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Abstract: Optimal decision-making and winning-regions analysis in adversarial differential games
are challenging theoretical problems because of the complex interactions between players. To solve
these problems, we present an organized review for pursuit-evasion games, reach-avoid games and
capture-the-flag games; we also outline recent developments in three types of games. First, we sum-
marize recent results for pursuit-evasion games and classify them according to different numbers of
players. As a special kind of pursuit-evasion games, target-attacker-defender games with an active
target are analyzed from the perspectives of different speed ratios for players. Second, the related
works for reach-avoid games and capture-the-flag games are compared in terms of analytical methods
and geometric methods, respectively. These methods have different effects on the barriers and optimal
strategy analysis between players. Future directions for the pursuit-evasion games, reach-avoid games,
capture-the-flag games and their applications are discussed in the end.
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1. Introduction

In recent years, adversarial differential games have provided a framework to analyze the conflicting
scenarios of opposing teams in fields such as aerospace and robotics [1,2]. The problem is theoretically
interesting since the method of solving the optimal strategy of each player should take into account
the player’s own state information, as well as the potential strategies of opponents [3]. Due to the
complex interactions between different players and differences in velocity, capture radii and goals,
it is challenging to analyze the pursuit-evasion (PE) and reach-avoid (RA) problems, which include
optimal decision-making, path planning, resource allocation, winning regions, accessibility, etc. [4–6].
In addition, the uncertainties of players’ behaviors and decision-making have a large impact on the
outcome of games [7].
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Figure 1. Overall structure of the method of analysis.

In adversarial differential games, the PE problem is a basic scenario since the only goal of attackers
(evaders) is to avoid the interception of defenders (pursuers) [8]. While in the RA games, in addition
to avoiding interception, attackers need to reach the target region as well [9]. Another kind of game,
called capture-the-flag (CTF) games, has the most complicated setting among the adversarial differen-
tial games [10]. In CTF games, there is one more goal for the attacker, which is required to capture
the flag and return to the specified region [11]. Notice that there is an upgrade in the complexity of the
attackers’ tasks in these three types of games. In general, players need to make reasonable decisions
according to their strategy sets. However, in some cases, there are unexpected opponent actions that
are inconsistent with a limited strategy set [12]. Therefore, the key problem of the adversarial differ-
ential games is adopting the saddle-point strategy, which is the optimal strategy of both attackers and
defenders. Note that, no matter what strategies the opponent team actually adopts, the saddle-point
equilibrium can guarantee its own payoffs [13]. For example, if the attackers do not play optimally,
the defenders can guarantee the payoffs by updating the obtained optimal state-feedback strategies.
Conversely, attackers can implement saddle-point strategies to reduce their cost when defenders do not
adopt optimal strategies [8].

At present, there are few relevant surveys about adversarial differential games [14,15], and no anal-
ysis from the perspective of players’ goals. The contribution of this paper is to compare and analyze
the solutions of the differential games mentioned above. Different from [13] and [15], which mainly
studied the PE games or modeled the PE problem as zero-sum differential games, this paper is focused
on analyzing RA games and CTF games in terms of analytical and geometric methods as well. In the
low-dimensional situations, the analytical methods can describe the player’s optimal strategy clearly
and accurately through the use of Hamilton-Jacobi-Isaacs (HJI) equations. However, in multi-player
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Table 1. Summary of adversarial differential games.
Year Reference Type Classification Methods α = vA/vD β = vT /vA Barriers Matching

2021 Garcia et al. [24] PE A Autonomous battle management method < 1 \

2020 Garcia et al. [8] PE A Value function > 1 \ !

2020 Weintraub et al. [17] PE A Calculus of variations < 1 \

2020 Shishika et al. [20] PE A Scalable (polynomial-time) assignment algorithm < 1 \ ! !

2020 Garcia et al. [3] PE A/G Value function/Apollonius circle < 1 \ !

2021 Garcia et al. [23] PE G Cartesian Ovals > 1 \ !

2020 Moll et al. [22] PE G Voronoi diagram/Apollonius circle ≤ 1 \

2017 Yan et al. [16] PE G Apollonius circle < 1 \ !

2017 Garcia et al. [21] PE G Geometric approach < 1 \

2021 Garcia et al. [33] TAD A Value function = 1 < 1 !

2020 Garcia et al. [38] TAD A Linear quadratic formulation \ \

2019 Pachter et al. [35] TAD A Hamiltonian dynamic programming = 1 < 1 !

2019 Liang et al. [40] TAD A/G Explicit policy method/geometric analysis ≤ 1 < 1 !

2018 Weintraub et al. [30] TAD A Kinematic rejoin method < 1 < 1
2017 Coon et al. [29] TAD A Isochrones approach < 1 < 1 !

2021 Garcia [36] TAD G Cartesian oval > 1 < 1 !

2019 Pachter et al. [37] TAD G Apollonius circle = 1 < 1 !

2019 Garcia et al. [34] TAD G Hyperbola/orthogonal bisector = 1 < 1 !

2018 Garcia et al. [31] TAD G Hyperbola = 1 < 1 !

2018 Casbeer et al. [32] TAD G Hyperbola/orthogonal bisector = 1 < 1 !

2022 Yan et al. [55] RA A HJI equation method < 1 \

2022 Li et al. [52] RA A Deep reinforcement learning algorithm \ \

2022 Garcia et al. [2] RA A Value function = 1 \ !

2021 Selvakumar et al. [56] RA A Nonlinear state feedback ≤ 1 \

2021 Hsu et al. [53] RA A Deep reinforcement learning algorithm \ \

2020 Garcia et al. [9] RA A Value function = 1 \ !

2020 Garcia et al. [57] RA A Linear quadratic paradigm = 1 \ !

2019 Garcia et al. [12] RA A Value function/polynomial equation < 1 \

2019 Garcia et al. [54] RA A Value function ≤ 1 \

2018 Zhou et al. [41] RA A Fast-marching methods \ \

2018 Lorenzetti et al. [43] RA A Mixed-integer second-order cone programming < 1 \ !

2017 Chen et al. [49] RA A Path defense ≤ 1 \ !

2021 Yan et al. [64] RA G δ-Apollonius circle < 1 \ !

2020 Yan et al. [45] RA G Attack subspace < 1 \ !

2019 Yan et al. [1] RA G Apollonius circle/0-1 integer programming < 1 \ ! !

2019 Yan et al. [46] RA G Voronoi diagram/Apollonius circle = 1 \ !

2018 Yan et al. [63] RA G Winning subspaces ≤ 1 \ !

2021 Zhou et al. [11] CTF A/G Apollonius circle/sequential quadratic programming < 1 \

2018 Garcia et al. [67] CTF A Value function = 1 \ !

2015 Huang et al. [10] CTF A HJI equation method \ \

2020 Pachter et al. [68] CTF G Apollonius circle ≤ 1 \ !
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and high-dimensional situations, the use of analytical methods brings about greater computational
complexity. To solve the problem, geometric methods can help players determine the winning regions.
The surface that separates the players’ winning areas is called a barrier. If the barrier can be determined
by geometric methods, the players will choose strategies according to the area in which they are lo-
cated. Nevertheless, it is still complicated to obtain the barrier when considering the capture radii and
different velocities of the players. In the end, this paper introduces corresponding prospects for these
three different types of games under the conditions of an open environment, imperfect information,
multi-objective regions, heterogeneity and large-scale networks; applications are also discussed.

The remainder of this paper is organized as follows. In Section II, the literature comparison results
for PE games are introduced from the perspective of different players’ numbers, and a special type of
target-attacker-defender (TAD) game is introduced. In Sections III and IV, RA games and CTF games
are compared in terms of the analytical and geometrical methods, respectively. In the last section,
future research directions for adversarial differential games are put forward. The overall structure of
this analysis is reflected in Figure 1. Morever, as seen in Table 1, this paper compares PE games, TAD
games, RA games and CTF games in terms of the of methods and applications. In Table 1, A and
G represent the analytical method and geometric method, respectively. The velocities of the attacker,
defender and target are vA, vD and vT , respectively. α is the speed ratio for the attacker and defender,
and β is the speed ratio for the target and attacker.

2. Pursuit-evasion games

In the classic PE problem, there are two opposing groups of players, one group acting as pursuers
and the other group acting as evaders. The basic configuration of PE games is shown in Figure 2(a).
The core problem of PE differential games is finding the saddle-point equilibrium strategy, that is,
obtaining the minimax value of the payoff function. No matter what strategies the opponents adopt, the
saddle-point strategies can guarantee the players’ optimal payoffs [13]. Supposed that there are two
opposing teams in PE games with N pursuers and M evaders; we will discuss relevant works in three
different cases, i.e., N = M, N , M and N = M = 1, as below.

2.1. N Pursuers, M Evaders (N = M)

The premise of PE games begins with a conflict between two opposing teams with a common
performance function. For example, we take the distance between the pursuer and the evader as the
payoff function, i.e., J =

√
(xP − xE)2 + (yP − yE)2, where xP = (xP, yP) is the position of the pursuer

and xE = (xE, yE) is the position of evader. The evader wants to maximize the distance and the pursuer
wants to minimize it. We first analyze the case in which the number of pursuers and evaders are the
same. In adversarial differential games, the entire state space is divided into the pursuers’ dominant
region and evaders’ dominant region. The surface that separates these two dominant areas is a barrier.
In PE games, considering a defender and a spy in a circular area [16], the barriers and optimal strategies
of the players were obtained via geometric methods. When the state of the system was in the winning
region of the defender, the strategy designed in [16] could not guarantee the defender’s payoff. Then,
a semi-permeable barrier surface was proposed in [3] to solve this problem. The above works were
aimed at the situation in which the defender is faster. When the attacker has a faster velocity, the
defender’s optimal strategy can be found by using variational methods [17]. Although the previous
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(a) (b)
Figure 2. (a) Basic configuration of PE games; (b) basic configuration of TAD games.

works considered the case of one pursuer and one evader, the assumption can be extended to the case
of N pursuers and M evaders, which satisfies N = M. For the multi-player PE situation, the optimal
strategies were obtained via value function methods ; consequently, the curse of dimensionality was
overcome [8, 18].

Furthermore, in order to allocate and capture evaders in multi-player games, the binary variable σi j

was defined in [8]. If σi j = 1, then Pursuer i (i = 1, ...,N) captures Evader j ( j = 1, ...,M), and if
σi j = 0, then Pursuer i is not assigned to capture j. A pursuer is assigned a task only once, that is, it
can only capture one evader; then,

∑M
j=1 σi j ≤ 1. For pursuers, the condition for game termination is:

R :=
{
x | ∀ j ∈ 1, . . . ,M,∃i ∈ 1, . . . ,N, σi j = 1 , xPi = xE j

}
, (2.1)

where xPi and xE j represent the positions of Pursuer i and Evader j, respectively. For N < M, due to
the large number of evaders, there is no guarantee that each evader will be assigned to a pursuer. If the
termination condition is that all evaders are caught, there must be some tasks that will be reassigned
to the pursuers. Therefore, the set (2.1) is suitable for the case in which the number of pursuers and
evaders satisfies N = M or N > M.

2.2. N Pursuers, M Evaders (N , M)

In the case of multi-player PE games, the N-pursuers-M-evaders (N , M) problem has been well
analyzed in [19]. For example, a scalable polynomial-time allocation algorithm based on a new de-
composition method was proposed in [20]; it outperformed some defense strategies. However, the
traditional analytical methods for differential games were not easily applied to analyze the situation of
N , M due to the computational complexity. In these situations, the analytical methods were replaced
with geometric methods [21] based on Voronoi diagrams [22], resulting in open-loop saddle-point
equilibrium strategies.
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Figure 3. Barrier surface of the hyperbola. (When the velocities of the attacker and the
defender are equal and the ratio of the target-to-attacker speed is less than 1, the barrier is a
branch of the hyperbola).

The previous solutions have been for the slower evaders, but the problem is more challenging when
the attackers are faster. In this case, faster evaders are more difficult to capture for pursuers, and
their optimal strategies are complicated to analyze. A new Cartesian ellipse analytical method was
proposed to obtain the players’ winning regions when the pursuers had a positive capture radius in [23].
Evaders and pursuers with different velocities were considered in [24], the PE problem was modeled
as zero-sum differential games. The state-feedback optimal strategies of the players were derived
analytically in the attack and retreat stages. Regarding the multi-player PE differential games with
malicious pursuers, the problem was modeled as non-zero-sum games [25], and the Nash equilibrium
was analyzed. In a game process, if any player chooses the optimal strategy when the strategies of
other players are determined, the combination is a Nash equilibrium. More specifically, any player
who unilaterally changes his/her strategy under the combination will not increase his/her own payoffs.
Furthermore, for pursuers with limited observations, the Nash equilibrium based on the best achievable
performance metrics can be employed within a limited time horizon [26]. Moreover, a special class
of PE games with a moving target is an interesting problem. In the following subsection, we mainly
discuss the particular type, i.e., TAD games.

2.3. One target, one attacker, one defender

The TAD differential game is a kind of PE game with three players, i.e., target, attacker and de-
fender. The attacker’s goal is to capture the target [27], and the target’s goal is to evade and avoid
being captured by the attacker, as illustrated in Figure 2(b). In addition, the defender can cooperate
with the target, who pursues and attempts to intercept the attacker before the attacker captures the
target [28].

In TAD differential games composed of an arbitrary number of attackers and defenders, optimal
control methods and the assignment of attacker-defender pairs were analyzed in [29]. The performance
of attackers and defenders can be guaranteed by their saddle-point state-feedback strategies [30]. In
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general, the attacker/defender team tried to minimize/maximize the distance between the target and the
attacker. Regarding differential games in high-dimensional state spaces, through the use of a continu-
ously differentiable value function, the complete closed-form solution and state-feedback optimization
strategies were analyzed in [31]. In addition, the TAD problem was modeled as zero-sum differential
games as well in [32]. In the case of zero-sum TAD games [33], they are worth studying to determine
the region of space wherein the attacker wins. When the state space was in the attacker’s winning
region, given the attacker’s optimal strategy, the target can still be captured despite the defender’s best
efforts [34]. In other situations, if the velocity of the attacker and the defender is the same but the ve-
locity of the target is lower, the optimal strategies of the players can be determined by calculating the
barrier. Furthermore, the hyperbola divided the Cartesian plane into two regions of the barrier surface,
as shown in Figure 3.

In the case of TAD games [35], the situation of the attacker being faster than both the target and
the defender is complicated. There is a greater threat to the target and defender, making it harder to
determine their optimal strategies. Cooperation between the target and the defender will better help the
defender catch the attacker. For example, when the attacker is faster, the target can lure the attacker into
the defender’s capture route through its movement. By taking full advantage of their cooperative strate-
gies, the target can be protected [36]. In addition, the active target defense differential games [37] was
extended in [38]. The target needs to find an optimal heading and control the energy [39]. Therefore,
the problem can be modeled as linear-quadratic differential games to be solved. In addition, explicit
strategies and geometric analysis methods can be used to study the winning regions of players [40].

3. Reach-avoid games

As shown in Figure 4(a), compared with that of PE games, the mechanism of RA games is slightly
more complicated. In RA games, there are not only two opposing teams, i.e., the attacker team and
the defender team, but there is also the target area. The attacker team’s goal is to reach the target area
without being captured, while the defender team attempts to delay or prevent the attacker team from
entering the target area by capturing attackers [41].

3.1. Analytical methods

In past works, the methods to solve the RA problem included mixed-integer linear programming
methods, nonlinear model predictive control methods [42] and approximate dynamic programming
methods [1,43]. In some special situations, HJI reachability [44] is a powerful tool for low-dimensional
RA differential games. However, since defenders and attackers have conflicting and asymmetric goals,
there may be complicated cooperation within each team. Therefore, it is challenging to obtain optimal
solutions directly.

For RA games, the main problem is to construct a barrier that divides the entire state space into two
disjoint parts, i.e., the defender’s dominant region and the attacker’s dominant region [45,46]. The RA
set, which was divided by the barrier, was computed by solving the HJI partial differential equation
in the player’s state space [47]. Moreover, the HJI method can be applied to a wide variety of player
dynamics.

In order to combine the time-varying dynamics, objectives and constraints, a modified HJI equation
in the form of a two-barrier variational inequality was proposed in [48]. Through this equation, it is
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(a) (b)
Figure 4. (a) Basic configuration of RA games; (b) basic configuration of CTF games [10].

simple to determine the winning regions and the optimal strategies for the time-varying games. In
general, HJI partial differential equations can be solved by the numerical approximation of the value
function on a continuous state-space grid [47,48] and the characteristic line method [31]. However, the
dimension of the system state will increase exponentially with the number of players, leading to a high
computational cost as a result of directly solving the corresponding high-dimensional HJI equation.
This is the main reason why the approach cannot be applied to multi-player differential games [9, 49].
The maximum matching method of graph theory was shown to be less computationally expensive
than the HJI partial differential equation method when applied to multi-player RA games [49]. In
addition, Q-learning was shown to be a feasible method for high-dimensional optimal control tasks [50,
51], as a strategy was obtained to maximize the accumulated payoff at each time step. The extended
conservative Q-learning method with less computation costs can learn the value functions of games
to determine the optimal strategies for players, as shown in [52]. Importantly, the RA Q-learning
algorithm resulting from the reinforcement learning formulation converges under similar conditions in
the traditional Lagrangian-type problems [53].

Since the HJI method cannot solve high-dimensional problems, some researchers derived state-
feedback strategies to obtain a continuously differentiable value function; they proved that it was a
solution to the HJI equation [2, 12, 54]. The game’s value function is

V (x0) := max min J (uD(·),uA(·); x0) , (3.1)

where J is the terminal cost/payoff function, x0 is the initial state of the system and uA and uD are the
attacker and defender teams’ state-feedback strategies, respectively [9]. A new perspective on solving
HJI equations was studied in [55], where the associated HJI equations can be solved by convex pro-
gramming [56] for a special subgame. Furthermore, if RA problems were modeled as linear-quadratic
differential games, a closed-form solution of the zero-sum games would be obtained. Players can
exploit the opponent’s non-optimal strategies to win by carrying out closed-loop state-feedback strate-
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Figure 5. Barrier surface of the Apollonius circle. (When the ratio of the attacker-to-defender
speed is less than 1, the barrier is an Apollonius circle).

gies [57]. In this case, by implementing the strategies, players can transfer the value of the game to
themselves.

3.2. Geometric methods

For RA games, geometric methods play an important role in solving players’ optimal strategies.
Voronoi diagrams, which divide the plane into different regions based on a set of specific points, have
been widely used for situations in which defenders and attackers possessed equal velocities [58,59]. In
general, an attacker can be seen as a specific point in a small Voronoi cell. The defenders in the cell are
closer to a specific attacker than other attackers. Especially, in the case of the group tracking of single
or multiple evaders, Voronoi diagram methods can provide constructive cooperative strategies, such as
minimizing the area of the generalized Voronoi partitions of evaders [60, 61] or tracking evaders in a
relay way [62].

However, the velocities of attackers and defenders are not equal in some situations [63]. When the
velocities of defenders are faster than those of attackers, the Apollonius circle first proposed by Isaacs
can be used to analyze the multi-player RA games, as shown in Figure 5. What is more, the Apol-
lonius circle has been used to construct a barrier between the attackers and the defenders in a convex
domain [1]. To ensure that the largest number of evaders are intercepted, the task assignment can be
performed by solving simplified 0-1 integer programming, which can greatly reduce the computational
complexity. For the case of only one defender and multiple attackers, there is a time difference be-
tween the pursuit and escape of the defender and the second attacker. The δ-Apollonius circle has been
used to handle the pursuit of the second attacker [64]. Moreover, the potential barrier and two winning
regions were constructed to analyze the optimal strategies of the players.

4. Capture-the-flag games

With multiple potential objectives, the CTF problem is considered as a complex type of adversarial
games. The multi-stage interaction between different players makes CTF games more challenging than
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PE games and RA games. In the case of CTF games, opposing defender and attacker teams control
their own area and protect their flag. There are two phases as illustrated in Figure 4(b), which are
the CTF phase and the safe return phase [10, 11]. A team wins by dispatching the players to enter
the opposing team’s area, capturing the flag and returning to their own safety region. In addition, the
team’s flag cannot be possessed by the opposing team during this process. In order to solve the problem
of optimal strategies in CTF games, many scholars have made various assumptions regarding players’
behaviors, such as modeling a player as a point with no capture radius [63]. Two kinds of methods,
i.e., analytical methods and geometric methods, are compared below.

4.1. Analytical methods

The multi-stage characters of the CTF problem make the analysis complicated; this is because each
player must choose the appropriate control at each stage to ensure the viability of their respective
winning goals in the next phase [65]. A two-team CTF game can be modeled as a zero-sum differential
game [10], and an upper limit of the player’s velocity can be assumed. The corresponding winning
strategies have been derived by applying analytical solutions of the HJI equation. In addition, the
solution in [10] was for one-on-one CTF games.

Consider the augmented input ũ of Player I, the general system dynamics and the augmented system
dynamics, respectively, as follows:

ũ =
[

u u
]
∈ Ũ, (4.1)

ẋ = f (x, u, d), x(0) = x0, (4.2)

˙̃x = f̃ (x̃, ũ, d) = u f (x̃, u, d), x̃(0) = x0, (4.3)

where u is the control input of Player I, u is the freezing input, Ũ is the set of finite horizon controls, x
is the game state, d is the control input of Player II, x̃ is the trajectory of the augmented system and x0

is the initial condition [66]. The player’s goal can be expressed as the following constrained terminal
cost problem:

J̄T

(
x0

)
= sup inf max {φT (x̃(T )),−φK (x̃(T ))} ,

s.t. φK (x̃(t)) > 0 ∀t ∈ [0,T ],
(4.4)

where T ⊂ Rn(K ⊂ Rn) is the target (undesired) set, φ is the function Rn → R, [0,T ] is a finite time
horizon and J̄T is the supremum of the value.

The upper value (4.4) of this problem is calculated by using the viscosity solution of the HJI equa-
tion:

∂φ

∂t
+ min

[
0,H

(
x,
∂φ

∂x

)]
= 0, φ(x, 0) = φT\K (x), (4.5)

where H(·, ·) is the Hamiltonian. The players’ optimal strategies can be accurately determined by solv-
ing the HJI equation. Moreover, two-stage joint optimization strategies were determined by modeling
the game as a constrained nonlinear optimization problem and solving it with a sequential quadratic
programming algorithm [11, 18]. However, as the number of continuous states increase, the curse of
dimensionality will occur, which will lead to increasing computational complexity.
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Figure 6. Barrier surface of the Cartesian oval. (When the defender’s capture radius ρ
satisfies ρ , 0, the barrier is a Cartesian oval [23]).

4.2. Geometric methods

In addition to the methods above, there are heuristics to analyze CTF games, and they have often
relied on geometric methods like vertical bisectors [67], Apollonius circles [11,68] and Cartesian ovals,
as shown in Figure 6. Different from [10], two different terminal costs/payoffs were proposed in [67].
In the first stage, when the defender captured the attacker, the distance between the attacker and the
flag was the terminal costs/payoffs. Moreover, the distance between the attacker and the safe region
at the last moment was used in the second stage. In each stage of the differential games, the optimal
state-feedback strategies of each player were determined via the correlation calculation for the value
function. Moreover, if two players have the same velocity, the vertical bisector between them plays an
important role in the analysis of the optimal strategy [33].

As with PE games and RA games, the idea of CTF games is to obtain the barriers that separate the
players’ winning regions. A composite boundary for the fixed position of the defender was constructed
in [68]. Based on the winning region, each player could evaluate the analytical construction of the
barrier surface to determine the corresponding optimal strategies. The Apollonius circle shows the
benefits of analyzing the winning region for players with unequal velocity. Therefore, optimization
strategies and winning regions were analyzed in [11].

In addition to the optimal strategies and winning regions of players, there are still some open issues
that are worth considering further. For players, the outcome and actual payoffs are important. The
actual payoffs of a player should be deducted from the cost. In a realistic situation, the optimization
goal is to consider cost in addition to winning the game. Therefore, the problem can be transformed
into multi-objective optimization.

5. Future research directions

In the adversarial differential games, the analysis of players’ optimal strategies is based on some
ideal conditional assumptions, such as point capture [63], instantaneous heading [8] and full infor-

Electronic Research Archive Volume 30, Issue 10, 3692–3710.



3703

mation state [1]. Therefore, there are still some interesting and challenging problems in differential
games that are worthy of further exploration, such as open environments, imperfect information, multi-
objective regions and kinetic heterogeneity.

5.1. Open environment

Due to the unpredictability of players’ circulation behaviors in actual tasks [9], uncertain dynamics
of games [69] and multi-stage modeling in an open environment can be considered. Among them,
the Markov process can be used to describe more practical, memoryless circulation behavior in the
uncertainty dynamics, and the proposed state transition process will be described by a Markov chain.
After the end of each stage, the design of the supplementary mechanism for both teams will have an
impact on the final results. Therefore, if the number of players is time-varying, it is worth considering
the order in which players are allocated between the two teams.

In addition, the situation of modeling multiple stages in a time-varying open environment also
exists in practical tasks. For example, we suppose that there are N defenders and M attackers in RA
differential games [1]. At each stage, some players from both teams enter the game; then, the remaining
players will be supplemented according to the results of the previous stage. That is, if the attackers
reach the target region or all attackers are captured by the defenders in the i-th stage, the game ends.
As a result, it is worth analyzing what strategies should be adopted by both teams to maximize their
payoffs.

5.2. Imperfect information

Adversarial differential games can be used to model real-world situations in robotics, aircraft con-
trol, safety and other domains [16]. Regarding these previous works, most of them relied on the
full-state information model [33,55]. However, each player may not obtain full-information feedbacks
in more practical situations [70,71]. In the cases in which one or more players lack partial information
about the games, it is a kind of differential game with imperfect information [72, 73]. What is more,
there may be imperfect communication between different players during actual tasks (e.g., information
about opponents or teammates is sometimes not available) [74, 75]. Therefore, if there is cooperation
within the team, it is worth analyzing what strategies the players should choose to maximize their
payoffs in the adversarial differential games with imperfect information [76].

It is common for defenders or attackers to possess a partial line-of-sight angle [28], that is, the play-
ers can only know information about opponents or teammates in their sight. If there is a certain degree
of error in the opponent’s information, the opposing team may engage in fraudulent behavior [77]. To
deal with this situation, the cooperation between teammates and opponents’ matchings are challenging
problems. Moreover, in a large-scale gaming region, each player cannot know the status information
of other players in real time [73]. The mean field games [78] and algorithms can provide a research
direction for this situation with imperfect information.

5.3. Multi-objective regions

In the current research on adversarial differential games, there is only one target area [46, 49]. In
many practical applications, multiple target regions are distributed across the play region [79]. How-
ever, the total number of defenders and attackers in each team is limited. It is significant to allocate
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resources reasonably in each target region to achieve the victory of the game. At the same time, for
the attacker or the defender team, the strategy for choosing the local or global victory is different, as it
can be transformed into 0–1 integer programming or mixed integer programming for analysis. In addi-
tion, there is a certain probability that the attackers will capture the target or reach the target area [80].
Therefore, random games can be chosen to determine the optimal strategy of the attacker in the future.

5.4. Heterogeneity

Some ideal assumptions of velocities have been proposed in the literature [3, 8]. For instance, de-
fenders are faster, or all players have the same velocity in multi-player games [16, 21]. It is worth
mentioning that the velocity of each player is limited by upper and lower bounds in a more practi-
cal situation. A general case is to use the average velocity to characterize a player’s velocity, not a
constant. Furthermore, considering the heterogeneity in system dynamics, such as acceleration and
jerk constraints, players could be prevented from changing directions instantaneously in adversarial
differential games. If the velocity constraint is applied to players in differential games, the analysis of
optimal strategies and winning regions will be an interesting research direction.

5.5. Large-scale networks

Regarding large-scale networks, the network system needs to process massive amounts of real-time
data. Therefore, there is competition or cooperation between different network nodes. This problem
can be modeled as an adversarial differential game and solved by a mean-field reinforcement learning
algorithm. Moreover, in a large-scale gaming region, the state information of all nodes cannot be
obtained in real time. The mean field games and algorithms [78] are feasible research directions for
this situation with imperfect information.

5.6. Applications

Regarding artificial intelligence, machine learning and deep learning have not been successful
enough to solve imperfect information games, such as Texas Hold’em poker. Some scholars have
tried to use deep learning and deep reinforcement learning to solve the problem, but the effect has
not been satisfactory. However, it can be modeled as an adversarial game to assist decision-making.
Artificial intelligence-based analytical methods for differential games can provide a good solution for
adversarial problems [52].
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