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Abstract: With the development of complex network theory, many phenomena on complex networks,
such as infectious disease transmission, information spreading and transportation management, can
be explained by temporal network dynamics, to reveal the evolution of the real world. Due to the
failure of equipment for collecting data, human subjectivity, and false decisions made by machines
when the high accuracy is required, data from temporal networks is usually incomplete, which makes
the samples unrepresentative and the model analysis more challenging. This survey concentrates on
the pre-processing strategies of incomplete data and overviews two categories of methods on data im-
putation and prediction, respectively. According to whether each layer in temporal networks has the
coupling process, this survey overviews the dynamic modeling approaches in terms of both a single
process and coupling processes on complex temporal networks. Moreover, for complex temporal net-
works with incomplete data, this survey summarizes various characteristic analysis methods, which
concentrate on critical nodes identification, network reconstruction, network recoverity, and criticality.
Finally, some future directions are discussed for temporal networks dynamics with incomplete data.

Keywords: temporal network; incomplete data; data processing; coupling process; network
characteristics

1. Introduction

Complex networks widely exist in the human society, such as the social network [1], the railway
network [2], the infectious disease transmission network [3], etc. Exploring the dynamics of these net-
works can help understand the intrinsic properties of various pratical complex systems fundamentally.
In order to describe various complex systems in the real world, different models have been proposed,
including the random network, the small-world network, and the scale-free network [4–7]. Temporal
networks are an extension of traditional networks in the time dimension, which are a more accurate
description for complex systems [8–11]. The diagram of temporal networks is shown in Figure 1. The
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combination of nodes and edges in temporal networks can explain some pratical complex systems’ evo-
lution mechanism in the dimension of time, which may prevent and control large-scale outbreaks of
diseases or rumors among the population [12,13]. Therefore, the study on temporal network dynamics
is theoretically significant.

Due to the instability and lack of device for data collection, human subjectivity, and random noise,
the data obtained from the real complex system is usually incomplete [2]. For instance, in the remote
sensing applications, if insufficient sensors are placed in some areas, it may result in the incompleteness
of data [14]. Incomplete data problems are often circumvented by data imputation with specific values
or incomplete data deletion [15]. Classical data imputation schemes include the missing data filling
with zero, unconditional or conditional averages [16]. Since data deletion often causes the loss of
important information, the survey concentrates on the data imputation and generation. With the devel-
opment of machine learning, supervised and unsupervised classification algorithms are widely utilized
to the classification of incomplete data [17, 18]. The accurately classified data plays an important role
in filling incomplete data.

In complex systems, including adaptive networks, temporal networks, and high-order networks,
processing incomplete data is a challenge in studying complex systems [2]. Due to the different char-
acteristics of the networks, there are differences in the methods of processing incomplete data in these
networks. Adaptive networks consider fusion of incomplete data for analysis, which focusing on co-
evolution among nodes. In adaptive networks, the main methods of processing incomplete data are
adaptive fusion graph networks [19], Euclidean embedding [20], matrix completion methods [21] and
so on. Traditional networks only consider the relationship between two nodes. Incomplete data in re-
alistic conditions is influenced by interactions of several factors. High-order networks can explain for
missing data in real-world environments. In high-order networks, the main methods of dealing with
incomplete data are graph learning attention neural networks [22], spatio-temporal imputation [23],
and high-order dynamic Bayesian networks(BNs) [24]. In temporal networks, the main methods of
dealing with incomplete data are multiple imputation (MI), data generation, bayesian inference, causal
learning, Recurrent Neural Network (RNN) with Ordinary Differential Equations (ODEs) (or addi-
tional input features) and Long Short-Term Memory (LSTM) networks. Methods of incomplete data
processing in temporal networks are summarized in Table 1.

The majority of existing literature concentrates on the analysis of temporal networks with complete
data [25–27]. To better describe complex temporal networks, it is necessary to summarize analysis
methods for temporal network dynamics with incomplete data. The main contributions of this survey
are as follows. Firstly, this survey concentrates on the recent developments in dealing with the in-
complete data for complex temporal networks and divides the existing methods and results into two
categories, incomplete data imputation and prediction. Secondly, this survey overviews two categories
of dynamical process modeling methods on single-layer and multilayer temporal networks: a single
process on complex networks, and several coupling processes on different layers. Thirdly, this survey
summarizes various analysis methods for the network characterization with incomplete data, which are
utilized to analyze the local and global characteristics of complex temporal networks, respectively.

This survey is organized as follow. Section II introduces two categories of methods for data im-
putation and prediction. Section III concentrates on the temporal network modeling for both a sin-
gle process on complex networks and the coupling process on different layers respectively. Section
IV overviews some characteristics of temporal networks with incomplete data and the corresponding
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analysis methods. Section V summarizes some future directions such as high-order interaction, open
environment, heterogeneity and few-shot learning. The overall structure of this survey is shown in
Figure 2.
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Figure 1. Diagram of temporal networks [8].

Table 1. Methods of incomplete data processing in temporal networks.

Year Reference Method
2019 Garcia et al. [15] MI
2017 Dzunic et al. [28] Bayesian inference
2015 Westreich et al. [29] Causal learning
2021 Zhu et al. [30] Data generation
2021 Zhou et al. [31] RNN with ODEs
2018 Rahman et al. [32] RNN with additional input features
2021 Yang et al. [33] LSTM
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Figure 2. The overall structure of the survey.
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2. Incomplete data processing in temporal networks

The incomplete data in temporal networks is mainly classified into three types: missing completely
at random (MCAR), missing at random (MAR) and not missing at random (NMAR) [15]. To eliminate
the adverse effects of incomplete data, there are two kinds of processing methods. The first is incom-
plete data imputation and generation, which input the processed complete data into the model [16].
The other one is incomplete data prediction, which develops a prediction model for missing data with
minimal pre-processing cost [34]. The difference between these two strategies is that the former re-
quires data pre-processing to get accurate estimated data, which is more computationally intensive but
highly accurate [35]. The latter does not require the complete imputation of initial data before in-
putting, and relies on the prediction model with minimal pre-processing cost. The accuracy is closely
involved with the performance of the prediction model. The approaches of incomplete data processing
are summarized in Table 2.

Table 2. Summary of incomplete data processing.

Year Reference Type of incomplete data Processing Type Approach Application Interpretability
2019 Garcia et al. [15] MCAR MI An incremental learning method Industry system
2019 Venugopalan et al. [16] MCAR MI An alternating least squares PCA method Medical System
2016 Yu et al. [36] MAR MI Time series matrix through method Climatology
2019 Liu et al. [14] MAR MI K-means method Industry system
2020 Liu et al. [37] MAR MI Consensus clustering matrix with regularization Industry system
2020 Liu et al. [1] MAR MI Combinatorial analysis Sociology ✓
2020 Mancuso et al. [38] MAR MI Dynamic property analysis Industry system ✓
2022 Gunn et al. [39] MAR MI Lasso linear regression Psychology ✓
2017 Dzunic et al. [28] NMAR Bayesian inference A switching Bayesian model Industry system
2020 Zhao et al. [40] NMAR Bayesian inference A semi-supervised sparse bayesian regression model Industry system
2019 Benjumeda et al. [41] NMAR Bayesian inference A Bayesian model Industry system
2017 Hasan et al. [6] MAR Bayesian inference a semi-Markov algorithm for continuous time Sociology
2017 Hasan et al. [42] NMAR Bayesian inference A crowdsourcing Bayesian model Sociology
2015 Westreich et al. [29] MAR Causal learning MI and the parametric g-formula Industry system
2020 Ray et al. [43] MAR Causal learning Semiparametric Bayesian causal method Industry system ✓
2020 Nguyen et al. [44] MAR Causal learning Inverse Bayes formula Sociology ✓
2019 Tikka et al. [3] MAR Causal learning Bivariate missing data analysis Medical System ✓
2021 Athey et al. [45] MAR Causal learning Matrix causal structure estimators Sociology ✓
2020 Richens et al. [46] MAR Causal learning Counterfactual diagnostic method Medical System ✓
2021 Zhu et al. [30] MAR Data generation A conditional GAN Chemical industry
2021 Hu et al. [25] MAR Data generation A GAN based on trinetworks form Pipeline Networks
2021 Gao et al. [12] MAR Data generation An attention GAN Medical System
2020 Xu et al. [2] MAR Data generation A GAN based on graph embedding Transportation networks
2022 Xu et al. [26] MAR Data generation A deep hashing model with GANs Transportation networks
2021 Zhou et al. [31] NMAR Prediction Discrete optimization method Transportation networks
2019 Raissi et al. [34] NMAR Prediction A deep RNN model with ODEs Medical System
2018 Rahman et al. [32] NMAR Prediction Dynamic Layered-RNN method Power grid
2018 Tian et al. [17] NMAR Prediction Multi-scale temporal smoothing analysis Transportation networks
2021 Yang et al. [33] NMAR Prediction Graph Laplacian spatial regularizer Transportation networks

2.1. Incomplete data imputation and generation

Data imputation is the most general method to refine incomplete data [36]. It can be divided into the
imputation with statistics and machine learning (ML). The statistical variables, such as mean, mode or
median value, are generally utilized for filling incomplete data. But these methods ignore the important
information about feature, structure types and so on. With the rapid development of computation
power, ML is now predominantly used in many scenarios, including MI [14], data generation [30],
bayesian inference [6], causal learning [43] and so on.
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2.1.1. Multiple imputation

MI concentrates on the own time series evolution of missing values and the neighboring ones be-
cause different time series are often correlated with each other. In particular, MI considers the influence
between temporal indicators [39]. The diagram of MI is shown in Figure 3. By learning the global
characteristics of time series matrix through the matrix decomposition, the temporal characteristic ma-
trix is approximated by a low rank matrix [36]. This algorithm has low computational complexity,
and can handle larger scale data under MAR. A temporal regularized matrix factorization framework
is proposed to support data-driven temporal learning and forecasting in [36]. This framework utilizes
the scalable matrix factorization methods that are eminently suited for incomplete high-dimensional
temporal data. Considering the incompleteness of the time matrix under MAR, a new algorithm is
presented to combine the inputs with clustering in [14], which makes the incomplete matrices comple-
ment each other. Based on the combination scheme in [14], the prior knowledge of incomplete data
under MAR is utilized to improve the algorithm [37]. The consensus clustering matrix with regular-
ization is presented to improve the filling sub-classification performance. Considering the time-series
prediction in an online context with incomplete data under MCAR, a modified evolving granular fuzzy-
rule-based model is proposed in [15]. This model provides the parameter estimation in a nonlinear and
time-varying way.
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Figure 3. Diagram of multiple imputation.

In many scenarios, filling incomplete data requires giving specific rules, and makes the final result
understandable and trustworthy to the public. So data imputation needs to improve interpretability.
To meet this situation, it is difficult for the matrix decomposition to give an intuitive explanation.
Therefore, it is necessary to combine multi-source tensors and their relationships by considering the
external properties of the analyzed data with interpretable correlations [1]. Based on the neighbor-
ing users’ electricity, it is considered to correlate the electricity consumption data of different users
and complement the missing data under MAR [1]. Considering the dynamic characteristic in [1], a
termed Sample-Lasso method is proposed to interlink dynamic characteristics of each new target sam-
ple [38]. This way of interlinking the expression of unmeasured genes demonstrates the biological
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interpretability. To further consider the interpretability of regularization methods like the Lasso, the
hybrid estimation of fitting a Lasso for variable selection is utilized to fill the data under MAR by
combining several different variables in [39]. It reduces the variance of the estimates and increases the
interpretability of the model.

2.1.2. Bayesian inference

Bayesian inference is a statistical learning inference method, and it updates the probability of hy-
potheses to obtain more evidence and information [42]. Bayesian inference is a critical technique which
is widely utilized in scientific research, engineering and other fields. Bayesian inference considers the
uncertainty of data imputation and the correlation between data, which can combine the possibilities
of all incomplete data to make optimal decisions. A switching Bayesian model is developed for depen-
dency analysis, which relies on a state-space approach accounting for the noisy measurement processes
and incomplete data under NMAR [28]. Considering the uncertainty of the Bayesian model, a semi-
supervised sparse Bayesian regression model is proposed to deal with incomplete output under NMAR,
through variational reasoning technology in [40]. The structural expectation maximization (EM) algo-
rithm is introduced to enhance the uncertainty of the model in BNs from incomplete data sets. With
sufficient data and a defined maximized objective function, the desired model can be obtained by train-
ing with the relevant parameters. Considering the high computation cost, with the improved EM algo-
rithm and a semi-supervised Bayesian regression model, the polynomial cost in variables is utilized in
the BNs for the lower inference complexity in [41]. Based on the incomplete data randomness under
NMAR, an EM algorithm and a semi-Markov algorithm for continuous time are introduced to infer the
data type information from incomplete trajectory data, which can predict a person’s next action [6]. It
settles the activity construction with incomplete information on online social media. Bayesian infer-
ence also has many extensions to accommodate more complex cases. To enhance the performance of
Bayesian inference in precision, the concept of crowdsourcing is integrated into the Bayesian inference
process, which reduces the cost of acquiring training samples [42].

2.1.3. Causal learning

Causality represents a type of correlation, and causal inference is used to learn about cause and
effect relationships [29, 47]. The diagram of causal learning is shown in Figure 4. Two graphs in the
diagram X1 → X2 → X3 and X1 ← X2 ← X3 imply the same conditional independence (X1 and X3

are independent given X2). P represents the probability distribution. d(t) represents the action at time
t. A causal model represents a set of distributions, one for each possible intervention (indicated with
a tool icon in Figure 4). In this sense, the causal relationship inference implies gaining the significant
knowledge [48]. This knowledge is not limited to independently and identically distributed data. Some
methods such as a general search-based approach learn the causal structure from the missing data and
then estimate the causality of the data to complete missing data [3]. A causal inference method to
fill the missing value under MAR is proposed in [29], which is similar to multiple imputation and
the parametric g-formula. The result suggests that epidemiologists can benefit from thinking about
the potential outcome’s causal inference. Based on the uncertainty of incomplete data under MAR, a
semiparametric Bayesian causal approach is proposed to determine the relationship in the incomplete
data, to obatin the complete data [43]. Considering the common cause failure rate based on causal

Electronic Research Archive Volume 30, Issue 10, 3786–3810.



3792

inference with missing data under MAR, the inverse Bayes formula combined with causal learning
is developed to handle this problem in filling missing values [44]. This method also improves the
universality of processing incomplete data.
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Figure 4. The framework of causal learning [48].

Counterfactual causality can be continuously verified by hypothesizing and constructing causal
models to obtain more complete data. The causal relationship between the incomplete data can be
closer to the real complete data through the above method [46]. Considering the counterfactual based
on the causal relationships, a systematic analysis of the bivariate missing data problem in counterfac-
tuals is proposed in [3]. For counterfactuals of the treatment unit/cycle combination, a class of matrix
completion estimators that uses the observed elements of the matrix of control is utilized to deal with
missing elements of the control outcome matrix under MAR [45]. To improve the interpretability and
accuracy in the medical diagnosis, the diagnosis is reformulated as a counterfactual inference task, and
a causal definition of diagnosis that is closer to the decision making of clinicians is presented in [46].
This approach derives counterfactual diagnostic algorithms for incomplete data under MAR.

2.1.4. Data generation

With the development of Generative Adversarial Networks (GANs) in recent years, many ap-
proaches based on GANs are utilized to fill incomplete data in time series [49]. The distribution
features of time series are captured by generative models. The diagram of GANs is shown in Figure 5.
It can regenerate the time series data and fill the original incomplete data [26]. In order to solve the
problem that only few samples are available, a virtual sample generation method based on conditional
GANs is proposed in [30]. It combines a local anomaly factor with the k-means algorithm to gener-
ate two output samples that match the overall output trend. This achieves the purpose of filling the
incomplete data under MAR. Considering the multiple types of generated data, the GANs based on
the ternary network form are developed to handle leak detection problems with incomplete sensor data
under MAR [25].
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Figure 5. Diagram of GANs [49].

Based on the need for online learning, a deep learning (DL) framework is proposed in [2], which
implements the representation of road networks in embedding graphs. In this case, GANs are used
to generate the real-time traffic state information, so road traffic conditions are estimated based on
information from adjacent links. Considering the heterogeneity of incomplete data under MAR, a DL
framework, which integrates a task-induced pyramid-attention GAN with a pathwise transfer dense
convolution network, is proposed in [12]. There is a better improvement in multi-type data processing.
For the robustness of data processing under MAR, the loss in the reconstruction and the generation is
utilized mainly to generating continuous features of the incomplete data in deep hash model [26]. It
improves the accuracy of the generated data.

2.2. Incomplete data prediction

Rather than producing the accurate estimate of incomplete data, the primary purpose of the
prediction-centric strategy is to construct a prediction layer for incomplete data, which data is pro-
cessed with simple imputation [32]. This improves the ability to handle incomplete data under NMAR.
Both Recurrent Neural Network with Ordinary Differential Equations (or additional input features) and
Long Short-Term Memory networks, are usually utilized as the prediction layer.

2.2.1. RNN with ODEs

Neural ODEs use neural networks to parameterize the derivatives of hidden states [31]. It can adapt
the evaluation strategy according to each input without partitioning or ordering of data dimensions.
This method can be formulated commonly as

ht+1 = ht + f (ht, θt) (2.1)

where h is the value of the hidden layer, t represents the serial number of the hidden layer, t ∈ {0 . . . T }
and ht ∈ R

D. These iterative updates can be seen as an Euler discretization of acontinuous transforma-
tion [50].
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In the limit, we parameterize the continuous dynamics of hidden units using an ODE specified by a
neural network as

dh(t)
dt
= f (h(t), t, θ) (2.2)

where h(0) represents the input layer, h(T ) represents the output layer, θ represents dynamics param-
eters. Starting from the input layer h(0), we can define the output layer h(T ) to be the solution to this
ODE initial value problem at some time T .

RNN with ODEs can naturally process arbitrary time intervals and common incomplete data under
NMAR [50]. To balance the prediction accuracy and computational efficiency, the discrete optimiza-
tion method is introduced in [31]. Meanwhile, the hidden states of RNN with ODEs are utilized to form
a new urban flow prediction framework to improve the handling of missing values. Based on the ro-
bustness of the prediction model, combining discrete optimization methods with ODEs, the incomplete
data and the signal-to-noise ratio in a high-dimensional state are interrelated in [51]. In order to account
for the uncertainty of incomplete data under NMAR, the probabilistic latent ODE dynamics model pa-
rameterized by deep Bayesian neural networks is proposed in [52]. Neural networks, which combine
the recursive bayesian filtering with the known state dynamic differential equations, are proven to well
approximate the state dynamics corresponding to missing ODEs in [34]. The validity of this model is
verified in a recognized model of human retinal blood circulation.

2.2.2. RNN with additional input features

By adding inputs with additional features, which can provide direct data information about the time
delta and the linear relationship between missing data, RNN can further effectively handle incomplete
data under NMAR [35]. Considering the specific operating environment and the robustness under
device failures, a deep RNN model is adopted to develop a data calculation scheme about electricity
consumption data, and adds the scenario feature information on the input data [32]. This scheme can
obtain more complete data by merging scene information in the power grid but the types of data that
can be predicted are limited. The information between the missing values and the observed values can
also be provided by increasing the interval between observed values. A dynamic Layered-Recurrent
Neural Network (L-RNN) approach is proposed to recover missing data under NMAR from the Internet
of Medical Things [53], which can increase the dynamic observed interval in each layer to obtain more
information. Its advantage over Deep RNN is that it divides the data into complete and incomplete data,
so just a dynamic L-RNN trained by complete data can predict other incomplete data under NMAR.
Considering the generality of the model, the approach which integrates improved incomplete data into
two general regression neural networks is proposed in [54]. Meanwhile, an extension term with a
binary variable indicating missingness is added to the neural input structure in the task of missing data
management systems. This model can improve the overall prediction accuracy.

2.2.3. LSTM

LSTM is a class of RNNs, which is famous for the special network structure. LSTM adds three con-
trol units such as the input gate, the output gate and the forget gate. As the data inputs this network, the
units in LSTM network will judge whether the information conforms to the rules, which can solve the
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long time series problem in neural networks [33]. This approach is utilized to confirm whether incom-
plete data under NMAR is retained when processing multiple data types. Considering the prediction
accuracy, the incomplete data under NMAR is subdivided by a LSTM network prediction model into
multiple types [55]. Then the refined data is utilized for retraining. Based on the multiple scales of
temporal data, a multi-scale temporal smoothing method is introduced to settle the data consistency at
different time scales [17]. For the correlation between incomplete data under NMAR, the graph Lapla-
cian model is chosen as a spatial regularizer in the LSTM network [33]. It improves the prediction
performance by exploiting the spatial correlation among the network sensors. Considering the robust-
ness of the model, a stacked bidirectional unidirectional LSTM network structure is proposed in [18].
It can fill missing values under NMAR and assist in the traffic prediction by designing an estimation
unit, which improves the model accuracy without adding additional computation burden.

3. Temporal network dynamics modeling

Incomplete data can lead to the final results that are far from reality. Therefore, it is necessary
to increase the feasibility of temporal network dynamics models with incomplete data based on data
processing [56]. In the following, this section will summarize the dynamics modeling on monolayer
and multilayer networks according to whether there exists the coupling behavior, respectively. The
diagram of interactive process dynamics in temporal networks is shown in Figure 6. The approaches
of dynamics modeling and characteristics analysis in temporal networks are summarized in Table 3.
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Figure 6. Diagram of interactive process dynamics in temporal networks. (a) A single-layer
network, (b) Multilayer networks, (c) A single process dynamics in networks, (d) Coupling
processes dynamics in different networks.
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3.1. A single process in networks

3.1.1. Single-layer networks

The structure of social relationships between individuals, interactions between proteins, and many
other cases can be represented by networks. The majority of research concentrates on networks made
up of a single entity, where an entity is only interconnected by another entity [57]. Such networks are
now known as single-layer networks [58]. When there is one process in single networks, the intrinsic
mechanism modeling of temporal networks is considered. Based on the group characteristics in the
Susceptible-Infectious-Recovered (SIR) model, the behavior characteristics of group communication
are introduced in [59]. This model explains the information about the potential disease spreading
in the population, and how the disease dynamics are influenced by consciousness. Considering the
interpretability of the model, the parameters in the spatio-temporal volterra model are estimated in
wireless sensing systems [57]. This model can explain the correlation of data processing tasks between
wireless sensor network nodes at different time periods when analyzing wireless sensor networks with
temporal networks. Considering the bursty activities on the above theory, a temporal network model
based on the bursty node activation is proposed to explain the dynamic processes of various systems
in [58].

Data-driven modeling is an effective solution when the amount of data is larger and the mechanism
of the network is not clear. Based on the robustness of the model, a data-driven model with a new
fundamental graph is developed to discover the critical density of a given road segment in the highway
traffic networks [60]. It determines scenario-oriented event definitions in a completely unsupervised
manner, independent of the noise level in the input data. To further consider stochastic nonlinearity in
temporal networks, a data-driven model based on the mixed integer linear programming is proposed to
enhance the real-time detection capability in [61]. The time-series data of the transmission system is
utilized as input, which can quickly identify uncertain fault event scenarios and resolve missing sensor
transmission data.

Table 3. Summary of dynamics modeling and characteristics analysis in temporal networks.

Year Reference The network type Coupling process Incomplete data processing type Data-driven modeling Approach Characteristics
2020 Gupta et al. [57] Single-layer MI Communication-efficient method Critical nodes identification
2022 Zhao et al. [59] Single-layer Opinion leader theory Criticality
2020 Hiraoka et al. [58] Single-layer Actual matching method Criticality
2020 Jiang et al. [61] Single-layer Causal learning ✓ Mixed integer linear programming Criticality
2018 Alesiani et al. [60] Single-layer Data generation ✓ AIP method Criticality
2017 Mei et al. [62] Multilayer Random walk Criticality
2018 Manfredi et al. [63] Multilayer MI Random Walk Criticality
2019 Indu et al. [13] Multilayer Data generation Forest-fire method Critical nodes identification
2020 Liu et al. [64] Multilayer MI Variable propagation rate and perception mechanism Critical nodes identification
2020 Liang et al. [65] Multilayer Data generation ✓ Cross-media semantic correlation learning Critical nodes identification
2015 Domenicou et al. [56] Multilayer Data generation Infomap search method Critical nodes identification
2020 Hu et al. [4] Multilayer ✓ MI Direct error method Network reconstruction
2019 Jia et al. [5] Multilayer ✓ Nonsmooth analysis Criticality
2021 Sun et al. [66] Multilayer ✓ Derived method Network resilience
2018 Zhan et al. [67] Multilayer ✓ MI Nonlinear analysis Criticality
2020 Müller et al. [68] Multilayer ✓ MI Nonlinear analysis Criticality
2022 Gao et al. [27] Multilayer ✓ ✓ Two-phase autonomous inference method Network reconstruction
2017 Hasan et al. [6] Multilayer ✓ Bayesian inference ✓ An expectation-maximization algorithm Network reconstruction
2021 Yang et al. [33] Multilayer ✓ LSTM ✓ Alternating algorithm and GRMF method Criticality

3.1.2. Multilayer networks

A typical model of a single dynamic process on multilayer networks is the random walk. This model
mainly considers the relative speeds and probabilities of steps within layers versus steps between layers
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which can affect the qualitative nature of the dynamics [56]. Considering the relevance of random walk,
a theoretical modeling framework based on the compressed sensing and regularization is proposed
in [62]. It achieves more accurate estimation of structural information between layers. Considering
the further robustness of models in temporal networks, it is modeled from the perspective of the nodes
which have a limited capacity of storing and processing the agents on multilayer networks [63]. This
model improves the predictive ability of long time-series data in the random walk model.

Another typical model of a single dynamic process on multilayer networks is the information
spreading on social media and multimodal transport systems. To more accurately identify the spread-
ing characteristics of rumors, a model based on laws of the nature like forest fires is proposed in [13],
which focuses on identifying best features of simulated rumor propagation through online social net-
works. This method connects the spread of rumors in social networks with the spread of wildfires in
forests, and identifies the main characteristics of rumor spreading. Considering the dynamic variability
of rumors, the variable propagation rate and perception mechanism are integrated with a rumor spread-
ing model, which can change the attitude of ignorant spreaders [64]. It can also explain the internal
motivation of the rumor but there is limited capability for computing more complex social networks.
With the increase of the number of network layers, the integration of deep neural networks can break
the computational limitations of the above models. Based on the framework of deep neural networks, a
timetable-based modeling approach is developed to incorporate critical temporal factors into the travel
time analysis [69]. However, these models cannot utilize similarities and correlations in temporal
networks. Combining deep neural networks with hash networks, the deep network with multimodal
data features is utilized to an unified optimization architecture [65]. This model better preserves the
similarity and correlation of incomplete data in temporal networks.

3.2. Coupling processes in multilayer networks

Dynamics processes on different layers of multilayer networks can interact with each other, and
studying different interaction processes on multilayer networks is a hot research topic in network sci-
ence [6,70]. The dynamics of multilayer networks can be analyzed by coupling mechanism modeling.
The diffusion process in multilayer networks is studied in [71]. Some physical phenomena is empha-
sized, which is related to the diffusion process generated by multilayer structures from the perspective
of coupling mechanism. Considering the homogeneity of the coupling process, the network-based
models are campared with homogeneous hybrid models in [72]. The differences in the predictions
of homogeneous mixture models are pointed out and the dynamics of disease behavior processes on
complex networks in statistical physics are also compared. Considering the intermittency of the cou-
pling process, a direct error method based on the intermittently coupled temporal network model is
introduced in [4]. It reveals the mechanism of intermittent coupling dynamics on multilayer networks.
Considering the time variant in temporal networks, the Lyapunov function and the Laplace transform
technique are introduced to model and analyze the coupling dynamics of complex multilayer networks
in [5].

If the detailed and accurate process mechanisms are known, or a wealth of experience and knowl-
edge is available, both mechanistic and data-driven modeling could work well. The increasing com-
plexity of temporal networks makes these prerequisites no longer easy to meet. So it is inevitable to
consider data-driven modeling. In order to accurately describe the dynamics of two interacted uni-
directional diffusion processes, a data-driven model with the low complexity is developed to predict
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diffusion on a competitive scenario on various networks such as Lesmis, Football and Power [66]. This
model can be used to predict the spread of coupled infectious diseases. Considering the nonlinearity in
temporal networks, the large graphical limit of the nonlinear model is related to the stochastic preva-
lence model in [67]. It explains the coupling phenomenon of disease transmission in the population and
network information spreading. In order to improve the online analysis of temporal network dynamics
models, the coupling process of local neuronal synapses and the nonlinear dynamics modeling are in-
tegrated in [68]. To further consider the robustness of online analysis models, a two-stage approach is
proposed to develop a data-driven model with the robust inference, which can study the dynamics of
the early spread of influencing a global aviation network [27].

4. Characteristics analysis in temporal networks

The characteristics of complex networks represent the intrinsic mechanism of complex systems
[4]. This section analyzes the characteristics mainly from these aspects: critical nodes identification,
network reconstruction, network recoverity, and criticality.

4.1. Critical nodes identification

Critical nodes are generally nodes in the core position of temporal networks and have a significant
influence on the structure and function of the whole network [73]. The critical node identification
can obtain a priori knowledge about the importance of entities and thus predict the development of
events, such like predicting critical components to prevent catastrophic failures in the grid [32]. To
improve the local recognition, an algorithm to refine BNs structure is introduced to modify the local
edges, which connect the nodes affected by misclassification in [74]. Considering the recognition of
local features, a method based on a set of user-specific features is proposed to obtain more accurate
critical nodes in [75]. To identify the current and future critical influencers on Twitter, it uses graph
data mining to extract influence factors of the user-specific features. Considering the robustness of
recognition, a new approach to identify critical communicators on social networks is proposed, which
extracts and integrates differential features from various complex network connectivity structures [76].
Considering the global characteristics of nodes in temporal networks, the integration of global network
structure features is utilized in [77], which can effectively identify critical nodes in virus spreading.
Considering the heterogeneity of global features, an identification method of saliency analysis based
on global features and the spectral is developed to identify critical nodes in an electricity meter network
with incomplete data sets [78].

4.2. Network reconstruction

In the study of social, economic and biological systems, the need to solve the data scarcity of net-
work structure has led to the birth of network reconstruction [79]. Combining incomplete activity
information and diffusion times, a semi-Markov probabilistic modeling approach is proposed to re-
construct the user’s activity trajectories on the location sequences in [6]. This approach is meaningful
to predict an individual’s next activity, duration and location with incomplete trajectory data. Based
on the above theory, adding global information can make the prediction more accurate. On the basis
of the zero model assumption, a data-driven model based on the stochastic diffusion process is pro-
posed in [79], which reconstructs temporal networks based on the node diffusion time. Considering
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the integration of a priori information in the global features, deep convolutional neural networks are
utilized to learn the correlation and prior information in the original data, which can reconstruct the
network more efficiently [80]. To explain the robustness of the model, the full sampling conditions and
differential phase contrast within the deep convolutional neural network are introduced to reconstruct
the multilayer network [81].

4.3. Network resilience

The structure and function of a complex system may be failed and dysfunctional under the distur-
bance of external factors such as external attacks [82, 83]. In contrast, the structure and performance
of the system can be gradually restored under self-resilient factors or human intervention [84]. In the
perspective of local intervention, a data-driven model under incomplete data is developed to predict the
recovery of dynamic temporal networks in fault states [85]. Based on the dynamic coupling process,
a local node intervention scheme is proposed to recover the network resilience in [86]. Considering
the model development day robustness on the basis of coupling process, a two-step recovery scheme is
developed in [87]. It reconstructs failed temporal networks until the point where it can be recovered,
and then dynamically intervenes to reignite the network’s lost functionality.

In the perspective of global intervention, a probabilistic matrix decomposition of the data from the
sensors is presented in [88], which adds the extended inputs to the neural structure. This approach is
utilized to recover the Internet of Things from a fault state. To improve the computation efficiency, a
method called the principal component analysis with the spatio-temporal tensor is proposed in [89],
which utilizes tensor decomposition and low-dimensional representation. It can recover traffic net-
works from corrupted and incomplete data. This will significantly improve the safety and real-time
performance in the traffic management. Considering the multi-scale analysis in network space, a gen-
eral network recovery framework for big data is presented in [90], which can augment a generalized
argument for inferring omnidirectional, multilayer, and multispace networks from any high dimension
of data. This framework can retrieve dynamic information to infer various meaningful networks from
static data.

4.4. Criticality

In complex networks, once the external disturbance exceeds a certain limit, the system will change
from one equilibrium state to another equilibrium state, which is called the criticality of the system
[91]. When a complex system reaches a critical value, we may have no time left for risk prediction
and no valuable warning to trigger a sudden and dramatic change, which can cause the irreversible
damage. Therefore, it is critical to analyze the criticality of complex systems. It is considered feasible
to explain criticality in terms of the mechanism in complex temporal networks [91]. Based on the
mean-field limit theory, the critical threshold for the scale-free diffusion behavior is given in [7]. It
explores the spread of disease on a directed scale-free network and the effect of node thresholds on
disease spread. On the basis of the above, through analyzing the classical maki-Thompson model of
rumor spreading, the researchers discuss the critical point of the avalanche evolution and efficiency
of information spreading in social networks [91]. Considering the heterogeneity of the spreading
structures, the messaging model is introduced in the Maki-Thompson model, which can reproduce the
observed diffusion characteristics and reveal how data incompleteness affects the criticality of news
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diffusion [92]. Considering the issue of controllability in the rumor spreading, two types of controlled
and uncontrolled propagation behaviors are introduced in the rumor spreading model [93], which can
better identify the spreading criticality in temporal networks. Based on the sensitivity analysis of
models, two different social structures in temporal networks are proposed to predict the critical point
[94]. It reveals that an infectious disease model can be constructed based on different assumptions.

Because of the DL’s powerful ability to classify features of time series with large-scale data, DL is
widely used in the prediction for critical points. Based on the DL framework, the growth dynamics of
cell populations in microbial ecology is invoked to develop a basic growth model of modal popularity
in online social networks, which can predict the criticality of the meme’s development [95]. The
contribution is to incorporate the general model of human interest dynamics into the basic model. In a
complementary approach based on DL, the dynamic information of nodes is introduced to predict the
critical point of disease spreading in [96]. Considering the multi-scale of incomplete data, the features
from information in the general form and the scale behavior of all critical points in the vicinity of the
dynamic system are extracted in [97]. The features are introduced into the DL algorithm for critical
prediction. A robust machine learning framework is proposed to identify epidemic thresholds for
susceptibility-infection-susceptibility dynamics in complex networks [98]. Reservoir Computing is a
simplified cyclic neural network architecture, which has shown the excellent performance in predicting
the dynamics and criticality of complex systems [99].

5. Discussion

In this survey, the processing of incomplete data for temporal networks is mainly introduced from
the two perspectives of data imputation and prediction. Data imputation requires data pre-processing
to get accurate estimated data, which is more computationally intensive but highly accurate [35]. Data
prediction does not require the complete imputation of initial data before inputting, and relies on the
prediction model with minimal pre-processing cost [32]. But the size of dataset and computational
complexity are not considered. The dynamic modeling of temporal networks mainly summarizes the
dynamics modeling on monolayer and multilayer networks according to whether there exists the cou-
pling behavior, respectively. The single-layer networks are mainly modeling in mixed integer linear
programming [61], AIP [60], opinion leader theory [59] and other methods. The methods of random
walk [62, 63] and spreading [66, 68] are utilized in multilayer networks. However, the driving mecha-
nisms of coupling behavior, the distinction of coupling dynamics in heterogeneous and homogeneous
networks, coupling dynamics in high-order networks are not considered. This survey analyzes the char-
acteristics mainly from these aspects: critical nodes identification [74], network reconstruction [80],
network recoverity [87], and criticality [7]. The analysis methods from local to global are summarized
and discussed in this survey, but the characteristic analysis in temporal networks is limited in such net-
works, which has none process of material, energy and information exchange between networks and
the external environment.

6. Perspectives

Based on the theory of propagation dynamics for complex temporal networks, we summarize the
data processing, dynamics modeling and characteristics analysis of temporal network dynamics with
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incomplete data, and look forward several research directions in the future.

6.1. High-order interaction

Low order systems are those in which only self-interaction or pairwise interactions take place (like
edges in a graph), while higher-order systems display interactions in groups of more than two elements
[100]. The high-order correlations of elements in systems can better explain some phenomena, such as
the realization of brain functions, social communication, and ecological evolution [49]. So interactions
in high-order systems cannot be simply described in terms of point-edges. There are crucial differences
between pairwise modeling and higher-order interactions. The dynamics modeling beyond pairwise
interactions in temporal networks receive less attention [27, 67, 68]. The higher-order structure of
these complex temporal systems can be utilized to improve our modeling performance and predict
their dynamic behavior precisely. There is a clear evidence indicating that neither interactions in social
media nor in biological systems can explain why they emerge [5, 58, 66]. This modeling beyond
pairwise interactions may be possible to account for the above phenomena. In addition, we still lack
a general understanding that how beyond pairwise interactions affect dynamics systems. Through the
intrinsic driven mechanisms, we may obtain a more accurate model to describe the temporal network
dynamics with incomplete data.

6.2. Open environment

Temporal networks in the open environment mean that there is a process of material, energy and
information exchange between networks and the external environment [101]. With the inputs and
outputs changing, the network structure becomes more uncertain. The uncertainty of the network
structure is mainly reflected in the nodes increasing (new sensors access), the nodes decreasing (sensors
failure), and compensation of network links. In addition, unconventional external effects also require to
be considered in open environments. Unconventional external effects, such like the bursty weather and
the implementation of new policies, can cause the temporal networks to become uncertain. Considering
the influence of strong external inputs, such as high noise and policy orientation, on the coupling
behavior between nodes, and internal dominant factors, such as the dynamic change characteristics of
internal nodes, the controllability analysis in temporal networks with incomplete data will be a major
trend.

6.3. Heterogeneity

Considering the study of multilayer coupling dynamics, a standard SIR model is generally uti-
lized on each layer [27, 71]. This approach may draw the connectivity pattern of each layer from the
same standard random-graph model, which concentrates on multilayer homogeneous temporal net-
works [67, 68]. Due to the heterogeneity in the individual psychology and interaction patterns, it is
significant to incorporate the heterogeneity into the temporal network dynamics. The heterogeneity of
temporal network dynamics is reflected in the simultaneous information spreading both online and of-
fline, which are multi-type interaction processes in temporal networks. The offline and online patterns
of the information spreading are completely different network structures. In addition, the way to deal
with the decision process in traditional social physics is to describe the belief dynamic evolution in
temporal networks. These methods can reproduce some features of group decision-making, but can-
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not explain the individual psychology associated with these processes, especially in the heterogeneous
group. The incorporation of individual psychology in dynamics modeling is beneficial to analyze the
heterogeneity of temporal networks.

6.4. Few-shot learning

Due to the difficulty of collecting data in certain environments, the number of collected data samples
is usually few and incomplete, which cannot meet the needs of current models. So few-shot learning
is more suitable. Few-shot learning faces two main problems in temporal networks with incomplete
data. One is that the important information of collected data obtained in many scenarios is incomplete.
The problem caused by incomplete data in few-shot learning can be more serious. So the missing part
of data in few-shot learning becomes particularly crucial. The significance identification of missing
information is a challenge. By measuring the correlation between data and practical issues, it can
selectively complete the dataset, while deleting unimportant data and filling important data [33, 65].
This can be conductive to deal with incomplete data more quickly and accurately. The other problem
is data selection bias in few samples, where the data is selected in a way that differs from the target
group. Due to data selection bias is usually unintentionally induced, such spurious correlations may be
difficult to identify in advance. Stability learning and its variations are good choices for data selection
bias, based on the latest stability learning ideas.
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