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Abstract: Due to the existence of elastic modes in the track, the suspension system of maglev train is 

prone to vehicle-track coupling vibration, which has become an important problem restricting the 

further development of maglev train technology. In view of the limitation of the existing rigid track 

suspension model, this paper establishes an electromagnet-controller-elastic track coupling system 

model. And then, the nonlinear maglev system is transformed into a linear system by Hartman-

Grobman theorem. Since the elastic deformation of the track is difficult to measure, a tracking 

differentiator is presented to filter out the interference of the displacement signal and obtain the 

differential signal of the gap between the electromagnet and the track. In order to suppress the vehicle-

track coupling vibration, a four-state feedback control method is proposed by introducing the gap 

differential feedback signal. According to the Hurwitz algebraic criterion, the stability of four-state 

feedback control system is compared with that of three-state feedback control system. Simulation 

results show that, the four-state feedback control method can provide the elastic deformation 

information of the track, and can suppress the coupling vibration between the vehicle and the elastic 

track effectively. 
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1. Introduction  

Maglev train has many advantages such as high speed, low noise, small vibration and low 

maintenance cost, which is the development direction of modern rail transit [1]. Different from the 
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other wheel rail transit, maglev train relies on the electromagnet installed on the vehicle to suspend the 

car body above the track, so as to realize the non-contact support between the vehicle and the track. 

However, due to the need for active control to suspend the car body in the air, when the track is elastic, 

or the controller performance can’t cooperate with the track well, the vehicle-track coupling vibration 

will occur randomly [2]. Vehicle-track coupled vibration is an important technical problem in maglev 

train suspension system. 

In the test, the vehicle-track coupling vibration often occurs on different tracks. When TR04 of 

Germany and HSST04 of Japan are suspended on the steel frame bridge, the coupling vibration 

phenomenon of vehicle and track has been found [3]. AMT maglev train in the United States has good 

levitation performance in Edgewater test center, but after moving to Old Dominion University, vehicle 

and track coupling vibration occurs [4]. When TR08 of Germany is suspended on the steel structure 

track in the depot of the maintenance base, or running at a lower speed, it is prone to severe vehicle -

track coupling vibration. However, when TR08 is running on the main line with a density of 7 ton/ m, 

the coupling vibration rarely occurs [5,6]. In engineering, although the possibility of coupling vibration can 

be reduced by adding up the mass and stiffness of the track, the cost of the system is significantly increased. 

At present, many scholars have studied the mechanism and characteristics of vehicle-track 

coupling vibration. Kim et al. [7] studied the dynamic behavior of the maglev vehicle with elastic track 

when it was stationary or running at low speed through numerical simulation. Zhang et al. [2] studied 

the dynamic characteristics of magnetic levitation system with elastic guideway and velocity signal 

delay, and pointed out that the track elasticity is an important factor to induce the coupling vibration 

of the system. Wang et al. [8] proposed an on-line optimization method of control structure to suppress 

vibration aiming at the problem of track deformation and irregularity. Zhou et al. [9] proposed an 

adaptive vibration compensation method, which significantly reduces the vibration amplitude. Xu et 

al. [10] established the mathematical model of maglev system, and studied the dynamic behavior of maglev 

train on elastic track considering the state delay of position signal and speed signal of the electromagnet. 

It is not difficult to find that in previous studies, some studies ignored the role of suspension 

controller and focused on the internal relationship between track elasticity and coupled vibration. 

While, some researchers only regard the track elasticity as an external disturbance, ignoring the 

coupling effect of the track structure and of the suspension control [11–14]. In fact, the vehicle-track 

coupling vibration of maglev system is closely related to the structure parameters of the track and 

control parameters of the controllers [11,15,16].  

In order to suppress the vehicle-track coupling vibration of maglev system with flexible track, 

this paper propose a nonlinear stability analysis method and a multi-state feedback control method. 

The contributions of this paper are summarized in the following two aspects.  

1) A stability analysis method for the vehicle-track coupling vibration of maglev system is presented. 

This method transforms the stability problem of the nonlinear maglev system with flexible track into 

an equivalent linear system stability problem, and the coupling vibration frequency of the system can 

be calculated. 

2) A multi-state feedback control method with gap differential signal against the vehicle-track coupling 

vibration of maglev system is proposed. This method introduces the flexible track information to the 

control system, the vehicle-track coupling vibration of maglev train can be effectively avoided.  

The remainder of this paper is organized as follows. In Section 2, the vehicle-track coupling 

system model considering the flexible guideway is built. In Section 3, a four-state feedback control 

algorithm with gap differential signal is proposed. In Section 4, the stability analysis method for the 
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nonlinear vehicle-track coupling system is presented. In Section 5, the effectiveness of the proposed 

vibration control method is verified by some simulation experiments. In this paper, by adjusting some 

key control parameters, the dynamic evolution behavior between the maglev train and the elastic track 

is comprehensively investigated, which can provide a reference for suppressing the vehicle-track 

coupling vibration. 

2. Vehicle-track coupling suspension system modeling considering elastic track 

The maglev train with electromagnetic attraction relies on the electromagnetic force provided by 

some electromagnets to suspend and support the carriage. Due to the distributed control of each 

electromagnet, the mechanical decoupling can be realized to a great extent, so the coupling effect 

between the electromagnets is greatly reduced. In order to simplify the research and clarify the basic 

characteristics of suspension system of maglev train, the model of the suspension control system with 

a single electromagnet is established [17–19]. 

Considering the elastic mode of track, the suspension control system of single electromagnet 

mainly includes a suspension electromagnet group, an elastic track and a suspension controller. It is 

the smallest unit of the suspension control system of maglev train, and can reflect the basic dynamic 

characteristics of the interaction between the vehicle and track [20,21]. 

Figure 1 is the schematic diagram of the vehicle-track coupling system of maglev train with a 

single electromagnet. In Figure 1, 𝑂 is the left fulcrum of the track, 𝑂𝑋 is the running direction of 

the train; 𝑂𝑍  is the direction of gravity acceleration, 𝑧1  is the vertical displacement of the 

electromagnet, 𝑧𝑔 is the vertical displacement of the track; 𝑚 is the mass of the electromagnet, 𝑀 

is the mass of the carriage and passengers, 𝑙 is the distance between the center of the electromagnet 

and the origin 𝑂 in the ox direction 𝑂𝑋. The displacement sensor is installed on the electromagnet, 

which measure the displacement between the track and the electromagnet as 𝑧1 − 𝑧𝑔 . 𝐹𝑒  is the 

attractive force of the electromagnet. 
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Figure 1. Suspension system model with the elastic track. 

Due to the influence of track joint, track irregularity or communication error code, the 

displacement signal is often interrupted. Because of the discontinuity of the displacement signal, the 

control difficulty of suspension system of the maglev train increases greatly, and it is easy to cause the 

failure of the control system or the vehicle-rail coupling vibration. 
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2.1. Model of the elastic track 

When the elastic mode of the track is considered, any point 𝑧𝑔(𝑙, 𝑡) of the beam satisfies the 

Bernoulli-Euler dynamic equation [3,11,17]. 

𝐸𝑔𝐼𝑔
∂4𝑧𝑔

∂𝑙4
− 𝑇𝑔

∂2𝑧𝑔

∂𝑙2
+ 𝜌𝑔

∂2𝑧𝑔

∂𝑡2
+ 𝑏𝑔

∂𝑧𝑔

∂𝑡
+ 𝑘𝑔𝑧𝑔 = 𝑝(𝑙, 𝑡)               (1) 

where, the parameters of the beam are given as below. 𝐸𝑔  is the modulus of elasticity, 𝐼𝑔  is the 

section inertia, 𝑇𝑔  is the tension, 𝜌𝑔  is the mass linear density, 𝑏𝑔  is the equivalent damping 

coefficient, 𝑘𝑔 is the equivalent elastic coefficient of the beam, and 𝑝(𝑙, 𝑡) is the distributed load 

density on the beam. 

Combined with the test phenomenon, when the vehicle-track coupling vibration occurs, the 

vibration frequency of the track is in a certain frequency band. Because the excitation of the high-order 

vibration of the track needs a lot of energy, it is generally considered that the vehicle-track coupling 

vibration is mainly related to the first-order mode of the track. 

The modal analysis method is adopted, in which only the first mode of the track is considered. Let 

𝑧𝑔(𝑙, 𝑡) = 𝜙1(𝑙) ⋅ 𝑞1(𝑡)                            (2) 

where, 𝜙1(𝑙) is the first mode function, 𝑞1(𝑡) is the generalized coordinates of the beam. 

Here, 𝑙𝑔 is the span of the beam, 𝑚𝑔 is the mass of the track. It is known that the normalized 

mode function 𝜙1(𝑙) is 

𝜙1(𝑙) = √
2

𝑚𝑔
𝑠𝑖𝑛(

𝜋𝑙

𝑙𝑔
).                             (3) 

The natural frequency of the first mode of the track is 

𝜔1 = (
𝜋

𝑙𝑔
)2√

𝐸𝑔𝐼𝑔

𝜌𝑔
.                                (4) 

The first order generalized force exerted on the track is 

�̈�1(𝑡) + 2𝜂1𝜔1�̇�1(𝑡) + 𝜔1
2𝑞1(𝑡) = 𝑄1,                     (5) 

where, 𝜂1 is the damping ratio of the first mode. 

Assuming that the length of electromagnet is far less than that of track, the electromagnetic force 

on the track can be regarded as a concentrated force. At this time, there is 

𝑄1 = √
2

𝑚𝑔
𝑠𝑖𝑛(

𝜋𝑙

𝑙𝑔
).                              (6) 

By combining the above Eqs (1)–(6), the coupling vibration model considering only the first mode 

of the track is obtained as follows 

�̈�𝑔 + 2𝜂1𝜔1�̇�𝑔 + 𝜔1
2𝑧𝑔 =

2

𝜌𝑔𝑙𝑔
𝑠𝑖𝑛2(

𝜋𝑙

𝑙𝑔
)𝐹𝑒.                     (7) 
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2.2. Model of the maglev system 

The attractive force of the electromagnet is 

𝐹𝑒 =
𝜇0𝑁

2𝐴

4
(

𝑖

𝑧1−𝑧𝑔
)2,                               (8) 

where, 𝜇0 is the vacuum permeability, N is the number of turns of the coil, i is the coil current, and A 

is the area of magnetic pole. 

Let 𝐶1 =
𝜇0𝑁

2𝐴

4
. The voltage of the electromagnet is 

𝑢 = 𝑅𝑖 +
2𝐶1

𝑧1−𝑧𝑔
𝑖̇ −

2𝐶1𝑖

(𝑧1−𝑧𝑔)2
(�̇�1 − �̇�𝑔),                       (9) 

where, 𝑅 is the coil resistance. 

Because the carriage and electromagnet rely on the air spring to realize the elastic support, 

when the train is stationary and suspended, only the vertical movement of the electromagnet is 

considered. Then 

(𝑚 +𝑀)𝑔 − 𝐹𝑒 = 𝑚�̈�1.                           (10) 

2.3. Vehicle-track coupling system model 

Let 𝐶2 =
2𝐶1

𝜌𝑔𝑙𝑔
𝑠𝑖𝑛2(

𝜋𝑥

𝑙𝑔
). By combining the above Eqs (7)–(10), the vehicle-track coupling system 

model considering only the first elastic mode of the track is obtained [3,11,17], 

{
 
 

 
 �̈�𝑔 + 2𝜂1𝜔1�̇�𝑔 + 𝜔1

2𝑧𝑔 = 𝐶2(
𝑖

𝑧1−𝑧𝑔
)2

(𝑚 +𝑀)𝑔 − 𝐶1(
𝑖

𝑧1−𝑧𝑔
)2 = 𝑚�̈�1

𝑢 = 𝑅𝑖 +
2𝐶1

𝑧1−𝑧𝑔
𝑖̇ −

2𝐶1𝑖

(𝑧1−𝑧𝑔)2
(�̇�1 − �̇�𝑔)

.                     (11) 

Select 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)
𝑇 = (𝑧1, �̇�1, 𝑧𝑔, �̇�𝑔, 𝑖)

𝑇 . The open-loop state space equation of the 

suspension system is obtained  

{
  
 

  
 
�̇�1 = 𝑥2

�̇�2 =
𝑚+𝑀

𝑚
𝑔 −

𝐶1

𝑚
(

𝑥5

𝑥1−𝑥3
)2

�̇�3 = 𝑥4

�̇�4 = 𝐶2(
𝑥5

𝑥1−𝑥3
)2 − 2𝜂1𝜔1𝑥4 − 𝜔1

2𝑥3

�̇�5 =
𝑥5

𝑥1−𝑥3
(𝑥2 − 𝑥4) −

𝑅

2𝐶1
(𝑥1 − 𝑥3)𝑥5 +

𝑥1−𝑥3

2𝐶1
𝑢

.            (12) 

Obviously, the system (12) is a nonlinear system, and its stability should be analyzed according 

to the nonlinear system method. 
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3. Design of the multi-state feedback control law 

The suspension control system (12) is a typical multi-variable system. In engineering, the PID 

control and multi-variable feedback control is usually used [5]. 

3.1. Design of multi-state feedback control law 

In the past, the three-state combined feedback control law was often used as follows [2,15,17], 

𝑢 = 𝑢𝑒𝑐 + 𝑘𝑠(𝑥1 − 𝑥3 − 𝑧0) + 𝑘𝑐𝑥5 + 𝑘𝑏𝑖𝑥2,                  (13) 

where, 𝑢𝑒𝑐 is the initial voltage of electromagnet, 𝑘𝑠 is the gap feedback coefficient, 𝑘𝑐  is the 

current feedback coefficient, and 𝑘𝑏𝑖 is the coefficient of the electromagnet acceleration signal 

after integration. 

The above control law does not contain the track information, so it has some limitations in 

suppressing vehicle-track coupling vibration [2,5]. In this paper, the gap differential signal is 

introduced into the control algorithm, and the feedback coefficient is 𝑘𝑠𝑑 , which is equivalent to 

adding the track information in the feedback control. The four-state feedback control law is 

𝑢 = 𝑢𝑒𝑐 + 𝑘𝑠(𝑥1 − 𝑥3 − 𝑧0) + 𝑘𝑐𝑥5 + 𝑘𝑏𝑖𝑥2 + 𝑘𝑠𝑑(𝑥2 − 𝑥4).         (14) 

It can be seen from (14) that when the above control law is applied to the suspension control 

system, it needs to be able to obtain the five state variables 𝑥1,  𝑥2, 𝑥3,  𝑥4,  𝑥5. 

In the actual suspension system, the displacement sensor 𝑆1, current sensor 𝑆2 and accelerometer 

𝑆3 are installed on the electromagnet, as shown in Figure 2. Here, the displacement sensor 𝑆1 can 

measure the displacement 𝑥1 − 𝑥3 between the electromagnet and the track. The current sensor 𝑆2 

can directly measure the current 𝑥5  of the electromagnet by a low pass filter. For the accelerometer 

𝑆3, the velocity signal 𝑥2 of the electromagnet is obtained by a high pass filter and an integrator. 

Although the signals 𝑥1,  𝑥3 can not be obtained directly by the above sensors, we can acquire the 

differential signals 𝑥2 − 𝑥4 = �̇�1 − �̇�3 indirectly by a tracking differentiator in Figure 2. 

1S

2S

3S

Tracking Differentiator

Low Pass Filter

High Pass Filter Integrator

1 3x x−

5x

2x

sk

sdk

ck

bik

u

1 3x x−

 

Figure 2. Block diagram of the four-state feedback control law. 

3.2. Design of the tracking differentiator 

In engineering, it is very important to extract the differential signal from the original signal. For 

the magnetic suspension system, whether using PID control or multi-state feedback control, we both 
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need to use the appropriate differential signal. 

In the past magnetic levitation system, the differential signal extracted from the relative 

displacement of electromagnet and track can not be used directly. The main reason is the obvious 

increase of noise. 

Assume that the original signal is 𝑣 . The traditional differential signal is obtained by the 

following differential link 

�̇� = 𝑤(𝑠)𝑣 =
𝑠

𝑇𝑠+1
𝑣,                             (15) 

where, T is a relatively small time constant. 

In order to reduce the noise amplification effect, in Figure 2, an improved tracking differentiator 

is used to extract the differential signal [15,16]. 

�̇� = 𝑤(𝑠)𝑣 =
𝑠

𝜏1𝜏2𝑠2+(𝜏1+𝜏2)𝑠+1
𝑣                       (16) 

where, 𝜏1, 𝜏2 are relatively small time constant, and 0 < 𝜏1 < 𝜏2. 

Here, 𝑇 = 0.001, 𝜏1 = 0.01, 𝜏2 = 0.02, 𝑁 =2000, 𝑣 = 𝑠𝑖𝑛 𝑡 + 0.0002𝑟𝑎𝑛𝑑(1, 𝑁). Using (15) 

and (16), the corresponding differential signals are obtained respectively, as shown in Figures 3. 

  

(a)                                   (b) 

Figure 3. Comparison of output signals of traditional differentiator and tracking differentiator. 

4. Stability analysis 

4.1. Stability analysis of closed loop system 

By substituting the state feedback (14) into the open-loop state system (12), the following closed-

loop state space equation of the system is obtained [11,17]: 
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{
 
 
 

 
 
 
�̇�1 = 𝑥2

�̇�2 =
𝑚+𝑀

𝑚
𝑔 −

𝐶1

𝑚
(

𝑥5

𝑥1−𝑥3
)2

�̇�3 = 𝑥4

�̇�4 = 𝐶2(
𝑥5

𝑥1−𝑥3
)2 − 2𝜂1𝜔1𝑥4 − 𝜔1

2𝑥3

�̇�5 =
𝑥5

𝑥1−𝑥3
(𝑥2 − 𝑥4) −

𝑅

2𝐶1
(𝑥1 − 𝑥3)𝑥5 +

𝑥1−𝑥3

2𝐶1
(𝑢𝑒𝑐 + 𝑘𝑠(𝑥1 − 𝑥3 − 𝑧0)

+𝑘𝑐𝑥5 + 𝑘𝑏𝑖𝑥2 + 𝑘𝑠𝑑(𝑥2 − 𝑥4))

.

    

(17) 

For the system (17), let �̇� = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)
𝑇 = 0 , and define 𝐶3 = √

(𝑚+𝑀)𝑔

𝐶1
 , the singular 

point of the system can be obtained as follows 

𝑥0 = (
𝐶2𝐶3

2

𝜔1
2 + 𝑧0, 0,

𝐶2𝐶3
2

𝜔1
2 , 0, 𝑧0𝐶3)

𝑇.                        (18) 

It is not difficult to find that the equilibrium point of the four-state feedback system with gap 

differential information is the same as that of the three-state feedback system without gap differential 

information. Therefore, the four-state feedback with gap differential information does not change the 

static operating point of the system. 

At the equilibrium point, we have 𝑥1 − 𝑥3 = 𝑧0. Further, the initial static voltage 𝑢𝑒𝑐0 of the 

electromagnet is obtained as 

𝑢𝑒𝑐0 = (𝑅 − 𝑘𝑐)𝑧0𝐶3.                            (19) 

In fact, its size determines the size of the suspension gap in the stable state. 

At the equilibrium point 𝑥0, the system (17) is linearized and the Jacobian matrix of the system is  

𝐽 =

[
 
 
 
 
 
 

0 1 0 0 0
2𝐶1𝐶3

2

𝑚𝑧0
0 −

2𝐶1𝐶3
2

𝑚𝑧0
0 −

2𝐶1𝐶3

𝑚𝑧0

0 0 0 1 0

−
2𝐶2𝐶3

2

𝑧0
0

2𝐶2𝐶3
2

𝑧0
− 𝜔1

2 −2𝜂1𝜔1
2𝐶2𝐶3

𝑧0
𝑧0𝑘𝑠

2𝐶1
𝐶3 +

𝑧0(𝑘𝑏𝑖+𝑘𝑠𝑑)

2𝐶1
−
𝑧0𝑘𝑠

2𝐶1
−𝐶3 −

𝑧0𝑘𝑠𝑑

2𝐶1
−
𝑧0(𝑅−𝑘𝑐)

2𝐶1 ]
 
 
 
 
 
 

.       (20) 

In this way, the nonlinear system (17) at the equilibrium point can be expressed as 

�̇� = 𝐽(𝑥0)(𝑥 − 𝑥0) + 𝑂(𝑥 − 𝑥0), 𝑥 ∈ 𝑅
𝑛,                     (21) 

where, 𝑂(𝑥 − 𝑥0) is a higher order infinitesimal. 

Lemma 1. There is a nonlinear system (17) and its corresponding linear system (21) at the 

equilibrium point. If 𝑥0 is an isolated singular point of system (17) and all eigenvalues of 𝐽(𝑥0) have 

non-zero real parts, it is called 𝑥0  is a hyperbolic singular point of system (17). While, if some 

eigenvalues of 𝐽(𝑥0) have zero real parts, it is called 𝑥0 is a non-hyperbolic singular point of system (17). 

Theorem 1 [11,17]. (Hartman Grobman Theory) if 𝑥0 is a hyperbolic singular point of system 

(17) and satisfies the condition. 
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lim
𝑥→𝑥0

Ο(𝑥−𝑥0)

|𝑥−𝑥0|
= 0, 𝑥 ∈ 𝑅𝑛                            (22) 

Then the system (17) has the same topological structure as the corresponding linear system (21) 

at the isolated singular point 𝑥0. 

The above theorem is also called the first approximation theorem. According to the theorem, for 

the nonlinear vehicle-track coupling control system (17) of maglev train, if its equilibrium point is 

hyperbolic singularity, we only need to analyze its linear system at the equilibrium point, and then we 

can get the stability of nonlinear system (17) near the equilibrium point. 

The characteristic polynomial of Eq (20) is 

𝐽(𝜆) = 𝜆5 + 𝑎1𝜆
4 + 𝑎2𝜆

3 + 𝑎3𝜆
2 + 𝑎4𝜆 + 𝑎5                (23) 

where, 𝑎1 = 2𝜂1𝜔1 −
𝑧0(𝑘𝑐−𝑅)

2𝐶1
 , 𝑎2 = 𝜔1

2 +
𝐶3𝑘𝑏𝑖

𝑚
−
𝜂1𝜔1𝑧0(𝑘𝑐−𝑅)

𝐶1
+
𝐶3𝑘𝑠𝑑

𝑚
+
𝐶2𝐶3𝑘𝑠𝑑

𝐶1
 , 𝑎3 =

𝐶3𝑘𝑠

𝑚
+

𝐶2𝐶3
2(𝑘𝑐−𝑅)

𝐶1
+
𝐶2𝐶3𝑘𝑠

𝐶1
+
2𝐶3𝜂1𝜔1𝑘𝑏𝑖

𝑚
−
𝜔1
2 𝑧0(𝑘𝑐−𝑅)

2𝐶1
+
𝐶3
2𝑘𝑠

𝑚
+
2𝐶3𝜂1𝜔1𝑘𝑠𝑑

𝑚
 , 𝑎4 =

2𝐶3
2𝜂1𝜔1(𝑘𝑐−𝑅)

𝑚
+
2𝐶3𝜂1𝜔1𝑘𝑠

𝑚
+

𝐶3𝜔1
2𝑘𝑏𝑖

𝑚
+
𝐶3𝜔1

2𝑘𝑠𝑑

𝑚
, 𝑎5 =

𝐶3
2𝜔1

2(𝑘𝑐−𝑅)

𝑚
+
𝐶3𝜔1

2𝑘𝑠

𝑚
. 

Because of the complexity of the characteristic polynomial, it is difficult to obtain the analytical 

solution of the system directly. The stability of the system can be analyzed by Hurwitz criterion. 

The Hurwitz determinant is constructed as follows 

𝛥5 = |
|

𝑎1 1 0 0 0
𝑎3 𝑎2 𝑎1 1 0
𝑎5 𝑎4 𝑎3 𝑎2 𝑎1
0 0 𝑎5 𝑎4 𝑎3
0 0 0 0 𝑎5

|
|
.                           (24) 

Lemma 2. (Hurwitz criterion) the linear system (21) corresponding to matrix (20) is 

asymptotically stable, that is, all eigenvalues of characteristic polynomial (23) have negative real parts, 

if and only if 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0, 𝑎4 > 0, 𝑎5 > 0, and 𝛥2 = 𝑎1𝑎2 − 𝑎3 > 0, 

𝛥4 = |

𝑎1 1 0 0
𝑎3 𝑎2 𝑎1 1
𝑎5 𝑎4 𝑎3 𝑎2
0 0 𝑎5 𝑎4

| > 0.                         (25) 

Lemma 2 shows that the linear system (23) corresponding to the nonlinear system (17) at the 

equilibrium point is asymptotically stable, which also means that the nonlinear system (17) is 

asymptotically stable near the equilibrium point. 

4.2. Analysis of vehicle-track coupling vibration 

It is generally believed that when the vehicle-track coupling vibration occurs, the system is in a 

critical stable state, and the corresponding linear system may have a Hopf bifurcation point. 

Theorem 2 [11,17]. The linear system (21) corresponding to the matrix (20) is in a critical stable 

state, that is, the characteristic polynomial (20) has a pair of pure imaginary roots ± 𝑗𝜔, and the other 
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three characteristic roots all have negative real parts, if and only if 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0, 𝑎4 > 0,

𝑎5 > 0, and 𝛥2 = 𝑎1𝑎2 − 𝑎3 > 0, 𝛥4 = |

𝑎1 1 0 0
𝑎3 𝑎2 𝑎1 1
𝑎5 𝑎4 𝑎3 𝑎2
0 0 𝑎5 𝑎4

| = 0. Here, 𝜔 = √
𝑎2𝑎5

𝑎3
. 

From Theorem 2, the possible Hopf bifurcation point of the system can be obtained. 

5. System simulation 

The parameters of the suspension system of a maglev train are as follows. 

𝑚 = 500𝑘𝑔, 𝑀 = 1000𝑘𝑔, 𝑅 = 4Ω, 𝜂1 = 0.005, 𝜔1 = 50𝜋,  𝐶1 = 0.0026, 𝐶2 = 4𝑒 −
8, 𝑙𝑔 = 25𝑚, 𝑧0 = 0.010𝑚, 𝑙𝑒 = 3𝑚. The initial value is 𝑥 = (0.020,0,0.0002,0,0). 

1) The system is in critical stable state without gap differential signal. 

At this time, select the control parameter as 𝑘𝑐 = −40, 𝑘𝑏𝑖 = 800, 𝑘𝑠 = 172,321, 𝑘𝑠𝑑 = 0 , 

and get the response curve of the system, as shown in Figure 4. Figure 4(a) is the displacement curve 

of electromagnet, Figure 4(b) is the displacement curve of track, Figure 4(c) is the relative 

displacement curve of electromagnet and track, and Figure 4(d) is the phase trajectory diagram of 

relative displacement of electromagnet and track. 

   

   

Figure 4. Response curve of the system in a critical stable state with 𝒌𝒔 = 𝟏𝟕𝟐, 𝟑𝟐𝟏,  𝒌𝒔𝒅 = 𝟎. 
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It can be seen from Figure 4 that when 𝑘𝑠 = 172,321, 𝑘𝑠𝑑 = 0, the suspension system was in a 

critical stable state at that time. It can be seen from Figure 4(c) that the relative displacement between 

the electromagnet and the track is in a state of constant amplitude oscillation. If the control is not 

adopted effectively in time, the coupled vibration will occur continuously. From Theorem 2, we can 

get 𝑎1 > 0, 𝑎2 > 0, 𝑎3 > 0, 𝑎4 > 0, 𝑎5 > 0, and 𝛥2 = 𝑎1𝑎2 − 𝑎3 > 0. At that time, when 𝛥4 = 0, 

we get 𝜔0 = 50.3𝜋. The value is very close to the first-order frequency of the track and the simulation 

result in Figure 4(b). It is not difficult to find that the coupling vibration frequency is 𝜔0 = 50.1𝜋. 

2) The system is in a stable state without gap differential signal. 

At this time, the control parameter is selected as 𝑘𝑐 = −40,  𝑘𝑏𝑖 = 800, 𝑘𝑠 = 179,035, 𝑘𝑠𝑑 = 0, 

and the response curve of the system is obtained, as shown in Figure 5. Figure 5(a) is the displacement 

curve of electromagnet, Figure 5(b) is the displacement curve of track, Figure 5(c) is the relative 

displacement curve of electromagnet and track, and Figure 5(d) is the phase trajectory diagram of 

relative displacement of electromagnet and track. 

   

   

Figure 5. Response curve of the system in a stable state with 𝒌𝒔 = 𝟏𝟕𝟗, 𝟎𝟑𝟓, 𝒌𝒔𝒅 = 𝟎. 

It can be seen from Figure 5 that, when 𝑘𝑠 = 179,035, 𝑘𝑠𝑑 = 0, the suspension system can reach 

a stable working state at that time. From Figure 5(c) that after 1.4 seconds, the relative displacement 

fluctuation range between the electromagnet and the track is less than 2 mm, realizing stable suspension. 

3) The system is in a stable state with gap differential signal. 
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At this time, the control parameter is selected as 𝑘𝑐 = −40,  𝑘𝑏𝑖 = 800,  𝑘𝑠 = 172,321,  𝑘𝑠𝑑 = 200, 

and the response curve of the system is obtained, as shown in Figure 6. Figure 6(a) is the displacement 

curve of electromagnet, Figure 6(b) is the displacement curve of track, Figure 6(c) is the relative 

displacement curve of electromagnet and track, and Figure 6(d) is the phase trajectory diagram of 

relative displacement of electromagnet and track. 

   

   

Figure 6. Response curve of the system in a stable state with 𝒌𝒔 = 𝟏𝟕𝟐, 𝟑𝟐𝟏,  𝒌𝒔𝒅 = 𝟐𝟎𝟎. 

It can be seen from Figure 6 that the suspension system was still in a stable working state at that 

time. As can be seen from Figure 6(c), after 0.5 seconds, the relative displacement fluctuation range 

between the electromagnet and the track is less than 1 mm, realizing stable suspension. 

Notation: For the magnetic levitation system, the performance differences of different control 

methods are mainly reflected in the convergence speed and steady-state fluctuation range of the vertical 

displacement 𝑥1  of the electromagnet. In Figure 5(a), with the three-state combined feedback control 

method, the convergence speed of 𝑥1 is 1.6 s and steady-state fluctuation range of 𝑥1 is 2 mm. While, in 

Figure 6(a), with the four-state improved feedback control method, the convergence speed of 𝑥1 is 0.7 s 

and steady-state fluctuation range of 𝑥1 is 1 mm.  

Through the above analysis, it can be seen that the system may be in a critical stable state when 

there is no gap differential signal feedback, and the vehicle and track will continue to vibrate. After 

introducing the gap differential signal to the feedback control law, the regulation time of the system is 



3899 

Electronic Research Archive  Volume 30, Issue 10, 3887-3901. 

shortened and the stability is improved. 

6. Conclusions and discussion 

Aiming at the problem of vehicle-track coupling vibration in maglev train suspension system, a 

four-state feedback control algorithm is proposed in this paper. By investigating the dynamic evolution 

behavior of the interaction between structure parameters and control parameters of the suspension 

system, the vehicle-track coupling vibration of maglev train has been effectively avoided. 

In order to fully describe the real dynamic characteristics of the system, this paper fully considers 

the elastic modal factors of the track, and establishes a coupling system model with elastic track. 

Furthermore, by using the first approximation theorem, the stability problem of the nonlinear maglev 

system is transformed into an equivalent linear system stability problem. Then, the gap differential 

signal is introduced to the feedback system, and a four-state feedback control strategy is adopted to the 

magnetic suspension system. According to the Hurwitz algebraic criterion, the coupling vibration 

frequency of the system can be calculated, and the coupling vibration of the system can be judged. The 

above research provides a useful reference for effectively suppressing the coupling vibration between 

vehicle and elastic track.  

In this paper, only the first order vibration mode is considered. In fact, the results will be 

closer to the actual situation when the higher order vibration mode is considered. Further, the above 

four-state feedback control algorithm method will be applied to the practical maglev system to 

verify its feasibility. 
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