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Abstract: This paper is concerned the determination of trajectories for the three-dimensional Navier-
Stokes equations with nonlinear damping subject to periodic boundary condition. By using the energy
estimate of Galerkin approximated equation, the finite number of determining modes and asymptotic
determined functionals have been shown via the Grashof numbers for the non-autonomous and au-
tonomous damped Navier-Stokes fluid flow respectively.
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1. Introduction

The three-dimensional Navier-Stokes equations with damping describe the flow when there exists
resistance in the fluid motion. The damping is related to various physical phenomena, such as air drag,
friction effects or relative motion, caused by internal friction of fluid and the limitation of flow channel
interface leading to friction and collision between fluid particles and walls.

This paper is concerned with the asymptotic behavior of the 3D Navier-Stokes equations with non-

linear damping for a viscous incompressible fluid on the torus Ω =
3∏

i=1
(0, Li) ∈ R3 and t ∈ R+ in the

space-periodic case:
∂tu − ν∆u + (u · ∇)u + α|u|β−1u + ∇p = f in Ω × R+,
∇ · u = 0 in Ω × R+,
u(x + Liei, t) = u(x, t), i = 1, 2, 3,
u(x, t = 0) = u0(x),

(1.1)

where the kinematic viscosity ν > 0 and the external force f = f (x, t) are given in appropriate Sobolev
space and the constant α > 0 is a characteristic parameter of the elasticity for fluid flow, β ≥ 1 is a fixed
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positive parameter which describes the increasing radio. The above system formed by the unknown
three-component velocity field u = (u1, u2, u3) and the scalar pressure p represents the conservation
law of momentum and mass.

When the parameter α disappears, system (1.1) reduces to the 3D classic incompressible Navier-
Stokes equations, whose well-posedness (see [1–7]) and dynamic systems (see [8,9]) have been exten-
sively investigated based on non-uniqueness of weak solution and global existence of strong solution
in bounded or periodic domain. Now for the more general case α > 0, Cai and Jiu have proved that
the Cauchy problem of the 3D Navier-Stokes equations with nonlinear damping term has global weak
solution for β ≥ 1, global strong solution for β ≥ 7

2 and the uniqueness for 7
2 ≤ β ≤ 5 in [10]. Since

the nonlinear damping term α|u|β−1u leads to more regularity than the classical Navier-Stokes equa-
tions, the research on infinite dimensional dynamic systems for (1.1) are progressively improved, such
as [11–14].

Based on the development of 2D/3D Navier-Stokes equations, there have many related literatures
paying attention to the determination and reduction of incompressible flow flows, for instance in [15,
16], the authors give the upper bound of determining modes for the 2D Navier-Stokes equations in the
periodic case.

Inspired by [10,15–18], we consider the determination of trajectories for the damped Navier-Stokes
model (1.1). The main results and features can be summarized as follows.

(I) As shown in [10], the nonlinear damping term α|u|β−1u resulting in more regularity, the system
(1.1) possesses a global strong solution satisfying

u ∈ L∞(0,T ; V̇per) ∩ L2(0,T ; H2(Ω)3) ∩ L∞(0,T ; Lβ+1(Ω)3), (1.2)

which guarantees the research on asymptotic behavior can be achieved. However, more assumption on
u and f are needed as ∫

Ω

udx =
∫
Ω

f dx = 0, ∀ t ∈ R+, (1.3)

which implies Poincaré’s inequality holds.
(II) For the non-autonomous case, by using the estimates on Galerkin’s approximated equation, the

Mazur inequality and continuous embedding V̇per ⊂ L
3(β−1)

2 (Ω)3, the finite determining modes m has
been presented via the restriction on generalized Grashof number Gr as m ≥ CG3

r for 7
2 ≤ β ≤ 5.

(III) For the autonomous case, the problem is called asymptotic determination if there exists finite
Fourier functionals F = {Fi} with i = 1, 2, · · · , n, such that the trajectories inside global attractor can
be determined. Based on the existence of global attractor in [14], we can proved that the autonomous
system (1.1) is asymptotic determining if n > C( L

νλ1
)

3
2 is large enough, where L is defined in Section 3.4.

The structure of this paper is organized as follows. In Section 2, the preliminaries and functional
setting are stated. The main results are shown in Section 3, the further research and some comments
are also presented in this part.

2. Preliminaries and functional settings

2.1. Functional spaces

Following the notation in [4, 6, 7, 16], denote
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Ḣper = {u ∈ L2
per(Ω)3

∣∣∣∣ ∫
Ω

udx = 0,∇ · u = 0}

= {u =
∑

k∈Z3\{0}

ûke2πi k
L ·x
∣∣∣∣û−k = ûk,

k
L
· ûk = 0,

∑
k∈Z3\{0}

|ûk|
2 < ∞}

(2.1)

and

V̇per = {u ∈ H1
per(Ω)3

∣∣∣∣ ∫
Ω

udx = 0,∇ · u = 0}

= {u =
∑

k∈Z3\{0}

ûke2πi k
L ·x
∣∣∣∣û−k = ûk,

k
L
· ûk = 0,

∑
k∈Z3\{0}

∣∣∣∣ kL ∣∣∣∣2|ûk|
2 < ∞},

(2.2)

where ûk denotes the k·th Fourier coefficient, k = (k1, k2, k3) ∈ Z3\{0} and L = (L1, L2, L3).
It is easy to check that Ḣper and V̇per are Hilbert spaces with the inner products

(u, v)Ḣper
=

∫
Ω

u(x) · v(x)dx, (u, v)V̇per
=

3∑
i, j=1

∫
Ω

∂ui

∂x j

∂vi

∂x j
dx (2.3)

and the norms

∥u∥Ḣper
=
( ∑

k∈Z3\{0}

|ûk|
2
) 1

2
, ∥u∥V̇per

=
( ∑

k∈Z3\{0}

∣∣∣∣ kL ∣∣∣∣2|ûk|
2
) 1

2 (2.4)

respectively.

2.2. The Helmholtz-Weyl decomposition

In this part, the Helmholtz-Leray projector PL on the Lebesgue space L̇2
per(Ω) is defined via the

Helmholtz-Weyl decomposition

L̇2
per(Ω)3 = Ḣper ⊕G(Ω), (2.5)

where the curl field Ḣper is defined as (2.1) whose element satisfies the weakly divergence free condi-
tion

< u,∇ϕ >= 0 for every u ∈ Ḣper, ϕ ∈ C∞0 (Ω), (2.6)

and the gradient field G(Ω) on the torus Ω is defined by

G(Ω) = {u ∈ L̇2
per(Ω)3|u = ∇g, g ∈ H1(Ω)}. (2.7)

The decomposition (2.5) means, every function u ∈ L̇2
per(Ω)3 can be decomposed uniquely as

u = h + ∇g, (2.8)

where the function h belongs to Ḣper and the scalar function g belongs to H1(Ω) (see [6]).
Now, the Helmholtz-Leray projector PL on the torus Ω is defined as

PL : L̇2
per(Ω)3 → Ḣper, (2.9)

where u ∈ L̇2
per(Ω)3 and h ∈ Ḣper, i.e., PLu = h for u ∈ L̇2

per(Ω)3.
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2.3. The Stokes operator

The Stokes operator A is defined as

Au = PL(−∆u) = −PL∆u, for any u ∈ H2(Ω)3, (2.10)

with noting that A = −∆ in the three-dimensional periodic case (see [4]). Since A is a positive operator,
we can deduce that the eigenvalues λi of the operator A are positive and satisfy

0 < λ1 ≤ λ2 ≤ · · · ≤ λi < ∞ and lim
i→∞
λi = ∞. (2.11)

Hence, for u belongs to Ḣper, the Poincaré inequality

∥u∥2Ḣper
≤

1
λ1
∥u∥2V̇per

, for all u ∈ V̇per (2.12)

holds.

2.4. The bilinear operator and trilinear operator

The bilinear and trilinear operators are defined as

B(u, v) = PL(u · ∇)v and b(u, v,w) = (PL(u · ∇)v,w)Ḣper
, (2.13)

which satisfy

b(u, v,w) = −b(u,w, v) and b(u, v, v) = 0, for any u, v,w ∈ V̇per. (2.14)

2.5. Some lemmas

Lemma 2.1. (The Ladyzhenskaya inequality) For u defined on the tours Ω ⊂ R3, the following esti-
mates

∥u(x)∥L4
per(Ω)3 ≤ ∥u∥

1
4

Ḣper
∥u∥

3
4

V̇per
, (2.15)

∥u(x)∥L∞per(Ω)3 ≤ ∥u∥
1
2

V̇per
∥Au∥

1
2

Ḣper
. (2.16)

hold.

Proof. See, e.g., [6] for more detail.

Lemma 2.2. (The Mazur inequality) Let p ≥ 0 is an arbitrary non-negative constant, one can deduce
the following inequality for any x, y ∈ R

2−p|x − y|p+1 ≤ |x|x|p − y|y|p| ≤ (p + 1)|x − y|(|x|p + |y|p). (2.17)

Proof. See, e.g., Kuang [19].
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Lemma 2.3. (The generalized Gronwall inequality) Let η = η(t) and ϕ = ϕ(t) be locally integrable
real-valued functions on [0,∞) that satisfy the following conditions for some T > 0:

lim inf
t→∞

1
T

∫ t+T

t
η(τ)dτ > 0,

lim sup
t→∞

1
T

∫ t+T

t
η−(τ)dτ < ∞,

lim
t→∞

1
T

∫ t+T

t
ϕ+(τ)dτ = 0,

(2.18)

where η−(t) = max{−η(t), 0} and ϕ+(t) = max{ϕ(t), 0}. Suppose that γ = γ(t) is an absolutely con-
tinuous nonnegative function on [0,∞) that satisfies the following inequality almost everywhere on
[0,∞):

dγ
dt
+ ηγ ≤ ϕ. (2.19)

Then γ → 0, as t → 0.

Proof. See, the detailed proof in [4, 16].

3. Main results: determination for autonomous and non-autonomous problem (1.1)

3.1. The Fourier modes

Recalling the Galerkin decomposition u =
∞∑

i=1
ûiωi associated with the eigenfunctions ωi of the

Stokes operator, we denote the first m Fourier modes Pmu and residual modes Qmu as follows

Pmu(x, t) =
m∑

i=1
ûiωi, Qmu(x, t) =

∞∑
i=m+1

ûiωi, (3.1)

which satisfy

(Pmu(x, t),Qmu(x, t))Ḣper
= 0, (3.2)

according to orthogonal properties of eigenfunctions ωi(i = 1, 2, · · · ,∞). Moreover, the Poincaré-
Wirtinger inequality with respect to the function Qmu with zero space average under the periodic case

∥Qmu(x, t)∥2
Ḣper
≤ 1
λm+1
∥Qmu(x, t)∥2

V̇per
(3.3)

and the inverse Poincaré-Wirtinger inequality for Pmu

∥Pmu(x, t)∥2
V̇per
≤ λm∥Pmu(x, t)∥2

Ḣper
(3.4)

are true.

3.2. The Grashof number

The Grashof number Gr is a dimensionless number for fluid dynamics whose approximate is the
ratio of the buoyant to viscous forces acting on a fluid. Following [4, 16], we define the Grashof
number with regard to the first eigenvalues of the Stokes operator λ1, fluid viscosity ν and external
force term f .
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Definition 3.1. (The Grashof number) In the three-dimensional space, we define the Grashof number
by

Gr =
F
ν2λ1
, (3.5)

where F2 = lim sup
t→∞

1
T

∫ t+T

t
∥ f (s)∥2

Ḣper
ds with F > 0.

3.3. Determining modes for non-autonomous case

Considering two solenoidal vector fields u(x, t), v(x, t) and two scalar functions p(x, t), q(x, t) re-
spectively satisfying 3D Navier-Stokes equations with the damping term sharing the same periodic
boundary condition {

∂tu − ν∆u + (u · ∇)u + α|u|β−1u + ∇p = f in Ω × R+,
∇ · u = 0 in Ω × R+

(3.6)

and {
∂tv − ν∆v + (v · ∇)v + α|v|β−1v + ∇q = g in Ω × R+,
∇ · v = 0 in Ω × R+,

(3.7)

where f = f (x, t) and g = g(x, t) are the corresponding external force terms for the above two sys-
tems, then we can derive the appropriate evolution equations for u and v by using the Helmholtz-Weyl
decomposition PL as

du
dt + νAu + B(u, u) + αPL|u|β−1u = PL f in Ω × R+ (3.8)

and

dv
dt + νAu + B(v, v) + αPL|v|β−1v = PLg in Ω × R+ (3.9)

respectively.

Theorem 3.2. Suppose that β ≥ 1, T > 0, the initial value u0 ∈ Ḣper and the external force term
f ∈ Ḣper. Then there exists a global weak solution of the initial boundary value problem (1.1) such
that

u ∈ L∞(0,T ; Ḣper) ∩ L2(0,T ; V̇per) ∩ Lβ+1(0,T ; Lβ+1(Ω)3). (3.10)

Moreover, suppose that 7
2 ≤ β ≤ 5, u0 ∈ V̇per ∩ Lβ+1(Ω)3, there exists a unique global strong solution to

system (1.1) satisfying

u ∈ L∞(0,T ; V̇per) ∩ L2(0,T ; H2(Ω)3) ∩ L∞(0,T ; Lβ+1(Ω)3). (3.11)

Proof. Here by using the Galerkin approximated approach and localized technique to achieve a priori
estimate, then by virtue of compact argument and limiting process, we can obtain the desired results,
we skip the detail in this part. The proof is similar as the existence of global weak and strong solution
in Rn can be seen in Cai and Jiu [10], and the bounded domain in Song and Hou [14], except some
minor revision for our problem with periodic boundary.
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Theorem 3.3. Assume u is the strong solution in Theorem 3.2, then for any t,T > 0, u satisfies the
following estimate ∫ t+T

t
∥Au∥2

Ḣper
dτ ≤ C

ν2

∫ t+T

t
∥ f ∥2

Ḣper
dτ, (3.12)

when T is large enough.

Proof. Multiplying (3.8) by Au and integrate over Ω, we obtain

1
2

d
dt∥u∥

2
V̇per
+ ν∥Au∥2

Ḣper
+ α
∫
Ω
|u|β−1|∇u|2dx + α(β−1)

4

∫
Ω
|u|β−3

∣∣∣∣∇|u|2∣∣∣∣2dx

= ( f , Au)Ḣper
− b(u, u, Au).

(3.13)

The Hölder inequality, the Young and Gagliardo-Nirenberg inequalities result in

|b(u, u, Au)| ≤ C(
∫
Ω
|u · ∇u|2dx)

1
2 ∥Au∥Ḣper

≤ ν8∥Au∥2
Ḣper
+ C
ν

∫
Ω
|u · ∇u|2dx

≤ ν8∥Au∥2
Ḣper
+ C
ν
∥u∥2Lβ+1(Ω)3∥∇u∥2

L
2(β+1)
β−1 (Ω)3

≤ ν8∥Au∥2
Ḣper
+ C
ν
∥u∥2Lβ+1(Ω)3∥Au∥

2(11−β)
β+7

Ḣper
∥u∥

4(β−2)
β+7

Lβ+1(Ω)3

≤ ν8∥Au∥2
Ḣper
+ C
ν
∥u∥

6(β+1)
β+7

Lβ+1(Ω)3∥Au∥
2(11−β)
β+7

Ḣper

≤ ν4∥Au∥2
Ḣper
+ C
ν3
∥u∥2(β+1)

Lβ+1(Ω)3 ,

(3.14)

and

|( f , Au)Ḣper
| ≤ C

ν
∥ f ∥2

Ḣper
+ ν4∥Au∥2

Ḣper
(3.15)

for 7
2 ≤ β ≤ 5.

Substituting (3.14) and (3.15) into (3.13) for any t, t0 ∈ R
+, we derive

ν
∫ t

t0
∥Au∥2

Ḣper
dτ ≤ C

ν

∫ t

t0
∥ f ∥2

Ḣper
dτ + C

ν3

∫ t

t0
∥u∥2(β+1)

Lβ+1(Ω)3dτ + ∥u(t0)∥2
V̇per
. (3.16)

Then, the uniform boundedness of ∥u(t)∥V̇per
and ∥u(t)∥Lβ+1(Ω)3 results in the following estimate∫ t

t0
∥Au∥2

Ḣper
dτ ≤ C

ν2

∫ t

t0
∥ f ∥2

Ḣper
dτ (3.17)

for sufficiently large constant C which is bigger then the one in (3.16), which leads to (3.12), the proof
is complete.

Theorem 3.4. Assume that 7
2 ≤ β ≤ 5, u is the global strong solution in Theorem 3.2. Then the first m

modes are determining of (1.1), i.e.,

∥Pmu − Pmv∥Ḣper
→ 0, as t → ∞, (3.18)

implies

∥u − v∥Ḣper
→ 0, as t → ∞ (3.19)

provided that m ∈ R+ satisfies

m ≥ CG3
r , (3.20)

where C is the constant only depending on λ1, and Gr is the Grashof number (see Definition 3.1).
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Proof. Let w = u − v. Then w satisfies

( dw
dt , ωi) + ν(Aw, ωi) + b(w, u, ωi) + b(v,w, ωi) + α(|u|β−1u − |v|β−1v, ωi)Ḣper

= ( f − g, ωi)Ḣper

(3.21)

in distribution sense.
Since Qmu =

∞∑
i=m+1

ûi(t)ωi, Pmu and Qmu are orthogonal, it follows that

1
2

d
dt∥Qmw∥2

Ḣper
+ ν∥Qmw∥2

V̇per
+ b(w, u,Qmw) + b(v,w,Qmw)

+α(|u|β−1u − |v|β−1v,Qmw)Ḣper
= ( f (x, t) − g(x, t),Qmw)Ḣper

.
(3.22)

Based on the monotonicity of the nonlinear term, we can get

α(|u|β−1u − |v|β−1v,Qmw)Ḣper

= α(|u|β−1u − |v|β−1v,w)Ḣper
− α(|u|β−1u − |v|β−1v, Pmw)Ḣper

≥ −α(|u|β−1u − |v|β−1v, Pmw)Ḣper
,

(3.23)

which leads to the following inequality

1
2

d
dt∥Qmw∥2

Ḣper
+ ν∥Qmw∥2

V̇per

≤ |b(w, u,Qmw)| + |b(v,w,Qmw)| + |α(|u|β−1u − |v|β−1v, Pmw)Ḣper
|

+|( f (x, t) − g(x, t),Qmw)Ḣper
|.

(3.24)

Next, the estimates for every term in (3.24) will be proceed for applying the generalized Gronwall
inequality (Lemma 2.3) with ξ = ∥Qmw∥Ḣper

.

Noting that u = Pmu + Qmu and the properties of trilinear operators (2.14), we write

|b(w, u,Qmw)| ≤ |b(Pmw,Qmw, u)| + |b(Qmw, u,Qmw)| =: b1 + b2 (3.25)

and

|b(v,w,Qmw)| = |b(v, Pmw,Qmw)| = |b(v,Qmw, Pmw)| =: b3. (3.26)

The Hölder and Young inequalities for bi(i = 1, 2, 3), and Lemma 2.1 result in

b1 ≤ C∥Pmw∥L4
per(Ω)3∥Qmw∥V̇per

∥u∥L4
per(Ω)3

≤ C∥Pmw∥
1
4

Ḣper
∥Pmw∥

3
4

V̇per
∥Qmw∥V̇per

∥u∥
1
4

Ḣper
∥u∥

3
4

V̇per
, (3.27)

b2 ≤ C∥Qmw∥Ḣper
∥Qmw∥V̇per

∥u∥L∞(Ω)3

≤
ν

2
∥Qmw∥2V̇per

+
C
2ν
∥Qmw∥2Ḣper

∥Au∥2Ḣper

and
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b3 ≤ C∥v∥L4
per(Ω)3∥Qmw∥V̇per

∥Pmw∥L4
per(Ω)3

≤ C∥v∥
1
4

Ḣper
∥v∥

3
4

V̇per
∥Qmw∥V̇per

∥Pmw∥
1
4

Ḣper
∥Pmw∥

3
4

V̇per
, (3.28)

where C represents different variable-independent constants.
Noting that 7

2 ≤ β ≤ 5, we have the following embedding

V̇per ⊂ L
3(β−1)

2 (Ω)3 (3.29)

by the Sobolev theorem. For the damping term in (3.24), applying (3.29), Mazur’s inequality (Lemma
2.2), Hölder’s inequality, Young’s inequality and V̇per ⊂ L6(Ω)3, we obtain

|α(|u|β−1u − |v|β−1v, Pmw)Ḣper
|

≤ αβ
∫
Ω
|w|((|u|β−1 + |v|β−1)|Pmw|dx

≤ αβ∥w∥L6(Ω)3

(
∥u∥β−1

L
3(β−1)

2 (Ω)3
+ ∥v∥β−1

L
3(β−1)

2 (Ω)3

)
∥Pmw∥L6(Ω)3

≤ Cαβ∥w∥V̇per

(
∥u∥β−1

V̇per
+ ∥v∥β−1

V̇per

)
∥Pmw∥V̇per

.

. (3.30)

For the remaining external force term in (3.24), the Cauchy-Schwarz inequality results in

|( f (t) − g(t),Qmw)Ḣper
| ≤ ∥ f (t) − g(t)∥L2(Ω)∥Qmw∥Ḣper

. (3.31)

Combining (3.22), (3.27), (3.28), (3.30) and (3.31), we conclude

d
dt
∥Qmw∥2Ḣper

+ ν∥Qmw∥2V̇per
−

C
ν
∥Qmw∥2Ḣper

∥Au∥2Ḣper

≤ C∥Pmw∥
1
4

Ḣper
∥Pmw∥

3
4

V̇per
∥Qmw∥V̇per

∥u∥
1
4

Ḣper
∥u∥

3
4

V̇per

+C∥v∥
1
4

Ḣper
∥v∥

3
4

V̇per
∥Qmw∥V̇per

∥Pmw∥
1
4

Ḣper
∥Pmw∥

3
4

V̇per

+Cαβ∥w∥V̇per

(
∥u∥β−1

V̇per
+ ∥v∥β−1

V̇per

)
∥Pmw∥V̇per

+∥ f (t) − g(t)∥Ḣper
∥Qmw∥Ḣper

, (3.32)

which can be rewritten in the form

dγ(t)
dt + η(t)γ(t) ≤ ϕ(t) (3.33)

from (3.3) and (3.4) and the notations

γ(t) = ∥Qmw∥2
Ḣper
,

η(t) = νλm+1 −
C
ν
∥Au∥2

Ḣper
,

ϕ(t) = C∥Pmw∥
1
4

Ḣper
∥Pmw∥

3
4

V̇per
∥Qmw∥V̇per

∥u∥
1
4

Ḣper
∥u∥

3
4

V̇per

+C∥Pmw∥Ḣper

(
λ

3
4
m∥v∥

1
4

Ḣper
∥v∥

3
4

V̇per
∥Qmw∥V̇per

+αβλm∥w∥V̇per
(∥u∥β−1

V̇per
+ ∥v∥β−1

V̇per
)
)

+∥ f (t) − g(t)∥Ḣper
∥Qmw∥Ḣper

.

(3.34)
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The uniform boundedness of u, v, w in Ḣper, V̇per, Lβ+1(Ω)3 from Theorem 3.2 together with con-
vergences ∥Pmw∥Ḣper

and ∥ f (t) − g(t)∥L2(Ω) yield

ϕ(t)→ 0 as t → ∞ (3.35)

provided that (2.18) is true. Hence, (2.18) is verified by

lim inf
t→∞

1
T

∫ t+T

t
η(τ)dτ

= νλm+1 − lim sup
t→∞

1
T

∫ t+T

t

C
ν
∥Au∥2Ḣper

dτ

≥ νλm+1 −
CF2

ν3

> 0 (3.36)

via the estimate

lim sup
t→∞

1
T

∫ t+T

t
∥Au∥2Ḣper

dτ ≤
CF2

ν2 (3.37)

from Theorem 3.3.
According to λm = Cλ1m

2
3 , and the definition of Grashof number Gr (see Definition 3.1), we con-

clude that

m > CG3
r . (3.38)

The proof is complete.

Remark 3.1. In Theorem 3.4, we give the determining modes for weak solution of system (1.1) when
the strong solution exists. However, if there is only the existence of weak solution, the determining
modes for system (1.1) is still open.

3.4. Asymptotic determining functionals for autonomous case

In this part, we consider the 3D damped Navier-Stokes equations with autonomous force f (x) as
∂tu − ν∆u + (u · ∇)u + α|u|β−1u + ∇p = f (x) in Ω × R+,
∇ · u = 0 in Ω × R+,
u(x + Liei, t) = u(x, t), i = 1, 2, 3,
u(x, t = 0) = u0.

(3.39)

Similar as the non-autonomous case above, the equivalent abstract form of (3.39) can be given by

du
dt + νAu + B(u, u) + αPL|u|β−1u = PL f (x) in Ω × R+, (3.40)

where PL still denotes the Helmholtz-Leray projector. Based on the well-posedness of (3.40), Li et al.
study the existence of a finite dimensional global attractor as following.
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Theorem 3.5. Assume that f ∈ Ḣper and u0 ∈ V̇per, Then the semigroup {Lt}t≥0 generated by problem
(3.39) possesses a V̇per-global attractorA.

Proof. See, e.g., Li et al. [12], which studied the damped Navier-Stokes equations in the non-slip
boundary condition. We can similarly get the dynamical system to the problem (3.39) on the periodic
boundary condition.

Consider the system F = {F1, F2, · · · , Fn} of linear functionals generated by the corresponding
Fourier modes Fn(u) =: (u, ωn), where ωn denotes the eigenfunctions of the Stokes operator. In what
follows, we will prove the asymptotic determination for (3.39) with autonomous external force f (x)
according to Theorem 3.5, namely, the system F is determining if n is large enough.

Theorem 3.6. Let 7
2 ≤ β ≤ 5 and n satisfy the inequality

n > C(
L
νλ1

)
3
2 , (3.41)

where L = L(ν, α, β, ∥u∥L∞(0,T ;V̇per), ∥u∥L2(0,T ;H2(Ω)3), ∥u∥L∞(0,T ;Lβ+1(Ω)3)) is a dimensionless constant, λ1 de-
notes the primary eigenvalue. Then the system F of the first n Fourier modes is asymptotically deter-
mining for the dynamical system generated by (3.39).

Proof. Let u∗(t) and v∗(t) be two trajectories inside the finite dimensional global attractorA in Theorem
3.5. Denote w∗(t) = u∗(t) − v∗(t), then it is easy to check that w∗(t) satisfies

dw∗

dt
+ νAw∗

= B(v∗, v∗) − B(u∗, u∗) + αPL|v∗|β−1v∗ − αPL|u∗|β−1u∗ in Ω × R+. (3.42)

Next, multiplying (3.42) by Aw∗ and integrating over Ω, noting that PL is symmetric and (2.14), we
obtain

1
2

d
dt∥w

∗∥2
V̇per
+ ν∥Aw∗∥2

Ḣper

≤ |b(w∗, u∗, Aw∗)| + |b(v∗,w∗, Aw∗)| + α|(|u∗|β−1u∗ − |v∗|β−1v∗, Aw∗)|.
(3.43)

The Hölder inequality, Young’s inequality and Lemma 2.1 yield the estimates

|b(w∗, u∗, Aw∗)| ≤ C∥w∗∥L∞per(Ω)3∥u∗∥V̇per
∥Aw∗∥Ḣper

≤ C∥w∗∥
1
2

V̇per
∥u∗∥V̇per

∥Aw∗∥
3
2

Ḣper

≤ ν6∥Aw∗∥2
Ḣper
+C1(ν)∥w∗∥2

V̇per
∥u∗∥4

V̇per

(3.44)

and

|b(v∗,w∗, Aw∗)| ≤ C∥v∗∥L∞per(Ω)3∥w∗∥V̇per
∥Aw∗∥Ḣper

≤ C∥v∗∥
1
2

V̇per
∥Av∗∥

1
2

Ḣper
∥w∗∥V̇per

∥Aw∗∥Ḣper

≤ ν6∥Aw∗∥2
Ḣper
+C2(ν)∥v∗∥V̇per

∥Av∗∥Ḣper
∥w∗∥2

V̇per
,

(3.45)

where C1(ν) = 729C
32ν3 and C2(ν) = 3C

2ν depend on the dimensionless constant ν only.
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For the damping term in (3.43), by using Hölder’s and Young’s inequalities, we obtain

α|(|u∗|β−1u∗ − |v∗|β−1v∗, Aw∗)|
≤ C(
∫
Ω
|α|u∗|β−1u∗ − α|v∗|β−1v∗|2dx)

1
2 ∥Aw∗∥Ḣper

≤ ν6∥Aw∗∥2
Ḣper
+C2(ν)

∫
Ω
|α|u∗|β−1u∗ − α|v∗|β−1v∗|2dx.

(3.46)

Hence, Mazur’s inequality, V̇per ⊂ L̇6
per(Ω) and Hölder’s inequality result in∫

Ω

∣∣∣α|u∗|β−1u∗ − α|v∗|β−1v∗
∣∣∣2dx

≤ C
∫
Ω

(|u∗|β−1|w∗| +
∣∣∣|u∗|β−1 − |v∗|β−1

∣∣∣|v∗|)2dx
≤ C
∫
Ω

(|u∗|2(β−1)|w∗|2dx +C
∫
Ω

(|u∗|β−2 + |v∗|β−2)2|v∗|2|w∗|2dx
≤ C∥u∗∥2(β−1)

L3(β−1)(Ω)3∥w∗∥2L6(Ω)3 +C(∥u∗∥2(β−2)
L6(β−2)(Ω)3 + ∥v∗∥

2(β−2)
L6(β−2)(Ω)3)

∥v∗∥2L6(Ω)3∥w∗∥2L6(Ω)3

≤ C∥u∗∥2(β−1)
L3(β−1)(Ω)3∥w∗∥2V̇per

+C(∥u∗∥2(β−2)
L6(β−2)(Ω)3 + ∥v∗∥

2(β−2)
L6(β−2)(Ω)3)

∥v∗∥|2
V̇per
∥w∗∥|2

V̇per
.

(3.47)

Substituting (3.44)–(3.47) into (3.43), we conclude
d
dt∥w

∗∥2
V̇per
+ ν∥Aw∗∥2

Ḣper

≤ 2∥w∗∥2
V̇per

(
C1∥u∗∥4V̇per

+C2∥v∗∥V̇per
∥Av∗∥Ḣper

+C3∥u∗∥
2(β−1)
L3(β−1)(Ω)3

+C3(∥u∗∥2(β−2)
L6(β−2)(Ω)3 + ∥v∗∥

2(β−2)
L6(β−2)(Ω)3)∥v∗∥|2V̇per

)
,

(3.48)

where C3 = C3(ν, α, β) is a dimensionless constant.
Owing to 7

2 < β < 5, we have∫ t

0
∥u∗∥2(β−1)

L3(β−1)(Ω)3dτ ≤ C∥u∗∥
2(β+1)2
β+7

L∞(0,t;Lβ+1(Ω)3)∥u
∗∥

8(β−2)
β+7

L2(0,T ;H2(Ω)3)t
3(5−β)
β+7 ,∫ t

0
∥u∗∥2(β−2)

L6(β−2)(Ω)3dτ ≤ C∥u∗∥
2(β−1)3
β+7

L∞(0,t;Lβ+1(Ω)3)∥u
∗∥

2(5β−13)
β+7

L2(0,T ;H2(Ω)3)t
4(5−β)
β+7

(3.49)

are all bounded for any 0 < t < ∞.
Denote

L = 2
(
C1∥u∗∥4V̇per

+C2∥v∗∥V̇per
∥Av∗∥Ḣper

+C3∥u∗∥
2(β−1)
L3(β−1)(Ω)3

+C3(∥u∗∥2(β−2)
L6(β−2)(Ω)3 + ∥v∗∥

2(β−2)
L6(β−2)(Ω)3)∥v∗∥|2V̇per

)
,

(3.50)

which is a finite dimensionless constant because of (3.11). Then there exists an n large enough such
that νλn+1 > L holds, the estimate (3.48) can be reduced to

d
dt∥w

∗∥2
V̇per
+ (νλn+1 − L)∥w∗∥2

V̇per
≤ 0, (3.51)

which yields

∥w∗(t)∥2
V̇per
≤ e−C′(t−s)∥w∗(s)∥2

V̇per
, s ≤ t (3.52)

for some positive constant C′.
Since u∗ and v∗ belong to the global attractor A, we have ∥w∗(t)∥V̇per

→ 0 as t → ∞. Hence, the
system F is asymptotically determining for the dynamical system of (3.39) when n > C( L

νλ1
)

3
2 because

of λn+1 = Cλ1n
2
3 . Therefore, the proof is completed.
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3.5. Further research

In this section, we discuss some open interrelated issues that might be studied in the prospective
investigations and research.

(I) The determining modes in the periodic case is presented in this paper, which can be proved
similarly in the whole space case R3(where the boundary conditions can be considered as |u| → 0 as
|x| → ∞) by utilizing the relevant conclusions in [10], but the situation turns out to be quite different
in the Dirichlet condition, due to the fact

A = −PL∆ , −∆, (3.53)

which implies b(u, u, Au) , 0 in the Dirichlet boundary condition. So the main ideas and difficulties of
the subject is summarized as follows

∂tu − ν∆u + (u · ∇)u + α|u|β−1u + ∇p = f in Ω̃ × R+,
∇ · u = 0 in Ω̃ × R+,
u(x, t) = 0 on ∂Ω̃,
u(x, t = 0) = u0(x),

(3.54)

where Ω̃ denotes an open bounded region in three dimensions. The determination and reduction for
our problem defined on bounded domain is our objective in future.

(II) For the generalized fluid flow, Ladyzhenskaya proposed a revised version of Ladyzhenskaya-
type Navier-Stokes model in the 1960s, where the surrounding flow problem was considered{

∂tu − ∇ · [(ν0 + ν1∥Du∥q−2
L2 )Du] + (u · ∇)u + ∇p = f ,

∇ · u = 0,
(3.55)

where Du = 1
2 (∇u + ∇uT ), Guo and Zhu studied the partial regularity of the distribution solution of

the initial boundary value problem in the three-dimensional case of the model (see [20]). In order to
overcome the difficulties of the model, Lions proposed a new class of polished Navier-Stokes equations
(see [5]) with the establishment of the monotonicity method ∂tu − ν0∆u − ν1

n∑
i=1

∂
∂xi

(|∇u|q−1 ∂u
∂xi

) + (u · ∇)u + ∇p = f ,

∇ · u = 0.
(3.56)

Exploiting the technique of this work, it is actually possible to study the above models (3.55) and
(3.56) in the whole space R3, torus T3, and bounded smooth region Ω respectively, the main difficulty
for dealing with their determining modes lies in the unknown spectral relationship of the corresponding
operator.

(III) A further meaningful research is concerned with finite dimensional reduction of the Navier-
Stokes equations with damping (1.1). If we can get the Lipschitz property

∥h(u) − h(v)∥(Ḣper)′ ≤ L∥u − v∥Ḣper
, ∀u, v ∈ Ḣper, (3.57)

where h(u) denotes (u · ∇)u + α|u|β−1u, and

L < λN+1, (3.58)

then the first N Fourier modes is asymptotically determining for the dynamic system of (1.1) (see [21]),
which leads to the reduction of (1.1) and even the existence of inertial manifold.
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