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Abstract: Using the forward Euler method, we derive a discrete predator-prey system of Gause type
with constant-yield prey harvesting and a monotonically increasing functional response in this paper.
First of all, a detailed study for the existence and local stability of fixed points of the system is obtained
by invoking an important lemma. Mainly, by utilizing the center manifold theorem and the bifurcation
theory some sufficient conditions are obtained for the saddle-node bifurcation and the flip bifurcation
of this system to occur. Finally, with the use of Matlab software, numerical simulations are carried
out to illustrate the theoretical results obtained and reveal some new dynamics of the system-chaos
occuring.
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1. Introduction and preliminaries

With the continuous development of human society and the continuous progress of civilization,
resource consumption and environmental pollution are being increased day by day, and human beings
have also been punished by nature, such as frequent occurrences of natural disasters, viruses wreak
havoc, etc. So it is very important to find strategies to deal with environmental problems. Mathematical
modelling is a force tool to reveal the changing trend of natural environment. More and more scholars
use mathematical methods to study ecological balance problem.

Generally speaking, the classical predator-prey model has the following structure:

dy (1.1)

{ &= fx)x - g(x, y)y,
o = €8(x,y)y — py,
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where x(¢) and y(¢) represent the population densities of prey and predator in time ¢ respectively, f(x) is
the net growth rate of prey without predator, g(x,y) is the consumption rate of prey by predator, € and
u are the positive constants respectively representing the conversion rate of captured prey into predator
and the mortality of predator. In order to show the crowding effect, when the prey is large, the prey
growth rate f(x) in model (1.1) is usually a negative value. The most famous example of xf(x) is the
logistic form:

xf(x) = rx(l = %), (1.2)

among them, the positive constants r and K respectively represent the inherent growth rate of the prey
and the carrying capacity of environment to the prey without the predator. In this paper, we assume
that x f(x) takes the logistic form given by above (1.2). Consequently, model (1.1) reads as

{ L= rx(l - 2) - g(x, )y, 13
dy _ '
o = €8(x, y)y — uy.

The behavioral characteristics of the predator species can be reflected by the key element g(x, y),
called functional response or nutritional function. Ultimately, the functional response plays an impor-
tant role in determining different dynamical behaviors, such as steady state, oscillation, bifurcation and
chaos phenomenon [1]. The functional response g(x, y) in population dynamics (and other disciplines)
has several traditional forms:

(i) g(x,y) depends on x only (meaning g(x,y) = g(x)).
¢ Holling type I [2—4]:

g(x) = mx;

¢ Holling type II [5-8]:
gx) = 2

¢ Holling type III [9-12]:

2

g(x) = 75,

¢ Holling type IV [13-16]:
g(x) = u’jzz-

(i1) p(x,y) depends on both x and y.
o Ratio-dependent type [17]:

mx

g(xy) = 45

¢ Beddington-DeAngelis type [18, 19]:
8X.Y) = gt

o Hassell-Varley type [20,21]:

mx 11

g, y) = 5=y = 3.3
The parametz:;s m, a, 172 afld ¢ in the above formulas are all positive constants, and they have different
biological meanings in different formulas. In order to propose a functional response to show how a
group of predators (for example, a group of tuna) search, contact and then hunt a prey or a group
of preys, several biological hypotheses were proposed. Based on these assumptions and the logic
of Holling [22], the hunting cooperation proposed by Cosner, DeAngelis, Ault and Olson [23] has a
special functional response, as shown below:

Cepx
g('x’y) = 1+hCOeoyxy' (14)
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here, C is the score of the prey killed in each encountering each predator, e is the total encountering co-
efficient between the predator and the prey, and /4 is the processing time of each prey. It’s monotonous.
Ryu, Ko and Haque [24] introduced this reaction into model (1.3) and obtained the following system:

dx _ _xy\ _ _Ceoxy
{ dt — rx(l K) 1+hCeoxyy’

(1.5)

dy eCepxy _
dt — l+hCeoxyy Hy-

A common phenomenon in the predator-prey model is called cooperative hunting between preda-
tors. This phenomenon makes the encountering rate between the predator and the prey change with
the number of predators [25-30]. However, when encountering a gathering of prey, there may be ex-
treme phenomena leading to the eventual extinction of the predator. Therefore, Shang, Qiao, Duan and
Miao [31] added the constant yield harvest H to the first equation of the model (1.5) to study the ar-
rangement of renewable resources that ensures the coexistence of two species. By the transformations
t=rt,x= %,y =hCeKy, a = m b==%,c=*%and h= % and dropping the bars in the above
alphabets, we get the following predator-prey system:

dx _ oy ax?
o =x(1-x) o h,

dy _ bo? _
dt — 1+xy cy.

(1.6)

In the system (1.6), we assume that the initial values (xo, yo) are positive to ensure that its solution
is positive. Obviously, it is very difficult and complicated to directly find an exact solution of the
system (1.6), so we consider to find its approximate solution. This motivates us to study the dynamical
properties for the discretization version of the system (1.6).

For a given system, there are many discretization methods, including the forward Euler method, the
backward Euler method, semi-discretization, and so on. In this paper, we use the forward Euler method
to derive the discrete form of the system (1.6). Applying the forward Euler method to the system (1.6),

one has
axayy
14X,y

2 = x,(1 = x,) —
i (1.7)
Yn+1—Yn bxnyn
i Jn — -cy
0 1+X4Yn n

which is written as a map to get the followng system

2
x+6x(1 —x) — 22 _s5p
F- (x) —>( b Ly ) (1.8)
y y+5y(1+xy—c)

where ¢ is the step size, and a, b, ¢, h all are positive constants.

The outline of this paper is as follows: In Section 2, we investigate the existence and stability of
fixed points of the system (1.8). In Section 3, we use the central manifold theorem and the bifurcation
theory to derive some sufficient conditions that ensure the flip bifurcation and saddle-node bifurcation
of the system (1.8) to occur. In Section 4, numerical simulation results are provided to not only support
theoretical analysis derived but also illustrate new and rich dynamical behaviors of this system.

Before we analyze the fixed points of the system (1.8), we recall the following lemma [32,33].
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Lemma 1.1. Let F(1) = A> + BA + C, where B and C are two real constants. Suppose A, and A, are
two roots of F(A1) = 0. Then the following statements hold.
@ If F(1) > 0, then
(i.1) |4 < Tand |A;| < 1ifand only if F(—=1) > 0and C < 1;
(i2) A4y =—land A, # =1 ifand only if F(-1) =0and B + 2;
(i.3) |44 < 1 and |A;| > 1 if and only if F(—1) < 0;
(i.4) |A44] > 1 and |A3| > 1 if and only if F(—=1) > 0 and C > 1;
(i.5) Ay and A, are a pair of conjugate complex roots and, |1;| = || = 1
ifand only if =2 < B<2and C = 1;
(i.6) 4y =, =-1ifand only if F(—1) =0 and B = 2.
(i) If F(1) = 0, namely, 1 is one root of F(1) = 0, then the another root
A satisfies |A| = (<,>)1 if and only if |C| = (<, >)1.
(i) If F(1) < 0, then F(A) = 0 has one root lying in (1, 00). Moreover,
(iii.1) the other root A satisfies A < (=) — 1 if and only if F(—1) < (=)0;
(iii.2) the other root —1 < A < 1 if and only if F(—1) > 0.

2. Existence and stability of fixed points
In this section, we first consider the existence of fixed points of the system (1.8) and then analyze

the local stability of these fixed points.
The fixed points of the system (1.8) satisfy the following equations

I+xy (2 1)

bxy

x=x+06x(1—-x)— 5“”2, — Oh,
y=y+0y(i5 — O

namely,

2o (2.2)

1+xy

{x(l—x)—fjf;—hzo,

Considering the biological meanings of the system (1.8), one only takes into account its nonnegative
fixed points. Corresponding analysis is as follows:

(1) if h > }—P then x(1 — x) — “xfcy — h < 0 for all nonnegative x and y, hence the system (1.8) has no
equilibria'
(i1) if h = 4, then x(1 — x) —

unique predator free equilibrium A(3 5-0);

—h =0if and only if x = 3 and y = 0, so, the system (1.8) has a

1+xy
(i) if 0 < & < 1, then the system (1.8) has two boundary equilibria B(*—3=*,0) and C(:==*,0),
and some positive equilibria may take place. Next, we further analyse this case.

If the system (1.8) has a positive equilibrium, denoted as (x, y), then following (2.2) we have

=0,

{x3—x +hx+b(bc) 2.3

_ _c
Y= (b—c)x?

where0 <x<1,b>cand0<h < 5.
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Let )
=x —x +hx+ ,
fX)=x —x X )
then
f/(x) =3x* = 2x + h.
Since 0 < h < ‘—1‘, f'(x) has two unequal real roots x; = = ‘31_3h and x, = Y23 ‘31_3}1 in the interval

(0,1). On the other hand, we can see that 0 < f(0) < f(1) and 0 < x; < x, < 1, and that f(x) is
increasing for x € (0, x;) U (x,, 1) and decreasing for x € (xy, x»).
For the sake of convenient discussion later, let

_bb-0)[2-9+ (2 -6 VI —3h]

a 2.4

0 770 (2.4)
2(a- . .

It is easy to compute f(x;) = Ch((‘;_‘f))) . So, we have the following results about the positive real roots

x€(0,1)of f(x)=0:

(i) if a > ay, then f(x,) > 0, hence f(x) has no positive real root in (0, 1)= the system (1.8) has no
positive equilibria;

(i1) if a = ay, then f(x,) = 0, hence f(x) has one real root x, in (0, 1), and it is a double root= the
system (1.8) possesses a unique positive equilibrium E, (1 ‘/ﬁ, C(llz(ﬁ) );

(ii1) if a < aop, then f(x,) < 0, hence f(x) has two positive roots x4 and xg in (0, 1), and 0 < x; <
X4 < X < xg < 1= the system (1.8) has two positive equilibria E>(x4, m) and E5(xp, m).

Summarizing the above discussions, we obtain the following result.

Theorem 2.1. Consider the system (1.8). Suppose ay is defined in (2.4). The existence conditions for
all nonnegative fixed points of the system(1.8) are summarized in the Table 1.

Table 1. Properties of the fixed points.

Conditions Existence of fixed points
h > % nonexistence

_1 1
h=4 A(3,0)

a > ap B(l_zﬂ’o)’ C(W,O)

1+VI=3h c(1- V1=3h)
B’ C’ El( 3 s h(b—c) )
C C
a<ag B,C, Ex(xa, m), E5(x3, —(b_c)xB)

0<h<}‘ a=ay

Now we begin to analyze the stability of these fixed points. The Jacobian matrix J of the system
(1.8) at a fixed point E(x,y) is presented as follows:

2
1+6(1-2x— 72 — o)
J(E) = I SN 2.5)
(1+xy)2 I +6( +x)? c)
and the characteristic equation of Jacobian matrix J(E) can be written as
A+ pla, A+ q(x,y) =0, (2.6)
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where

bxy(2 — 2
p(x,y):—2—5(1_c_2x+ xy(2 + xy) ay)’

(1 + xy)?
bxy(2 + xy) — ay?
‘J(X’y):1+5(1_c_2x+ 1+ ) )
[ acy? B bxy(2 + xy) B
1) (—(1 T o) + (1 2x)(—(1 g c)).

For the stability of fixed points A(%, 0), B(1:==4h “21_4”, 0) and C(HY1=4h '21_4h, 0), we can easily get the fol-
lowing Theorems 2.2-2.4, respectively.

Theorem 2.2. The fixed point A = (%, 0) of the system (1.8) is non-hyperbolic.

Theorem 2.3. For0 < h < 1 = (== 0)

1 the boundary fixed point B
Moreover, the following statements about the fixed point B are true.
1)If0 <6 < 2, Bis a saddle;
2)ifé = %, B is non-hyperbolic;

3)ifoé > %, B is a source.

of the system (1.8) occurs.

Theorem 2.4. For 0 < h < %, the boundary fixed point C = (Y= '21_4}’, 0) of the system (1.8) occurs. In
addition, the following results in the Table 2 are valid about the fixed point C.

Table 2. Properties of the fixed point C.

Conditions Eigenvalues Properties
Ai=1-6V1—4h, 1, =1-6c
0<0< o= lul<lll<l sink
c<V1-4h §= 2 =1, # 1 non-hyperbolic
12_4h <6< % 4> 1, <1 saddle
= % [ # 1,4 =1 non-hyperbolic
0> % [ > 1, |4 > 1 source
0<6<2 4l <1, <1 sink
c=V1-4n 6=2 ] = 1,14 =1 non-hyperbolic
6> 2 ] > 1, |4, > 1 source
0<6<% <1, <1 sink
c>V1-4h 6= % [ #1, | =1 non-hyperbolic
% 0 < 12_4h <1, >1 saddle
6= = =110 # 1 non-hyperbolic
5> 12_4h ] > 1, > 1 source

1+ VI=-3h c(1=V1-3h)
3

For the stability of the positive equilibrium point E( T

next section.

), one will discuss it in the
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3. Bifurcation analysis

In this section, we use the central manifold theorem and bifurcation theory to discuss the flip bifur-
cation and saddle-node bifurcation at the boundary fixed point B and the positive equilibrium point £
of the system (1.8).

3.1. Flip bifurcation

From Theorem (2.3) one can see that, when the parameter ¢ goes through the critical value §y = %,
the dimension numbers of stable and unstable manifolds of the system (1.8) at the fixed point B change.
A bifurcation will occur. Again, for 6 = 9y, one eigenvalue —1 appears. So, at this time, the system
may produce a flip bifurcation, which is considered in the following, and ¢ is chosen as bifurcation

parameter. Remember the parameters
1
(a,b,c,h,6) € Sg, ={(a,b,c,h,6) eRI0<a,0<h< 4_1’0 <c<b,6>0}.

LetX = x—xp,Y =y—yp, 0 =0 — 0. We transform the fixed point B(xg, yg) to the origin and
consider the parameter 6* as a new independent variable. Thus, the system (1.8) becomes

XY (X + (6 +60)X +x5) [1 = (X + xp) = prpaial | — (5" + Sp)h

1+(X+xp)(Y+yp)
Y- Y + (Y +yp)(0" + Go) (A — ) : (3.1)
0" 5*

Taylor expanding of the system (3.1) at (X, ¥,6") = (0,0, 0) takes the form:

Xos1 = @100Xn + ao10Yn + 0010, + a200X> + Ao Y? + 0020
+a110X, Yy + a101X,6}, + aon Va6, + azooX; + aoxY;)
+a0030"> + az10X2Y, + az01 X267 + a100X,0:% + a120X, Y2
+a111 X, Y,0 + a0 X Y2 + aoo1 Y265 + O(p?),
Yor1 = b10oXn + bo1oYs + booi8; + baooX2 + bono Y2 + booad;” (3.2)
+b110X0 Yy + 101XaS}, + bo11 Y0, + b3ooX; + bosoY,
+bo30"> + by1oX2Y, + byo1 X267 + b10p X, 05 + b1agX, Y2
+b111X,Y,0% + bon X Y2 + boo1 Y265 + O(p?),
5 = &,

n+1

where p; = /X2 + Y2 + 622,

ajpo = 1+ 60 1- 4h, aroo = —260, dppo = 6150( Vl —4h — 1),

3
a1 = V1 —4h, ap = 5050(1 - V1 —4h), ay =-2,
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apo = —2ady, ap; =a(V1—4h-1),

boio = 1 — ¢80, box = bSo(1 = V1 —4h), by, = —c,
3
bozo = —5550(1 = V1 —=4h), bia =2bdy, boy =b(l - V1 -4h),

do11 = Ap1o = Adi10 = Aoo1 = doo2 = A300 = d210 = Ao12 = Aoo3
= ajpy = ain = bioo = boor = baoo = booz = bi10 = bios
= D300 = boos = ba10 = bao1 = b1z = bo12 = by = 0.
Namely, the system (3.2) is equivalent to the following form:

X 1+0p V1 —4h 0 0)(X Fi(X,Y,0")
Y|— 0 1-céy Of|Y|+|FaX,Y,07)], (3.3)
0" 0 0 1)\6" 0

where

Fi(X,Y,6%) = = 260X> + aSo( V1 — 4h — 1)Y? + V1 — 4hX&*
+ %aéo(l — V1 = 4h)?Y? - 2X25* — 2a60XY?
+a(V1 —4h - DY + 0(p}),

Fy(X,a*,Y) =bSo(1 — V1 — 4h)Y* — cY5* — %béo(l — V1 -4n)?*y?

+2b6oXY? + b(1 — V1 —4h)Y?5" + O(p)).

By the center manifold theorem, the stability of (X,Y) = (0,0) near 6* = 0 can be determined by
studying a one-parameter family of map on a center manifold, which can be written as:

W) = {(X, Y,6") € R°|X = hj(Y,5"), h;(0,0) = 0, D;(0,0) = 0}.
Assume that /7(Y, 6”) has the following form:
B(Y,6%) = B Y? + b} Y6 + biys™ + 0(pd),
where p3 = VY2 + 5. Then the center manifold equation must satisfy
(=Y + Fa(hj(Y,67), ¥.6%),6) = (1 + 6o V1 = 4k (Y, 6") + F1({(Y, ), ¥, &)

Comparing the corresponding coefficients of terms with the same orders in the above center mani-

fold equation, we get
., a(l—=~VI1-4h) . .
by = , by =by =0.
1 —4h
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Thus the system (3.3) restricted to the center manifold is given by
F:Y——Y+bsy(l - V1 —dn)Y* - Y6 - %béo(l — V1 -4n)?*y?
+b(1 — V1 —4n)Y?5" + 0(p?),
and
F2:Y Y +cY8 + (3 = 2bSo)bso(1 — V1 — 4h)*Y? + 4b(1 — V1 — 4n)Y25* + O(p?).

Therefore, one has

Y60 = 0 OF B OF? ~ P F? _
, (0,0) ) 8Y 00 ’ 86* 0.0) ? (9Y65* ©0.0) ’
82F2 83 F2
_ 0. = 6(3 — 2b60)bSo(1 — V1 — 4h)*.
37 oo, Y oo ( 0)bdo( )

63 F2 d 62 F2

According to [34], if the nondegenerency conditions %700 # 0 and 7~ # 0 hold, then the

0,0)
system (1.8) undergoes a flip bifurcation. Obviously, they hold. Therefore, the following result may

be derived.

Theorem 3.1. Assume the parameters (a,b,c,h,8) € Sg, = {(a,b,c,h,6) € R3|0 < a,0 < h < 10<

c <b,6>0}. Let 6y = % then the system (1.8) undergoes a flip bifurcation at B(:=—0=% “21_4’1, 0) when the
parameter O varies in a small neighborhood of the critical value 6.

3.2. Saddle-node bifurcation

In the next one considers the saddle-node bifurcation of the system (1.8) at the positive fixed
point E;(xo, yo), where a is chosen as bifurcation parameter. The characteristic equation of Jacobian
matrix J of the system (1.8) at the positive fixed point E;(xy, yo) is presented as

JQ) = 2+ p(x0)d + g(x0) = 0, (3.4)

1+ V1-3h
3

where xy = , Yo = m, O0<h< % and b > ¢, p(xp) and g(x,) are given by

ac*  c(b-o)

b2x; - b

p(xo) = =2 =6(1 = 2x -

),
cb-c) ac?

q(xo) =1+ 06[1 —2xp + 5 bzxé

].
Notice f(1) = 0 always holds. So, 4; = 1 is aroot of f(1) = 0. If

0(Bc(b—c¢)+2b—c)—-3nb
V1 - =0,-2 .
3h # 26(2b — ¢) n=0,-2, 3:5)
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then another eigenvalue of the fixed point E(xy, yo) satisfies

®  ayc?

/12:1+6(1+C—2X0——

-—), d |4 1.
y g ond

As this time, the system may produce a fold bifurcation, which is considered in the following.
Let X = x—x¢, Y = y—yo,a" = a—ay, which transform the fixed point (x, yo) to the origin. Consider
the parameter a* as a new independent variable, then the system (1.8) becomes

X X +6X + x)[1 - (X + x0)] — S +a)X+x0) Y30 _ s

1+(X+x0)(Y+y0)
al— Cl* . (36)
b(X+x0)(Y+y0)
% Y +6(Y + yo(Sxmmyrng — ©)

Taylor expanding of the system (3.6) at (X,a",Y) = (0,0, 0) obtains

*
n

_ > )

Xor1 = 100X, + aoioa, + apo1 Y, + ax0X; + aonnY, + anoXua
3 2 )

+61101XnYn + amla:Yn + 61300Xn + (1210Xna: + 61201Xn Yn

2 2 3 4
+Cl102XnYn + Cl“an(l:Yn + aouaZYn + (1003Yn + O(pl)’
(3.7)
% _ *
A1 = Gy

Yor1 = b100Xa + boot Yo + b200X> + b101 X0 Y + boo2 Y2 + b3 X,
+bao1 XY, + b10o X, Y2 + boos Y + O(p3%),

where p} = /X2 + a3 + Y2,

6aoy2 (5x0y2
a0 = 1+6(1 —2x9) — m,aow - _1 + xo(;/o,
o = _5(10)60)70(2 + Xo)’o)’azoo -5+ 561—0)7(3),
(1 + xo¥0)? (1 + xoy0)?
dapxo 0% 20doy
Ao = —m’a“o - _m’aml B
s = _ Sxoyo(2 + xoyo),a300 _ _561—0)’3’61003 = 6a—0x(2)’
(1 + xoy0)2 (1 + xoyo)* (1 + xoy0)*
5)7(3) 35610)% dap(1 = 2x0yo)
o = m,azm = m,amz - (I + xov0)t
26%, 5x0 5[7)’(2)
amn = —m,amz - _m’blm - m,
boo1 = 1+ 6( bxoYo + bxoyo _ €), bago = — el

L+ x0y0 (1 + x0y0)? (1 + xo0)’
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L, obny _ 26by, __ by
T A xyey T I+ x0T (A + xoye)t
5bx; 36by; Sb(1 = 2x0y0)
b003 = — —_— P EE———

D201 = — » 0102 = s
(1 + xoyo)* (1 + xoy0)* (1 + xoy0)*
agpo = dozo = Aoa1 = 120 = boro = booo = bi1o = bo11 = bo3o

= ba10 = D120 = b111 = bo12 = b1 = 0.
Then the system (3.7) is equivalent to the following form:

X an app ap)(X Fi(X,a",Y)
al—10 1 0 (la*|+ 0 ,

Y asy 0 ass Y FQ(X, a*, Y)

where

ayy =aipo, @12 = Ag10, @13 = Aoo1, @31 = bioo, azz = booy,
2
Fl (X, Cl*, Y) :a200X2 + aozoa* + a002Y2 + allOXa* + 61101XY
* 3 2k 2
+ dp1a Y + 61300X + 0210X a + 61201X Y
2 3
+ 61120)(61>k + 61102XY2 + 61111XCI*Y + 6103061*
Cy Y} + 0t
+apia” Y + apsY” + O(py),

Fz(X, a*, Y) :bzo()XZ + b]O]XY + b()ozYz + b300X3 + bzo]XzY
+ b]ozXY2 + l’)003Y3 + O(pTS

Assume that
(6111 — 1)2 + apzas # 0.

Take

1-ajy

o Ay —asz

T = 0 (I-ai)*+aizas 0

apzasy

I —ay 0 as

then 7! exists.
Under the transformation

X U
a|=Tlaj|,
Y \%

(3.8)

(3.9)
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the system (3.8) becomes
U 1 1 0\(U g1(U, a3, V)
aj{—10 1 0[|]aj|+ 0 , (3.10)
Vv 0 0 J\Vv U, a3, V)
where p; = VX2 + a2 + 12,
81U, a}, V) =joooX” + joY? + jioXa' + jion XY
+ jona’Y + jzooX° + jo10X’a" + jor X°Y
+ J10oXY? + jinXa'Y + joos Y + 003,
82U, a;, V) =kapoX* + koooV* + k110Xa™ + kit XY + kona*Y
+ k30X + ko10X2a" + koot X°Y + k0o XY?
+ ki1 Xa'Y + koos Y* + O(p3h),

1—
a“aT + (A2 — az3)V,

X :Cl13U +
asg

2
(I —an) +apasz
a =— Cll,
ajndsg

Y =a3(1 —a)U + a3V,

. oOlaz—1) o ao(l — as3)
J200 = + 3 - b,
aiz(1 —2) (1= 22)(1 + xpy0) as
ooz = 0Xxo [ _a( - 033)]
(1 = )(1 + xoy0)? as ’
_— Syglass — 1)
0 = (= )0 + x0y0)”
jons = 6x0y0(1 — as3)(2 + xoyo0)
o1 = — ,
aiz(1 = )1 + xy0)?
ot = 26y, [ ao(l — 033)]
01 = - ,
(1 = )1 + xoy0)? as
o 6Y; _ao(l —as3)
B0 T + x0y0) an |
. 5)’8(1 - as3)
P10 =50 = )+ xoy0)*”
. 26yo(1 — az3)
Jiin =—

ap(1 — )1 + xoy0)*’
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j20] =

j102

j 003

k200

kOOZ

kllO =

kOll =

klOl

k300

k10

kll] = -

ko1

k102

k003

36y, [ ao(1 — as3) B b—

(1 =) +x0y0)* | ans ’
_ o(1 = 2xoyo) >b _apd - as3) |

(1 = )1 + xoy0)* | as ’
~ 05 (ao(1 —azy) |

(I =) +x0p0)* |  ais ’

6 6)7(3) l a]3b ]

= + 3 |90 — )

1 -2 (A= D + xpy0) ap — 1

(SX() 61]3b ]
= —a
(b — (1 + x0y0) [an =1 °
(5y(2)

T (= D + x0y0)?

__0x0)0(2 + Xoyo)
(A2 = D(1 + x0y0)*

26y, [ ajzb ]

= -a

(L= DA+ x90) lan -1
_ 5)’3 [ a3b _ Clo]

(A2 = DA + xoy0)* [an — 1
o

(A2 = D(1 + xy0)*’

260
(A = D(1 + xqy0)*’

_ 36 o — aib |

(L - DA +xy0)* | an — 1]
61 -2xy0) | aizb 4
= —ap

(A2 = DA + xy0)* [an — 1
_ 6)% a — apb |

(L= DA +xy0)* | an—1]

)

By the center manifold theorem, the stability of (U, V) = (0,0) near a] = 0 can be determined by
studying a one-parameter family of map on a center manifold, which can be written as:

W) = (U, a’, V) € RV = (U, @), (0,0) = 0, DI(0,0) = 0}.

Assume that 43(U, a}) has the following form:

Electronic Research Archive
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hy(U,a)) = c30U” + ¢}, Uaj + cpa; + O(ps™),
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where p; = /U + a’]‘z. Then the center manifold equation must satisfy
hy(U + ai + g1(U, aj, hy(U, ay)), ay) = Ll (U, a)) + g2(U, aj, hy(U, ay)).

Comparing the corresponding coefficients of terms with the same orders in the above center manifold
equation, we get

., ikooo + (1= ain)’koor + ars(1 — ankio
20 = T~ 4

. :6112(1 — ai)2ai3ka0 + (1 — aj)kior]
H apaz (1 — ;)

b

N lazas + (1 — an)?1aiskiio + (1 — arp)koii]
apaz (1 —2,)
_ 2[at ka0 + (1 — ar1)?koor + ar3(1 — ar)kior]
(1-2)° ’

o (1 = arplan(l — ar)kyo + [azas; + (1 — ay1)*Tki10)

02 ana,(1 - 2,)

B askooo + (1 — arn)*koos + arz(1 — arkior
(1-2)°

_an( —ai)2ai3k00 + (1 = aikion]
apaz (1 — ;)%

_laas + (1 - an)*aiskiio + (1 — api)kor]
apaz (1 - /12)2

N 2[61%31@00 + (1 = ai)*koo2 + ar3(1 — arkior ]
(1-2)° '

Thus the system (3.10) restricted to the center manifold is given by
G : U -U+d +hyyU + hppa'” + hj Ud’, + hyoU® + hy U’
+hpUd? + hoa' + 0L,
where

hog :a%jzoo + (1 = an)’ joor + ai3(1 = ain) jior,

(1= an) jooo N (1 —ay)laas + (1 —a;)?jio

h02 - ’
%1 “12”%1
:(1 —ai)[2a13j200 + (1 —ai) jionl

hll

as
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N [aizaz; + (1 — ai)?*azjio + (1 — air)jor]

b

appdags
hso =2a13¢50(A2 — as3) jooo + 2a31¢5(1 = air) joo
+ cyolazaz + (1 — a2 — ass)ljions

. 2001 —apn)] . . .
hy =2(A; — asz3) |a3cyy + E— P 2az ¢y (1 — ain) jooz
13

N colazaz + (1 — an)*1[(A2 — ass) jio + asijou]

ajndasy

+ [c](1 —an) + e lazas + (1 — a)(A2 — ai)lljiorn,

_2CT1(1 —ap)(Ay = as3) jr00
asy

12 + 2a31¢cp,(1 = an) joo

+ [c], (1 —an) + c5plaisas + (1 = ay)( Az — asz)lljior

N ¢ lazaz; + (1 — an)* (A2 — assz) jio + asi o]

b

ajnas)

20 —an)| . . )
2a13 + a—“l Jaoo + ¢ (1 = anr)jion
13

hos =cpp (A2 — ass)

N coolazaz + (1 — an)*1[(A2 — ass) jio + asi joi]

appdags
Therefore, one has
G (U, ay) =0 oG =1#0
» 41)1(0,0) s 8U 00) s
oG* 0*G*
=1 * 0’ 2h5.
day lo.o) a2 looy

If the condition %I(O,O) # 0 is true, then the system (1.8) undergoes a saddle-node bifurcation [34].
Therefore, we need assume

hyy # 0. (3.11)
And the following result may be derived.

Theorem 3.2. Consider the system (1.8). Let ay be defined in (2.4). Set the parameters (a, b, c, h, ) €
Sk, ={(a,b,c,h,6) € RJ0 < h < 4,0 < ¢ < b, VI —3h # LD 1y — (, 2},
If the conditions (3.9) and (3.11) hold, then the system (1.8) undergoes a saddle-node bifurcation

at E; (& ‘31_3’1, C(I;(b_lc_fh)) when the parameter a varies in a small neighborhood of the critical value ay.

Remark. Since the characteristic equation corresponding to the system (3.10) contains double roots
Ay = A3 = 1, the normal form can not be obtained by known routine method. Here we use a special
mathematical skill to find the invertible matrix 7.
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0.2 " n L " L L
3 3.2 3.4 3.6 38 4 4.2 4.4 4.6 4.8 5 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

(@)6€(3,5) (b) 5 € (4.2,5)
Figure 1. Bifurcation of the system (1.8) witha = 3, b = 1.1, ¢ = 0.6, h = 0.16 in (J, x)-
plane.

0.9

0.4 " . " " . . . "
0.18 0.185 0.19 019 02 0205 021 0215 022 02256 023
a

a € (0.18,0.23)

Figure 2. Bifurcation of the system (1.8) with b = 0.56, ¢ = 0.25, 6 = 0.187, h = 0.12 in
(a, x)-plane.

4. Numerical simulation

In this section, we give the bifurcation diagrams of the system (1.8) to illustrate the above theoretical
analyses and further reveal some new dynamical behaviors to occur by Matlab software.

First fix the parameter values a = 3, b = 1.1, ¢ = 0.6, h = 0.16, let 6 € (2,5) and take the initial
values (xo, yo) = (0.2,0) in Figure 1. We can see that there is a stable fixed point for ¢ € (2,3.35), and
a flip bifurcation occurs at 6) = 3.35, eventually, period-double bifurcation to chaos. The fixed point £
is unstable when ¢ > 9. This agrees to the results stated in Theorem 3.1.

Then fix the parameter values b = 0.56, ¢ = 0.25, 6 = 0.187, h = 0.12, and vary « in the range
(0.18,0.23) with the initial value (xy, yp) = (0.6, 1.3) in Figure 2. One can see that there is a stable fixed
point for a € (0.195,0.205), and that a saddle-node bifurcation occurs at @, = 0.2. When a < gy and
is increasing to ay, the fixed point E, is gradually stable. When a > ay, the fixed point E; is unstable.

Electronic Research Archive Volume 30, Issue 10, 3930-3948.
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This agrees to the results stated in Theorem 3.2.
5. Discussion and conclusions

In this paper, toward a discrete-time predator-prey system of Gause type with constant-yield prey
harvesting and a monotonically increasing functional response in R?, we investigate its flip bifurcation
and saddle-node bifurcation problems. By using the center manifold theorem and the bifurcation the-
ory, one shows that the flip bifurcation and saddle-node bifurcation of the discrete-time system take
place.

We finally present numerical simulations, which not only illustrate the theoretical analysis results,
but also find some new properties of the system (1.8)-chaos occurring.

One of the highlights in this paper is to skillfully find an invertible transform to derive the normal
form of the flip (fold) bifurcation of the system (1.8), and determine the stability of the closed orbit
bifurcated, while it is impossible for one to use routine methods because its two characteristic roots are
double so that corresponding invertible matrix does not exist.
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