Recall =  ்௉்௉ାிே          (3) 

Precision [74], also called positive predictive value, refers to the ratio of images correctly 
identified as positive to the total number identified as positive:  Precision =  ்௉்௉ାி௉         (4) 

The F1 score [74] is the harmonic mean of recall and precision. The F1 score is highest when 
precision and recall are not biased to either side: F1 − score = ଶ(௉௥௘௖௜௦௜௢௡×ோ௘௖௔௟௟)௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟        (5) 

The proposed time-series analysis model got good results on all indicators: Accuracy = 99.61%, 
recall = 99.70 %, precision = 99.70%, and F1 = 99.7%. Recall and Precision were the same in this case 
because, FN = FP = 1, so the denominators of (8) and (9) are identical. 

Table 2. Performance evaluation of classification model using confusion matrix. 

Confusion Matrix Real values 
Positive Negative 

Predictive values Positive 335 1 
Negative 1 172 

5.2. Reporting 

To check the applicability of the proposed model, a prototype system was developed to judge the 
success or failure of slag dart-injection while detecting and tracking the tapping stream in video 
collected from the SDS. First, this system automatically calculates the width and brightness of the 
pouring stream from SDS images provided in real time. These two types of information were input 
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into the LSTM module in the form of sequential data to recognize whether the slag dart occupies the 
tap hole of the converter. This software was implemented in Python language. The sci py library was 
used for data preprocessing, and PyQt-5.9.2, matplotlib-3.0.0, and Numpy with the mkl library were 
applied to GUI. 

 

Figure 6. A pilot system for SDS success/failure judgement. 

The GUI of the pilot system for SDS success/failure judgement is mainly composed of four panels: 
raw data, data preprocessing, behavior information and analysis tool (Figure 6). First, the raw data 
panel provides the user with the video of the pouring stream collected from the SDS system in real 
time. Second, the data preprocessing panel extracts SDS images from the video file, then detects a 
tapping stream by using brightness information from the extracted image. Third, the behavior 
information panel provides the user with operation data such as tilt angle and ladle weight as well as 
information on the thickness and brightness of the tapping stream generated during one tapping 
operation. The judgement of whether the slag dart insertion is hit is performed by calculating the width 
and brightness of the tapping stream in the section between the dart injection and the end of the tapping 
operation. Finally, the analysis tool panel displays the final judgment result. The SDS video monitored 
by this system is saved in the database. Users can drag playback button where you want it on the screen 
in the video, and then this system enables moving the screen to the desired location. In addition, this 
system enables the user to find the information of a desired date by providing directory information of 
the video stored. This system is a stand-alone type and was used to test the field applicability of the 
proposed model by using sampled video data. It is also being tested in connection with data transmitted 
from the SDS system in real time. 
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6. Results and discussion 

This study automatically extracted the thickness and brightness of the tapping stream of molten 
steel pouring from BOF during tapping, and linked with operation data such as weight and tilt angle to 
determine in real time whether or not the slag dart properly occupy the tapping hole. This study results 
should be discussed from three perspectives to directly observe and effectively track slag-dart injection. 
First, the width and brightness information of tapping stream must be quantified and compared according 
to the success or failure of dart injection. Second, the ability to effectively support determination of the 
end time of tapping process in connection with operation data such as weight and tilt angle must be 
determined. Finally, the recognition of success or failure of slag dart input using the SDS image must be 
compared to the existing methods of determining the time of completion of tapping process.  

 

Figure 7. Summary and visualization of several information for the 319th tapping 
operation. Symbols: “left”, light blue dots: left position of tapping stream; “right”, dark 
blue dot: right position of tapping stream; “FWHM”, red squares: calculated difference 
between “left” and “right”; “KD angle”: angle of converter tilted during tapping. “Ladle 
wt.”: mass of melt in ladle; “Darting”: time when the slag dart was dropped from the lance 
to time of submergence under the surface of the molten steel. Verticals: yellow: start of 
increase in KD angle (i.e., end of tapping); Indigo: inflection point of Ladle wt. curve. 
Arrow: decrease in width of steel stream (= seating of dart). 

We first consider a successful dart insertion. During the 319th tapping, the position and size of 
the FWHM were calculated for object detection and tracking using a total of 575 frames, taken at 1 
fps in one SDS video file (Figure 6). During this tapping, the position of the converter started to return 
to its original position in the 556th frame to finish tapping (Figure 7, pink line); this frame was used 
as the end point of time series analysis of the SDS image. The darting was inserted during the 445th 
frame, so the analysis began at that point. Sequential data were sought by overlapping 11 frames 
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(i.e., 445−455, 446−456, 447−457, …, 545−555, 546−556). In the 527th frame, the width of the 
tapping stream sharply decreased (Figure 6, arrow) because the slag dart had become properly seated 
in the tapping hole after the middle of the tapping operation. All cases that earned an arrow were judged 
to have succeeded in inserting the slag dart and a ‘true’ label (capital letter S) was assigned. More than 
one of these arrows can exist in one case, and these cases were also judged as successful. 

Then we considered a failed dart insertion. During the 69th (Figure 8) tapping stream, the 
thickness of the tapping stream initially widened, then became narrow toward the end, and the 
brightness of the pouring stream was not consistent. For example, when ferroalloy was added to adjust 
the alloy composition of the molten steel during the initial stage of tapping, the brightness of the 
tapping stream suddenly increased significantly. In contrast, during the tapping operation, the 
brightness of the molten steel suddenly decreased as the slag darts were inserted into the tapping hole. 
A decrease or increase in the brightness of molten steel in the SDS image provides behavioral 
information in tracking an object or the tapping stream. During training of an ANN that detects and 
tracks pouring stream in SDS images, both information about the width and information about the 
brightness are important. In tapping stream 69, the thickness of molten steel slightly decreased and 
then increased in the 448th to 455th frames (Figure 8). The absence of a pattern in which the width of 
the pouring stream sharply decreased means that the slag dart had not become properly seated in the 
tapping hole. This result for case 69 indicates that the algorithm can detect a failure of dart insertion 
by recognizing and tracking the molten steel in the SDS images. 

 

Figure 8. Summary and visualization of several information for the 69th tapping operation.  
Symbols: “left”, light blue dots: left position of tapping stream; “right”, dark blue dot: right 
position of tapping stream; “FWHM”, red squares: calculated difference between “left” 
and “right”; “KD angle”: angle of converter tilted during tapping. “Ladle wt.”: mass of 
melt in ladle; “Darting”: time when the slag dart was dropped from the lance to time of 
submergence under the surface of the molten steel. Verticals: yellow: start of increase in 
KD angle (i.e., end of tapping); Indigo: inflection point of Ladle wt. curve. 
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The ladle weight detected by the sensor was monitored in real time during tapping; for this 
purpose, a sensor was attached to the ladle car (Figures 7 and 8). Before using the SDS image, the 
ladle weight data were used as a reference to determine the success or failure of the slag dart injection. 
For example, first differentiated the slope in the graph of the ladle weight after slag dart input 
(Figures 7 and 8 indigo line), the identified point at which the slope rapidly increased. This change 
occurred in to 537th frame in Tapping 319 and the 512th frame in Tapping 69. In Tapping 319, the 
indigo vertical line was located in the frame ahead of the pink vertical line that indicates the end of the 
tapping, so dart injection judged to be successful (Figure 7). In Tapping 69, the indigo line followed 
the pink line during the tapping; this sequence indicates that the width of the molten steel did not 
change after input of slag dart, so dart injection was judged to have failed (Figure 8). 

The success or failure of slag dart injection could be judged effectively using the weight of the 
ladle. However, this method requires detection of the inflection point of the time-curve of ladle weight, 
and therefore can only detect this point after it has happened, so the judgement must always be late. In 
the case of Tapping 319, the method that used the ladle weight to decide the success or failure of the 
slag dart injection was 10 s slower than the method that used the SDS image. A difference of 10 s in 
determining the completion time of tapping and moving a converter that contains approximately 250 
tons of molten steel would seriously degrade operation of converter facilities at a production site. In 
addition, the converter is large and massive, so tilting work during tapping could not be done quickly. 
If the completion of tapping is delayed in the normal operation environment, the amount of slag that 
flows out during the tapping operation increases at least in proportion to the amount of delay. These 
results indicate that determining the success or failure of the slag dart input using the SDS image is 
effective in determining the time of completion of tapping. This quick identification of the completion 
of tapping can help to minimize the amount of slag that flows into the ladle from the converter. 

 

Figure 9. Sample images of dart injection (left) and tapping stream from BOF (right). 

Basically, the SDS is equipment to minimize slag carry-over while monitoring the amount of slag 
entrained in the molten steel during tapping. However, the SDS is intended for real-time response to 
carried-over slag, and not for proactive response to minimize slag carry-over. In contrast, injection of 
slag darts during tapping can help to minimize the slag by providing workers with information on the 
completion time of tapping in advance. The video of dart input provides behavior information in which 
the slag dart was dropped from the robot arm and was submerged under the molten steel surface, but 
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cannot indicate that the slag dart has inserted firmly in the tap hole, because this action occurs under 
the molten steel surface (Figure 9). For example, in one case, the slag dart was properly seated on the 
tap, but could not block the tap hole due to the low durability of the slag dart. Although the shape in 
which the slag dart was put into the molten steel was a success, failures often occurred, such as change 
in the behavior of the slag dart under the molten steel.  

To compare the method that uses the SDS image to the method in which the operator makes a 
judgement by monitoring the dart image [11], the two judgement results during the same period were 
compared. About 6% of the judgment results using the dart image were misclassified. This 
misclassification rate means that 114 of the 1900 data collected over two months were incorrect, and 
that a total of 684 incorrect decisions occurred in one year. The failures and successes among the 
collected data were 6 and 94%, so assuming the same proportions, 41 were hits that were erroneously 
judged to be misses (i.e., FN) and 643 of the incorrect decisions were misses that were erroneously 
judged to be hits (i.e., FP). Each of the 41 FNs caused premature stopping of the tapping operation, 
and therefore a decrease in the amount of molten steel taken from the converter to the ladle. In contrast, 
the 643 FPs caused the tapping operation to last longer than it should, and therefore increased in the 
amount of molten steel taken from the converter to the ladle, and secondary refining was conducted 
unnecessarily. The additional cost caused by the secondary refining operation was approximately 
$US 0.5 million/year, as estimated from the average costs of labor, materials, and equipment 
operation. This direct cost and other indirect costs including reduced productivity were imposed on 
the steel mill by to the misclassification of dart hits. Considering that the SDS system made no errors, 
it is more effective than the method using the dart image to determine whether the slag dart is hit, and 
therefore can reduce the operating cost of this mill by at least $US 0.5 million. 

7. Conclusions 

When recognizing an object on a video screen, people do use all information including the 
background, but focus on the part they are interested in, and come to a conclusion by synthesizing the 
sequences of observation of the part. This paper proposed a method to automatically determine whether 
the slag dart was properly seated on the tap hole, by recognizing and tracking the tapping stream in the 
video collected in real time from the SDS. This method extracted quantitatively the width and 
brightness information of molten steel during tapping, and supported detection and tracking of the 
behavior of the tapping stream in the SDS images. Given operational data such as ladle weight and tilt 
angle, a new system was developed to determine results of the dart injection in real time for effective 
end of tapping according to various operation conditions. 

This system can be used to minimize slag carry-over and determine the end time of tapping by 
discriminating slag dart input in the converter tapping process. First, the system is stable and accurate 
to prevent slag carry-over during tapping. The dart-input determination using the SDS can minimize 
the amount of carried-over slag by responding correctly to situations in which the dart behavior 
changes under the molten steel surface in the converter, i.e., in an area that cannot be observed. Second, 
the system can eliminate the need for human judgment of the slag dart input with dart images during 
tapping. The method that uses the SDS image has a lower misclassification rate than the method that 
uses the dart image, so the operator’s work load can be reduced. In addition, the system can improve 
the productivity of the steelworks by reducing the cost of secondary refining caused by misjudgment 
of whether the dart entered the hole. Third, the decision on the end point of tapping is determined by 
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the amount of slag leakage detected by SDS, but the rate at which the tapping operation is terminated 
earlier than usual can be high depending on the operator’s experience in the real field. A high-precision 
identification of the completion time of tapping can contribute to increased production of molten steel 
from converters by avoiding errors caused by the different operation patterns of different workers. 
Finally, object detection and tracking technology that use computer vision and ANN can also observe 
and analyze the behavior of tapping stream after the dart is inserted. This ability can contribute to an 
effective process control and management by linking the task of determining the dart input, to decision 
about the end point of tapping.  

Some gaps remain between knowledge obtained from our findings and the field-adaptability of 
the proposed model; further research to extend and test the proposed model might reduce or eliminate 
these gaps. First, the developed system used field data obtained only over two months. Increase in the 
field-applicability of the proposed model requires additional training and parameter updates using data 
collected over a long period of time. Therefore, field operators have been collecting and storing data 
of slag dart and SDS every six months. For the stable field application of the proposed system, the 
model conformity must be tested using data from more than one year. In addition, the time of 
determining whether the slag dart input using images of SDS is hit is relatively later than that of the 
method using the dart image. A late judgment of the slag dart input might degrade the judgment on the 
completion of the tapping. Therefore, research must determine the latest time that field operators can 
agree on when judging the success or failure of dart input. The bottom line should be determined by 
analyzing the pattern of the failure point, in consultation with various experts who had more than 20 
years of field experience. Finally, in this study, the behavior of the tapping stream, that is, the change 
in width, was directly calculated from SDS images and used as an input to the RNN model. An attention 
model could be included in the designed model for further improvement.  
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