
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 30(10): 3930–3948.
DOI: 10.3934/era.2022200
Received: 06 July 2022
Revised: 02 August 2022
Accepted: 10 August 2022
Published: 30 August 2022

Research article

Bifurcation of a discrete predator-prey model with increasing functional
response and constant-yield prey harvesting

Jiange Dong and Xianyi Li∗

Department of Big Data Science, School of Science Zhejiang University of Science and Technology,
Hangzhou 310023, China

* Correspondence: Email: mathxyli@zust.edu.cn.

Abstract: Using the forward Euler method, we derive a discrete predator-prey system of Gause type
with constant-yield prey harvesting and a monotonically increasing functional response in this paper.
First of all, a detailed study for the existence and local stability of fixed points of the system is obtained
by invoking an important lemma. Mainly, by utilizing the center manifold theorem and the bifurcation
theory some sufficient conditions are obtained for the saddle-node bifurcation and the flip bifurcation
of this system to occur. Finally, with the use of Matlab software, numerical simulations are carried
out to illustrate the theoretical results obtained and reveal some new dynamics of the system-chaos
occuring.
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1. Introduction and preliminaries

With the continuous development of human society and the continuous progress of civilization,
resource consumption and environmental pollution are being increased day by day, and human beings
have also been punished by nature, such as frequent occurrences of natural disasters, viruses wreak
havoc, etc. So it is very important to find strategies to deal with environmental problems. Mathematical
modelling is a force tool to reveal the changing trend of natural environment. More and more scholars
use mathematical methods to study ecological balance problem.

Generally speaking, the classical predator-prey model has the following structure:
dx
dt = f (x)x − g(x, y)y,
dy
dt = εg(x, y)y − µy,

(1.1)
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where x(t) and y(t) represent the population densities of prey and predator in time t respectively, f (x) is
the net growth rate of prey without predator, g(x, y) is the consumption rate of prey by predator, ε and
µ are the positive constants respectively representing the conversion rate of captured prey into predator
and the mortality of predator. In order to show the crowding effect, when the prey is large, the prey
growth rate f (x) in model (1.1) is usually a negative value. The most famous example of x f (x) is the
logistic form:

x f (x) = rx(1 − x
K ), (1.2)

among them, the positive constants r and K respectively represent the inherent growth rate of the prey
and the carrying capacity of environment to the prey without the predator. In this paper, we assume
that x f (x) takes the logistic form given by above (1.2). Consequently, model (1.1) reads as

dx
dt = rx(1 − x

K ) − g(x, y)y,
dy
dt = εg(x, y)y − µy.

(1.3)

The behavioral characteristics of the predator species can be reflected by the key element g(x, y),
called functional response or nutritional function. Ultimately, the functional response plays an impor-
tant role in determining different dynamical behaviors, such as steady state, oscillation, bifurcation and
chaos phenomenon [1]. The functional response g(x, y) in population dynamics (and other disciplines)
has several traditional forms:
(i) g(x, y) depends on x only (meaning g(x, y) = g(x)).
� Holling type I [2–4]:

g(x) = mx;
� Holling type II [5–8]:

g(x) = mx
a+x ;

� Holling type III [9–12]:
g(x) = mx2

a+x2 ;
� Holling type IV [13–16]:

g(x) = mx
a+x2 .

(ii) p(x, y) depends on both x and y.
� Ratio-dependent type [17]:

g(x, y) = mx
x+ay ;

� Beddington-DeAngelis type [18, 19]:
g(x, y) = mx

a+bx+cy ;
� Hassell-Varley type [20, 21]:

g(x, y) = mx
yγ+ax , γ = 1

2 ,
1
3 .

The parameters m, a, b and c in the above formulas are all positive constants, and they have different
biological meanings in different formulas. In order to propose a functional response to show how a
group of predators (for example, a group of tuna) search, contact and then hunt a prey or a group
of preys, several biological hypotheses were proposed. Based on these assumptions and the logic
of Holling [22], the hunting cooperation proposed by Cosner, DeAngelis, Ault and Olson [23] has a
special functional response, as shown below:

g(x, y) =
Ce0 xy

1+hCe0 xy . (1.4)
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here, C is the score of the prey killed in each encountering each predator, e0 is the total encountering co-
efficient between the predator and the prey, and h is the processing time of each prey. It’s monotonous.
Ryu, Ko and Haque [24] introduced this reaction into model (1.3) and obtained the following system:

dx
dt = rx(1 − x

K ) − Ce0 xy
1+hCe0 xyy,

dy
dt =

εCe0 xy
1+hCe0 xyy − µy.

(1.5)

A common phenomenon in the predator-prey model is called cooperative hunting between preda-
tors. This phenomenon makes the encountering rate between the predator and the prey change with
the number of predators [25–30]. However, when encountering a gathering of prey, there may be ex-
treme phenomena leading to the eventual extinction of the predator. Therefore, Shang, Qiao, Duan and
Miao [31] added the constant yield harvest H to the first equation of the model (1.5) to study the ar-
rangement of renewable resources that ensures the coexistence of two species. By the transformations
t = rt, x = x

K , y = hCe0Ky, a = 1
Ce0h2K2r , b = ε

rh , c =
µ

r and h = H
rK , and dropping the bars in the above

alphabets, we get the following predator-prey system:
dx
dt = x(1 − x) − axy2

1+xy − h,
dy
dt =

bxy2

1+xy − cy.
(1.6)

In the system (1.6), we assume that the initial values (x0, y0) are positive to ensure that its solution
is positive. Obviously, it is very difficult and complicated to directly find an exact solution of the
system (1.6), so we consider to find its approximate solution. This motivates us to study the dynamical
properties for the discretization version of the system (1.6).

For a given system, there are many discretization methods, including the forward Euler method, the
backward Euler method, semi-discretization, and so on. In this paper, we use the forward Euler method
to derive the discrete form of the system (1.6). Applying the forward Euler method to the system (1.6),
one has 

xn+1−xn
δ

= xn(1 − xn) − axny2
n

1+xnyn
− h,

yn+1−yn
δ

=
bxny2

n
1+xnyn

− cyn,
(1.7)

which is written as a map to get the followng system

F :
(
x
y

)
−→

(x + δx(1 − x) − δaxy2

1+xy − δh

y + δy( bxy
1+xy − c)

)
, (1.8)

where δ is the step size, and a, b, c, h all are positive constants.
The outline of this paper is as follows: In Section 2, we investigate the existence and stability of

fixed points of the system (1.8). In Section 3, we use the central manifold theorem and the bifurcation
theory to derive some sufficient conditions that ensure the flip bifurcation and saddle-node bifurcation
of the system (1.8) to occur. In Section 4, numerical simulation results are provided to not only support
theoretical analysis derived but also illustrate new and rich dynamical behaviors of this system.

Before we analyze the fixed points of the system (1.8), we recall the following lemma [32, 33].
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Lemma 1.1. Let F(λ) = λ2 + Bλ + C, where B and C are two real constants. Suppose λ1 and λ2 are
two roots of F(λ) = 0. Then the following statements hold.

(i) If F(1) > 0, then
(i.1) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1;
(i.2) λ1 = −1 and λ2 , −1 if and only if F(−1) = 0 and B , 2;
(i.3) |λ1| < 1 and |λ2| > 1 if and only if F(−1) < 0;
(i.4) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1;
(i.5) λ1 and λ2 are a pair of conjugate complex roots and, |λ1| = |λ2| = 1

if and only if −2 < B < 2 and C = 1;
(i.6) λ1 = λ2 = −1 if and only if F(−1) = 0 and B = 2.

(ii) If F(1) = 0, namely, 1 is one root of F(λ) = 0, then the another root
λ satisfies |λ| = (<, >)1 if and only if |C| = (<, >)1.

(iii) If F(1) < 0, then F(λ) = 0 has one root lying in (1,∞). Moreover,
(iii.1) the other root λ satisfies λ < (=) − 1 if and only if F(−1) < (=)0;
(iii.2) the other root −1 < λ < 1 if and only if F(−1) > 0.

2. Existence and stability of fixed points

In this section, we first consider the existence of fixed points of the system (1.8) and then analyze
the local stability of these fixed points.

The fixed points of the system (1.8) satisfy the following equations x = x + δx(1 − x) − δaxy2

1+xy − δh,

y = y + δy( bxy
1+xy − c),

(2.1)

namely,  x(1 − x) − axy2

1+xy − h = 0,

y( bxy
1+xy − c) = 0.

(2.2)

Considering the biological meanings of the system (1.8), one only takes into account its nonnegative
fixed points. Corresponding analysis is as follows:
(i) if h > 1

4 , then x(1 − x) − axy2

1+xy − h < 0 for all nonnegative x and y, hence the system (1.8) has no
equilibria;
(ii) if h = 1

4 , then x(1 − x) − axy2

1+xy − h = 0 if and only if x = 1
2 and y = 0, so, the system (1.8) has a

unique predator free equilibrium A( 1
2 , 0);

(iii) if 0 < h < 1
4 , then the system (1.8) has two boundary equilibria B(1−

√
1−4h
2 , 0) and C( 1+

√
1−4h
2 , 0),

and some positive equilibria may take place. Next, we further analyse this case.
If the system (1.8) has a positive equilibrium, denoted as (x, y), then following (2.2) we have x3 − x2 + hx + ac2

b(b−c) = 0,

y = c
(b−c)x ,

(2.3)

where 0 < x < 1, b > c and 0 < h < 1
4 .
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Let

f (x) = x3 − x2 + hx +
ac2

b(b − c)
,

then
f ′(x) = 3x2 − 2x + h.

Since 0 < h < 1
4 , f ′(x) has two unequal real roots x1 = 1−

√
1−3h
3 and x2 = 1+

√
1−3h
3 in the interval

(0, 1). On the other hand, we can see that 0 < f (0) < f (1) and 0 < x1 < x2 < 1, and that f (x) is
increasing for x ∈ (0, x1) ∪ (x2, 1) and decreasing for x ∈ (x1, x2).

For the sake of convenient discussion later, let

a0 =
b(b − c)[2 − 9h + (2 − 6h)

√
1 − 3h]

27c2 . (2.4)

It is easy to compute f (x2) =
c2(a−a0)
b(b−c) . So, we have the following results about the positive real roots

x ∈ (0, 1) of f (x) = 0:
(i) if a > a0, then f (x2) > 0, hence f (x) has no positive real root in (0, 1)⇒ the system (1.8) has no

positive equilibria;
(ii) if a = a0, then f (x2) = 0, hence f (x) has one real root x2 in (0, 1), and it is a double root⇒ the

system (1.8) possesses a unique positive equilibrium E1(1+
√

1−3h
3 , c(1−

√
1−3h)

h(b−c) );
(iii) if a < a0, then f (x2) < 0, hence f (x) has two positive roots xA and xB in (0, 1), and 0 < x1 <

xA < x2 < xB < 1⇒ the system (1.8) has two positive equilibria E2(xA,
c

(b−c)xA
) and E3(xB,

c
(b−c)xB

).
Summarizing the above discussions, we obtain the following result.

Theorem 2.1. Consider the system (1.8). Suppose a0 is defined in (2.4). The existence conditions for
all nonnegative fixed points of the system(1.8) are summarized in the Table 1.

Table 1. Properties of the fixed points.
Conditions Existence of fixed points
h > 1

4 nonexistence
h = 1

4 A( 1
2 , 0)

a > a0 B( 1−
√

1−4h
2 , 0),C( 1+

√
1−4h
2 , 0)

0 < h < 1
4 a = a0 B,C, E1(1+

√
1−3h
3 , c(1−

√
1−3h)

h(b−c) )
a < a0 B,C, E2(xA,

c
(b−c)xA

), E3(xB,
c

(b−c)xB
)

Now we begin to analyze the stability of these fixed points. The Jacobian matrix J of the system
(1.8) at a fixed point E(x, y) is presented as follows:

J(E) =

1 + δ(1 − 2x − ay2

(1+xy)2 ) −
axyδ(2+xy)

(1+xy)2

by2δ

(1+xy)2 1 + δ( bxy(2+xy)
(1+xy)2 − c)

 , (2.5)

and the characteristic equation of Jacobian matrix J(E) can be written as

λ2 + p(x, y)λ + q(x, y) = 0, (2.6)
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where

p(x, y) = − 2 − δ
(
1 − c − 2x +

bxy(2 + xy) − ay2

(1 + xy)2

)
,

q(x, y) =1 + δ

(
1 − c − 2x +

bxy(2 + xy) − ay2

(1 + xy)2

)

+ δ2
(

acy2

(1 + xy)2 + (1 − 2x)(
bxy(2 + xy)

(1 + xy)2 − c)
)
.

For the stability of fixed points A( 1
2 , 0), B( 1−

√
1−4h
2 , 0) and C( 1+

√
1−4h
2 , 0), we can easily get the fol-

lowing Theorems 2.2–2.4, respectively.

Theorem 2.2. The fixed point A = ( 1
2 , 0) of the system (1.8) is non-hyperbolic.

Theorem 2.3. For 0 < h < 1
4 , the boundary fixed point B = (1−

√
1−4h
2 , 0) of the system (1.8) occurs.

Moreover, the following statements about the fixed point B are true.
1) If 0 < δ < 2

c , B is a saddle;
2) if δ = 2

c , B is non-hyperbolic;
3) if δ > 2

c , B is a source.

Theorem 2.4. For 0 < h < 1
4 , the boundary fixed point C = (1+

√
1−4h
2 , 0) of the system (1.8) occurs. In

addition, the following results in the Table 2 are valid about the fixed point C.

Table 2. Properties of the fixed point C.

Conditions
Eigenvalues

Properties
λ1 = 1 − δ

√
1 − 4h, λ2 = 1 − δc

c <
√

1 − 4h
0 < δ < 2

√
1−4h

|λ1| < 1, |λ2| < 1 sink
δ = 2

√
1−4h

|λ1| = 1, |λ2| , 1 non-hyperbolic
2

√
1−4h

< δ < 2
c |λ1| > 1, |λ2| < 1 saddle

δ = 2
c |λ1| , 1, |λ2| = 1 non-hyperbolic

δ > 2
c |λ1| > 1, |λ2| > 1 source

c =
√

1 − 4h
0 < δ < 2

c |λ1| < 1, |λ2| < 1 sink
δ = 2

c |λ1| = 1, |λ2| = 1 non-hyperbolic
δ > 2

c |λ1| > 1, |λ2| > 1 source

c >
√

1 − 4h
0 < δ < 2

c |λ1| < 1, |λ2| < 1 sink
δ = 2

c |λ1| , 1, |λ2| = 1 non-hyperbolic
2
c < δ <

2
√

1−4h
|λ1| < 1, |λ2| > 1 saddle

δ = 2
√

1−4h
|λ1| = 1, |λ2| , 1 non-hyperbolic

δ > 2
√

1−4h
|λ1| > 1, |λ2| > 1 source

For the stability of the positive equilibrium point E1( 1+
√

1−3h
3 , c(1−

√
1−3h)

h(b−c) ), one will discuss it in the
next section.
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3. Bifurcation analysis

In this section, we use the central manifold theorem and bifurcation theory to discuss the flip bifur-
cation and saddle-node bifurcation at the boundary fixed point B and the positive equilibrium point E1

of the system (1.8).

3.1. Flip bifurcation

From Theorem (2.3) one can see that, when the parameter δ goes through the critical value δ0 = 2
c ,

the dimension numbers of stable and unstable manifolds of the system (1.8) at the fixed point B change.
A bifurcation will occur. Again, for δ = δ0, one eigenvalue −1 appears. So, at this time, the system
may produce a flip bifurcation, which is considered in the following, and δ is chosen as bifurcation
parameter. Remember the parameters

(a, b, c, h, δ) ∈ S E+
= {(a, b, c, h, δ) ∈ R5

+|0 < a, 0 < h <
1
4
, 0 < c < b, δ > 0}.

Let X = x − xB,Y = y − yB, δ
∗ = δ − δ0. We transform the fixed point B(xB, yB) to the origin and

consider the parameter δ∗ as a new independent variable. Thus, the system (1.8) becomes
X

Y

δ∗

→

X + (δ∗ + δ0)(X + xB)

[
1 − (X + xB) − a(Y+yB)2

1+(X+xB)(Y+yB)

]
− (δ∗ + δ0)h

Y + (Y + yB)(δ∗ + δ0)( b(X+xB)(Y+yB)
1+(X+xB)(Y+yB) − c)

δ∗

 . (3.1)

Taylor expanding of the system (3.1) at (X,Y, δ∗) = (0, 0, 0) takes the form:

Xn+1 = a100Xn + a010Yn + a001δ
∗
n + a200X2

n + a020Y2
n + a002δ

∗
n

2

+a110XnYn + a101Xnδ
∗
n + a011Ynδ

∗
n + a300X3

n + a030Y3
n

+a003δ
∗
n

3 + a210X2
nYn + a201X2

nδ
∗
n + a102Xnδ

∗
n

2 + a120XnY2
n

+a111XnYnδ
∗
n + a012XnY2

n + a021Y2
nδ
∗
n + O(ρ4

1),

Yn+1 = b100Xn + b010Yn + b001δ
∗
n + b200X2

n + b020Y2
n + b002δ

∗
n

2

+b110XnYn + b101Xnδ
∗
n + b011Ynδ

∗
n + b300X3

n + b030Y3
n

+b003δ
∗
n

3 + b210X2
nYn + b201X2

nδ
∗
n + b102Xnδ

∗
n

2 + b120XnY2
n

+b111XnYnδ
∗
n + b012XnY2

n + b021Y2
nδ
∗
n + O(ρ4

1),

δ∗n+1 = δ∗n,

(3.2)

where ρ1 =

√
X2

n + Y2
n + δ∗n

2,

a100 = 1 + δ0

√
1 − 4h, a200 = −2δ0, a020 = aδ0(

√
1 − 4h − 1),

a101 =
√

1 − 4h, a030 =
3
2

aδ0(1 −
√

1 − 4h), a201 = −2,
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a120 = −2aδ0, a021 = a(
√

1 − 4h − 1),

b010 = 1 − cδ0, b020 = bδ0(1 −
√

1 − 4h), b011 = −c,

b030 = −
3
2

bδ0(1 −
√

1 − 4h), b120 = 2bδ0, b021 = b(1 −
√

1 − 4h),

a011 = a010 = a110 = a001 = a002 = a300 = a210 = a012 = a003

= a102 = a111 = b100 = b001 = b200 = b002 = b110 = b101

= b300 = b003 = b210 = b201 = b102 = b012 = b111 = 0.

Namely, the system (3.2) is equivalent to the following form:
X

Y

δ∗

→

1 + δ0

√
1 − 4h 0 0

0 1 − cδ0 0

0 0 1



X

Y

δ∗

 +


F1(X,Y, δ∗)

F2(X,Y, δ∗)

0

 , (3.3)

where

F1(X,Y, δ∗) = − 2δ0X2 + aδ0(
√

1 − 4h − 1)Y2 +
√

1 − 4hXδ∗

+
3
2

aδ0(1 −
√

1 − 4h)2Y3 − 2X2δ∗ − 2aδ0XY2

+ a(
√

1 − 4h − 1)Y2δ∗ + O(ρ4
1),

F2(X, a∗,Y) =bδ0(1 −
√

1 − 4h)Y2 − cYδ∗ −
3
2

bδ0(1 −
√

1 − 4h)2Y3

+ 2bδ0XY2 + b(1 −
√

1 − 4h)Y2δ∗ + O(ρ4
1).

By the center manifold theorem, the stability of (X,Y) = (0, 0) near δ∗ = 0 can be determined by
studying a one-parameter family of map on a center manifold, which can be written as:

Wc(0) = {(X,Y, δ∗) ∈ R3|X = h∗1(Y, δ∗), h∗1(0, 0) = 0,Dh∗1(0, 0) = 0}.

Assume that h∗1(Y, δ∗) has the following form:

h∗1(Y, δ∗) = b∗20Y2 + b∗11Yδ∗ + b∗02δ
∗2 + O(ρ3

3),

where ρ3 =
√

Y2 + δ∗2 . Then the center manifold equation must satisfy

h∗1(−Y + F2(h∗1(Y, δ∗),Y, δ∗), δ∗) = (1 + δ0

√
1 − 4h)h∗1(Y, δ∗) + F1(h∗1(Y, δ∗),Y, δ∗).

Comparing the corresponding coefficients of terms with the same orders in the above center mani-
fold equation, we get

b∗20 =
a(1 −

√
1 − 4h)

√
1 − 4h

, b∗11 = b∗02 = 0.
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Thus the system (3.3) restricted to the center manifold is given by

F : Y →− Y + bδ0(1 −
√

1 − 4h)Y2 − cYδ∗ −
3
2

bδ0(1 −
√

1 − 4h)2Y3

+ b(1 −
√

1 − 4h)Y2δ∗ + O(ρ4
3),

and

F2 : Y →Y + cYδ∗ + (3 − 2bδ0)bδ0(1 −
√

1 − 4h)2Y3 + 4b(1 −
√

1 − 4h)Y2δ∗ + O(ρ4
3).

Therefore, one has

F(Y, δ∗)|(0,0) = 0,
∂F
∂Y

∣∣∣∣∣
(0,0)

= −1,
∂F2

∂δ∗

∣∣∣∣∣
(0,0)

= 0,
∂2F2

∂Y∂δ∗

∣∣∣∣∣
(0,0)

= c,

∂2F2

∂Y2

∣∣∣∣∣
(0,0)

= 0,
∂3F2

∂Y3

∣∣∣∣∣
(0,0)

= 6(3 − 2bδ0)bδ0(1 −
√

1 − 4h)2.

According to [34], if the nondegenerency conditions ∂3F2

∂Y3 |(0,0) , 0 and ∂2F2

∂Y∂δ∗

∣∣∣∣∣
(0,0)
, 0 hold, then the

system (1.8) undergoes a flip bifurcation. Obviously, they hold. Therefore, the following result may
be derived.

Theorem 3.1. Assume the parameters (a, b, c, h, δ) ∈ S E+
= {(a, b, c, h, δ) ∈ R5

+|0 < a, 0 < h < 1
4 , 0 <

c < b, δ > 0}. Let δ0 = 2
c , then the system (1.8) undergoes a flip bifurcation at B( 1−

√
1−4h
2 , 0) when the

parameter δ varies in a small neighborhood of the critical value δ0.

3.2. Saddle-node bifurcation

In the next one considers the saddle-node bifurcation of the system (1.8) at the positive fixed
point E1(x0, y0), where a is chosen as bifurcation parameter. The characteristic equation of Jacobian
matrix J of the system (1.8) at the positive fixed point E1(x0, y0) is presented as

f (λ) = λ2 + p(x0)λ + q(x0) = 0, (3.4)

where x0 = 1+
√

1−3h
3 , y0 = c

(b−c)x0
, 0 < h < 1

4 and b > c, p(x0) and q(x0) are given by

p(x0) = − 2 − δ(1 − 2x0 −
ac2

b2x2
0

+
c(b − c)

b
),

q(x0) =1 + δ[1 − 2x0 +
c(b − c)

b
−

ac2

b2x2
0

].

Notice f (1) = 0 always holds. So, λ1 = 1 is a root of f (λ) = 0. If

√
1 − 3h ,

δ(3c(b − c) + 2b − c) − 3nb
2δ(2b − c)

, n = 0,−2, (3.5)
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then another eigenvalue of the fixed point E1(x0, y0) satisfies

λ2 = 1 + δ(1 + c − 2x0 −
c2

b
−

a0c2

b2x2
0

), and |λ2| , 1.

As this time, the system may produce a fold bifurcation, which is considered in the following.
Let X = x−x0,Y = y−y0, a∗ = a−a0, which transform the fixed point (x0, y0) to the origin. Consider

the parameter a∗ as a new independent variable, then the system (1.8) becomes
X

a∗

Y

→

X + δ(X + x0)[1 − (X + x0)] − δ(a∗+a0)(X+x0)(Y+y0)2

1+(X+x0)(Y+y0) − δh

a∗

Y + δ(Y + y0)( b(X+x0)(Y+y0)
1+(X+x0)(Y+y0) − c)

 . (3.6)

Taylor expanding of the system (3.6) at (X, a∗,Y) = (0, 0, 0) obtains

Xn+1 = a100Xn + a010a∗n + a001Yn + a200X2
n + a002Y2

n + a110Xna∗n

+a101XnYn + a011a∗nYn + a300X3
n + a210X2

na∗n + a201X2
nYn

+a102XnY2
n + a111Xna∗nYn + a012a∗nY2

n + a003Y3
n + O(ρ4

1),

a∗n+1 = a∗n,

Yn+1 = b100Xn + b001Yn + b200X2
n + b101XnYn + b002Y2

n + b300X3
n

+b201X2
nYn + b102XnY2

n + b003Y3
n + O(ρ∗1

4),

(3.7)

where ρ∗1 =

√
X2

n + a∗2n + Y2
n ,

a100 = 1 + δ(1 − 2x0) −
δa0y2

0

(1 + x0y0)2 , a010 = −
δx0y2

0

1 + x0y0
,

a001 = −
δa0x0y0(2 + x0y0)

(1 + x0y0)2 , a200 = −δ +
δa0y3

0

(1 + x0y0)3 ,

a002 = −
δa0x0

(1 + x0y0)3 , a110 = −
δy2

0

(1 + x0y0)2 , a101 = −
2δa0y0

(1 + x0y0)3 ,

a011 = −
δx0y0(2 + x0y0)

(1 + x0y0)2 , a300 = −
δa0y4

0

(1 + x0y0)4 , a003 =
δa0x2

0

(1 + x0y0)4 ,

a210 =
δy3

0

(1 + x0y0)3 , a201 =
3δa0y2

0

(1 + x0y0)4 , a102 = −
δa0(1 − 2x0y0)

(1 + x0y0)4 ,

a111 = −
2δy0

(1 + x0y0)3 , a012 = −
δx0

(1 + x0y0)3 , b100 =
δby2

0

(1 + x0y0)2 ,

b001 = 1 + δ(
bx0y0

1 + x0y0
+

bx0y0

(1 + x0y0)2 − c), b200 = −
δby3

0

(1 + x0y0)3 ,
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b002 =
δbx0

(1 + x0y0)3 , b101 =
2δby0

(1 + x0y0)3 , b300 =
δby4

0

(1 + x0y0)4 ,

b003 = −
δbx2

0

(1 + x0y0)4 , b201 = −
3δby2

0

(1 + x0y0)4 , b102 =
δb(1 − 2x0y0)

(1 + x0y0)4 ,

a020 = a030 = a021 = a120 = b010 = b020 = b110 = b011 = b030

= b210 = b120 = b111 = b012 = b021 = 0.

Then the system (3.7) is equivalent to the following form:
X

a∗

Y

→

a11 a12 a13

0 1 0

a31 0 a33




X

a∗

Y

 +


F1(X, a∗,Y)

0

F2(X, a∗,Y)

 , (3.8)

where

a11 =a100, a12 = a010, a13 = a001, a31 = b100, a33 = b001,

F1(X, a∗,Y) =a200X2 + a020a∗
2
+ a002Y2 + a110Xa∗ + a101XY

+ a011a∗Y + a300X3 + a210X2a∗ + a201X2Y

+ a120Xa∗
2
+ a102XY2 + a111Xa∗Y + a030a∗

3

+ a021a∗
2
Y + a003Y3 + O(ρ4

1),

F2(X, a∗,Y) =b200X2 + b101XY + b002Y2 + b300X3 + b201X2Y

+ b102XY2 + b003Y3 + O(ρ∗1
4).

Assume that
(a11 − 1)2 + a13a31 , 0. (3.9)

Take

T =


a13

1−a11
a31

λ2 − a33

0 (1−a11)2+a13a31
a12a31

0

1 − a11 0 a31

 ,
then T−1 exists.

Under the transformation 
X

a∗

Y

 = T


U

a∗1
V

 ,
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the system (3.8) becomes 
U

a∗1
V

→

1 1 0

0 1 0

0 0 λ2



U

a∗1
V

 +


g1(U, a∗1,V)

0

g2(U, a∗1,V)

 , (3.10)

where ρ∗2 =
√

X2 + a∗2 + Y2,

g1(U, a∗1,V) = j200X2 + j002Y2 + j110Xa∗ + j101XY

+ j011a∗Y + j300X3 + j210X2a∗ + j201X2Y

+ j102XY2 + j111Xa∗Y + j003Y3 + O(ρ∗2
4),

g2(U, a∗1,V) =k200X2 + k002Y2 + k110Xa∗ + k101XY + k011a∗Y

+ k300X3 + k210X2a∗ + k201X2Y + k102XY2

+ k111Xa∗Y + k003Y3 + O(ρ∗2
4),

X =a13U +
1 − a11

a31
a∗1 + (λ2 − a33)V,

a∗ = −
(1 − a11)2 + a13a31

a12a31
a∗1,

Y =a31(1 − a11)U + a31V,

j200 =
δ(a33 − 1)
a13(1 − λ2)

+
δy3

0

(1 − λ2)(1 + x0y0)3

[
a0(1 − a33)

a13
− b

]
,

j002 =
δx0

(1 − λ2)(1 + x0y0)3

[
b −

a0(1 − a33)
a13

]
,

j110 =
δy2

0(a33 − 1)
a13(1 − λ2)(1 + x0y0)2 ,

j011 = −
δx0y0(1 − a33)(2 + x0y0)
a13(1 − λ2)(1 + x0y0)2 ,

j101 =
2δy0

(1 − λ2)(1 + x0y0)3

[
b −

a0(1 − a33)
a13

]
,

j300 =
δy4

0

(1 − λ2)(1 + x0y0)4

[
b −

a0(1 − a33)
a13

]
,

j210 =
δy3

0(1 − a33)
a13(1 − λ2)(1 + x0y0)4 ,

j111 = −
2δy0(1 − a33)

a13(1 − λ2)(1 + x0y0)3 ,
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j201 =
3δy2

0

(1 − λ2)(1 + x0y0)4

[
a0(1 − a33)

a13
− b

]
,

j102 =
δ(1 − 2x0y0)

(1 − λ2)(1 + x0y0)4

[
b −

a0(1 − a33)
a13

]
,

j003 =
δx2

0

(1 − λ2)(1 + x0y0)4

[
a0(1 − a33)

a13
− b

]
,

k200 =
δ

1 − λ2
+

δy3
0

(λ2 − 1)(1 + x0y0)3

[
a0 −

a13b
a11 − 1

]
,

k002 =
δx0

(λ2 − 1)(1 + x0y0)3

[
a13b

a11 − 1
− a0

]
,

k110 = −
δy2

0

(λ2 − 1)(1 + x0y0)2 ,

k011 = −
δx0y0(2 + x0y0)

(λ2 − 1)(1 + x0y0)2 ,

k101 =
2δy0

(λ2 − 1)(1 + x0y0)3

[
a13b

a11 − 1
− a0

]
,

k300 =
δy4

0

(λ2 − 1)(1 + x0y0)4

[
a13b

a11 − 1
− a0

]
,

k210 =
δy3

0

(λ2 − 1)(1 + x0y0)4 ,

k111 = −
2δy0

(λ2 − 1)(1 + x0y0)3 ,

k201 =
3δy2

0

(λ2 − 1)(1 + x0y0)4

[
a0 −

a13b
a11 − 1

]
,

k102 =
δ(1 − 2x0y0)

(λ2 − 1)(1 + x0y0)4

[
a13b

a11 − 1
− a0

]
,

k003 =
δx2

0

(λ2 − 1)(1 + x0y0)4

[
a0 −

a13b
a11 − 1

]
.

By the center manifold theorem, the stability of (U,V) = (0, 0) near a∗1 = 0 can be determined by
studying a one-parameter family of map on a center manifold, which can be written as:

Wc(0) = {(U, a∗1,V) ∈ R3|V = h∗2(U, a∗1), h∗2(0, 0) = 0,Dh∗2(0, 0) = 0}.

Assume that h∗2(U, a∗1) has the following form:

h∗2(U, a∗1) = c∗20U2 + c∗11Ua∗1 + c∗02a∗
2

1 + O(ρ3
∗3),

Electronic Research Archive Volume 30, Issue 10, 3930–3948.



3943

where ρ∗3 =

√
U2 + a∗21 . Then the center manifold equation must satisfy

h∗2(U + a∗1 + g1(U, a∗1, h
∗
2(U, a∗1)), a∗1) = λ2h∗2(U, a∗1) + g2(U, a∗1, h

∗
2(U, a∗1)).

Comparing the corresponding coefficients of terms with the same orders in the above center manifold
equation, we get

c∗20 =
a2

13k200 + (1 − a11)2k002 + a13(1 − a11)k101

1 − λ2
,

c∗11 =
a12(1 − a11)[2a13k200 + (1 − a11)k101]

a12a31(1 − λ2)

+
[a13a31 + (1 − a11)2][a13k110 + (1 − a11)k011]

a12a31(1 − λ2)

−
2[a2

13k200 + (1 − a11)2k002 + a13(1 − a11)k101]
(1 − λ2)2 ,

c∗02 =
(1 − a11)[a12(1 − a11)k200 + [a13a31 + (1 − a11)2]k110]

a12a2
31(1 − λ2)

−
a2

13k200 + (1 − a11)2k002 + a13(1 − a11)k101

(1 − λ2)2

−
a12(1 − a11)[2a13k200 + (1 − a11)k101]

a12a31(1 − λ2)2

−
[a13a31 + (1 − a11)2][a13k110 + (1 − a11)k011]

a12a31(1 − λ2)2

+
2[a2

13k200 + (1 − a11)2k002 + a13(1 − a11)k101]
(1 − λ2)3 .

Thus the system (3.10) restricted to the center manifold is given by

G∗ : U →U + a∗1 + h20U2 + h02a∗
2

1 + h11Ua∗1 + h30U3 + h21U2a∗1

+ h12Ua∗
2

1 + h03a∗
3

1 + O(ρ∗4
4),

where

h20 =a2
13 j200 + (1 − a11)2 j002 + a13(1 − a11) j101,

h02 =
(1 − a11)2 j200

a2
31

+
(1 − a11)[a13a31 + (1 − a11)2] j110

a12a2
31

,

h11 =
(1 − a11)[2a13 j200 + (1 − a11) j101]

a13
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+
[a13a31 + (1 − a11)2][a13 j110 + (1 − a11) j011]

a12a13
,

h30 =2a13c∗20(λ2 − a33) j200 + 2a31c∗20(1 − a11) j002

+ c∗20[a13a31 + (1 − a11)(λ2 − a33)] j101,

h21 =2(λ2 − a33)
[
a13c∗11 +

2c∗20(1 − a11)
a13

]
j200 + 2a31c∗11(1 − a11) j002

+
c∗20[a13a31 + (1 − a11)2][(λ2 − a33) j110 + a31 j011]

a12a31

+ [c∗1(1 − a11) + c∗2[a13a31 + (1 − a11)(λ2 − a11)]] j101,

h12 =
2c∗11(1 − a11)(λ2 − a33) j200

a31
+ 2a31c∗02(1 − a11) j002

+ [c∗11(1 − a11) + c∗20[a13a31 + (1 − a11)(λ2 − a33)]] j101

+
c∗11[a13a31 + (1 − a11)2][(λ2 − a33) j110 + a31 j011]

a12a31
,

h03 =c∗02(λ2 − a33)
[
2a13 +

2(1 − a11)
a13

]
j200 + c∗11(1 − a11) j101

+
c∗02[a13a31 + (1 − a11)2][(λ2 − a33) j110 + a31 j011]

a12a13
.

Therefore, one has

G∗(U, a∗1)|(0,0) = 0,
∂G∗

∂U

∣∣∣∣∣
(0,0)

= 1 , 0,

∂G∗

∂a∗1

∣∣∣∣∣
(0,0)

= 1 , 0,
∂2G∗

∂U2

∣∣∣∣∣
(0,0)

= 2h20.

If the condition ∂2G∗
∂U2 |(0,0) , 0 is true, then the system (1.8) undergoes a saddle-node bifurcation [34].

Therefore, we need assume
h20 , 0. (3.11)

And the following result may be derived.

Theorem 3.2. Consider the system (1.8). Let a0 be defined in (2.4). Set the parameters (a, b, c, h, δ) ∈
S E+

= {(a, b, c, h, δ) ∈ R5
+|0 < h < 1

4 , 0 < c < b,
√

1 − 3h , δ(3c(b−c)+2b−c)−3nb
2δ(2b−c) , n = 0,−2}.

If the conditions (3.9) and (3.11) hold, then the system (1.8) undergoes a saddle-node bifurcation
at E1(1+

√
1−3h
3 , c(1−

√
1−3h)

h(b−c) ) when the parameter a varies in a small neighborhood of the critical value a0.

Remark. Since the characteristic equation corresponding to the system (3.10) contains double roots
λ1 = λ3 = 1, the normal form can not be obtained by known routine method. Here we use a special
mathematical skill to find the invertible matrix T .
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(a) δ ∈ (3, 5) (b) δ ∈ (4.2, 5)
Figure 1. Bifurcation of the system (1.8) with a = 3, b = 1.1, c = 0.6, h = 0.16 in (δ, x)-
plane.

a ∈ (0.18, 0.23)
Figure 2. Bifurcation of the system (1.8) with b = 0.56, c = 0.25, δ = 0.187, h = 0.12 in
(a, x)-plane.

4. Numerical simulation

In this section, we give the bifurcation diagrams of the system (1.8) to illustrate the above theoretical
analyses and further reveal some new dynamical behaviors to occur by Matlab software.

First fix the parameter values a = 3, b = 1.1, c = 0.6, h = 0.16, let δ ∈ (2, 5) and take the initial
values (x0, y0) = (0.2, 0) in Figure 1. We can see that there is a stable fixed point for δ ∈ (2, 3.35), and
a flip bifurcation occurs at δ0 = 3.35, eventually, period-double bifurcation to chaos. The fixed point E
is unstable when δ > δ0. This agrees to the results stated in Theorem 3.1.

Then fix the parameter values b = 0.56, c = 0.25, δ = 0.187, h = 0.12, and vary a in the range
(0.18, 0.23) with the initial value (x0, y0) = (0.6, 1.3) in Figure 2. One can see that there is a stable fixed
point for a ∈ (0.195, 0.205), and that a saddle-node bifurcation occurs at a0 = 0.2. When a < a0 and
is increasing to a0, the fixed point E1 is gradually stable. When a > a0, the fixed point E1 is unstable.
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This agrees to the results stated in Theorem 3.2.

5. Discussion and conclusions

In this paper, toward a discrete-time predator-prey system of Gause type with constant-yield prey
harvesting and a monotonically increasing functional response in R2, we investigate its flip bifurcation
and saddle-node bifurcation problems. By using the center manifold theorem and the bifurcation the-
ory, one shows that the flip bifurcation and saddle-node bifurcation of the discrete-time system take
place.

We finally present numerical simulations, which not only illustrate the theoretical analysis results,
but also find some new properties of the system (1.8)-chaos occurring.

One of the highlights in this paper is to skillfully find an invertible transform to derive the normal
form of the flip (fold) bifurcation of the system (1.8), and determine the stability of the closed orbit
bifurcated, while it is impossible for one to use routine methods because its two characteristic roots are
double so that corresponding invertible matrix does not exist.
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