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Abstract: The causal inference method based on the time-series analysis has been subject to intense
scrutiny, by which the interaction has been revealed between gold and the dollar. The positive or
negative causality between them has been captured by the existing methods. However, the dynamic
interactions are time-varying rather than immutable, i.e., the evolution of the causality between gold
and the dollar is likely to be covered by the statistical process. In this article, a method which combines
the pattern causality and the state-transition network is developed to identify the characteristics of the
causality evolution between gold and the dollar. Based on this method, we can identify not only
the causality intensity but also the causality type, including the types of positive causality, negative
causality and the third causality (dark causality). Furthermore, the patterns of the causalities for
the segments of the bivariate time series are transformed to a state-transition network from which
the characteristics in the evolution of the causality have also been identified. The results show that
the causality has some prominent motifs over time, that are the states of negative causality. More
interestingly, the states that act as a bridge in the transition between states are also negative causality.
Therefore, our findings provide a new perspective to explain the relatively stable negative causality
between gold and the dollar from the evolution of causality. It can also help market participants
understand and monitor the dynamic process of causality between gold and the dollar.
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1. Introduction

The dollar is an international currency issued and endorsed by the Federal Reserve. As a stable
currency, it is used for the most extensive payment and settlement. Gold is a precious metal, which
contains commodity and monetary attributes. Accordingly, both have integrated vital risk aversion
functions, whose has always been a concern to the financial media and the investors. So far, there
have been multiple studies on the relationship between the gold price and the dollar index [1–7]. Most
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studies showed a significant negative correlation between them [8–10]; when the dollar depreciates,
the nominal price of gold will rise. Therefore, gold behaves as a hedge against the dollar and provides
exchange rate hedging for investors holding the dollar. On the contrary, observers have long noted
a positive correlation of them, although this correlation will not last long [3, 11–14]. Moreover, the
relationship is not always stable [1, 15]. When the financial markets run smoothly, gold and the dollar
will show a trend of going up and falling on the other; and when there is a local political crisis or
economic crisis in the world, the correlation will be positive.

The previous studies have obtained time-varying causal relationships between gold and the dollar
based on the econometric framework [1, 15], such as the error correction model, the standard bivariate
GARCH models and the extension to the structural BEKK model. In addition, Lin et al. [16] utilized
wavelet analysis to decompose the pair relations between oil-US dollar and gold-US dollar into
short-term and long-term parts, they found that the pair relationship becomes weaker in the long run
and the short-run correlations are much higher after the early 1990s. Moreover, Mo et al. [3]
investigated the long-term relationship by means of both fractional cointegration and
DCC −MGARCH method and employed non-linear asymmetric causality to examine the effect of the
2007 global financial crisis on the short-term interdependence. However, both the causality’s
evolution rule and motif structure were ignored in these studies. It is still an open issue to discover the
motifs and their relationships. The combined application of time-series analysis and complex network
theory effectively describes the temporal evolution of relationships in complex systems [17–19].
Methods of complex networks have been proposed to analyze time series, such as visibility graph
methods [20], recurrence network method [21], coarse-graining method [22], pseudo-periodic time
series [23], quasi-isometric transformation [24], correlation matrix [25] and the state-transition
network [26–28]. These methods can map the time series into the network. In this article, we apply
the state-transition network method of easy-to-operate to convert the time series into a complex
network. The method can reveal dynamic information as well as complicated behaviour in complex
systems.

In recent years, causal analysis has attracted the attention of many researchers because it can reveal
the internal laws between variables. For example, the Granger causality test has successfully revealed
the non-linear causal relationship of separable variables [29, 30]; transfer entropy can detect causality
based on the information flowing between variables, by which the large sample size is required to
estimate accurately [31]. Moreover, the cross-convergent mapping (CCM) indicates that the time-
series variables are causally linked if they are from the same dynamical system. Namely, they share a
common attractor [32,33]. It can distinguish the causality from the correlation in inseparable systems,
which complements the Granger causality test. The weakness for the CCM method is that it is sensitive
to noise of which the influence inevitably exists in natural systems.

In order to decrease the impact of noise, Stavroglou et al. proposed the pattern causality algorithm
(PC) to investigate the symbolic dynamics based on the CCM [34, 35]. The PC method can judge not
only the causality intensity but also the causality type, by which the causality is divided into three
types, i.e., positive, negative, and dark (a more complex causal relationship). The targeted partition
allows the unique identification for both persistent causal structures and dominant influences that
would otherwise be lost in the noise of disparate causalities(if we did not discern the three types of
interactions). Moreover, this method reveals causality between variables from the perspective of
non-linear dynamics.
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In this article, a state-transition network was built to detect the evolutional or time-varying
characteristics in the causality between gold price and the dollar index. Specifically, the idea is to
extract all possible segments from the initial bivariate time-series of gold price and the dollar index by
a sliding window. Then, for each segment, the non-linear causality is identified by the PC method,
containing the causality type as well as causality intensity. The causality pattern is used to describe
the state. We mapped all the states defined as nodes to a unique state chain. An edge is added between
two states(nodes) if they appear successively. The resulting network is called a state-transition
network whose topological structure can represent the dynamic characteristics of the causal
relationship. Thus, the results of this paper provide a reference for studying the time-varying
characteristics of causality between gold and the dollar. The structure of this article is as follows. In
Section II, we present (i) the data description of gold and the dollar analyzed in this study; (ii) the
steps of the method that combines PC and state-transition network; (iii) definitions of concepts;
Section III shows (i) determination of an appropriate window size; (ii) identification of important
causality states; (iii) identification of the transitions among nodes and among clusters, respectively;
Section IV summarizes and discusses the results.

2. Materials and methods

2.1. Data description and data preprocessing

The daily closing prices of gold futures and the dollar index futures, respectively, were downloaded
from the website, https://cn.investing.com/. They are issued by the Intercontinental Exchange of the
United States, of which stock exchange codes are ZG and DX, respectively. The data was selected from
November 21, 1985 to June 22, 2022. The length of the bivariate series is 9248 after deleting a small
number of missing data (63 data points of gold and 83 data points of the dollar). Note that Saturdays
and Sundays are excluded from the time series. Because the original data is unstable and there is a large
difference between gold and the dollar, we performed the analysis based on the logarithmic return rate
of daily closing prices.

2.2. Methods

The specific process for building the state-transition network consists of the following five steps:
(i) dividing the time series into segments of the equal length; (ii) obtaining the reconstructed phase
space for each fragment; (iii) calculating the causality types as well as the causality intensities by the
PC method; (iv) transforming the causality types and the causality intensities into causality states; (v)
constructing the state-transition network. The whole process is shown in Figure 1.

Step 1. Dividing the time series into segments of equal length.
For simplicity, let X and Y represent gold and the dollar, respectively. X and Y can be expressed as

time series X = X(1), · · · , X(N) and Y = Y(1), · · · ,Y(N), respectively, where N is the length of time
series. Let the window size be w and the sliding step be 1. Accordingly, N − w + 1 fragments are
obtained for each time series. Then, the ith fragment can be expressed as:

Xi = {X(i), X(i + 1), · · · , X(i + w − 1)} , 1 ≤ i ≤ N − w + 1,
Y i = {Y(i),Y(i + 1), · · · ,Y(i + w − 1)} , 1 ≤ i ≤ N − w + 1.

(2.1)
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Figure 1. (color online) The process of constructing the causality network between two
variables X and Y .

Step 2. Obtaining the reconstructed phase space for each fragment.
We reconstructed the phase space for each fragment defined by Eq (2.1) [36,37]. E and τ represent

the embedded dimension and delay time, respectively. A data point is an E-dimensional vector in the
phase space [37]. The jth point in the pase space of the ith fragment can be expressed as

x( j) =
{
Xi( j), Xi( j + τ), Xi( j + 2τ), · · · , Xi( j + (E − 1)τ))

}
, 1 ≤ i ≤ N − w + 1, 1 ≤ j ≤ w − (E − 1)τ,

(2.2)

where E and τ are the two parameters of which values are required to be determined. Their values
will affect the accuracy of the results. If the values are too large, the system will lose much important
information; and if the values are too small, the system will be easily disturbed by noise. A great
deal of work have been done around this issue. In this article, the C − C method [38] is utilized to
determine the values of E and τ, simultaneously. By this method, the optimal embedding dimensions
were obtained for the two variables X, Y are 2 and 3, respectively. The values of the dimensions are
also limited by the application of PC method, i.e., the embedding dimension of each variable should
be the same and the missing information of the system should be as little as possible. Therefore, the
values of E and τ were set to 3 and 1 in this article, respectively. According to Eq (2.2), ith fragment of
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X can be expressed in the phase space by the matrix MXi:

Xi = {X(i), X(i + 1), · · · , X(i + w − 1)} ⇒ MXi

=


x(1) =

{
Xi(1), Xi(1 + τ), · · · , Xi(1 + (E − 1)τ)

}
x(2) =

{
Xi(2), Xi(2 + τ), · · · , Xi(2 + (E − 1)τ)

}
...

x(w − (E − 1)τ) =
{
Xi(w − (E − 1)τ), Xi(w − (E − 2)τ), · · · , Xi(w)

}
 , (2.3)

Similarly, we can obtain the matrix MY i by Eq (2.3).
Step 3. Calculating the causality patterns as well as the causality intensities.
PC is a method proposed by Stavroglou et al. to explore nonlinear causality between time series

developed from CCM [34]. It can judge not only the the causality intensity but also the causality type.
The PC method is described as below. The distance matrix DXiis defined as:

DXi =


d(x(1), x(1)) d(x(1), x(2)) · · · d(x(1), x(w − (E − 1)τ))
d(x(2), x(1)) d(x(2), x(2)) · · · d(x(2), x(w − (E − 1)τ))

...
...

...
...

d(x(w − (E − 1)τ), x(1)) d(x(w − (E − 1)τ), x(2)) · · · d(x(w − (E − 1)τ), x(w − (E − 1)τ))

 ,

(2.4)

where d(x(t), x(t + 1)) is the Euclidean distance from x(t) to x(t + 1) for a focused time t. According to
Eq (2.4), E + 1 real nearest neighbors for x(t) represented by NNx(t) were found in Eq (2.5). The reason
why we chose E +1 nearest neighbor was that it requires at least E +1 point to form bounded simplicity
in E-dimensional phase space. From these E + 1 nearest neighbors, two pieces of information were
recorded, i.e., their time indexes tx1 , tx2 , · · · , txE+1 , and their distance from a focused point x(t). Similarly,
we can obtain y(t)’s E + 1 nearest neighbors and their time indices ty1 , ty2 , · · · , tyE+1 . These time indices
corresponding to the nearest neighbors to y(t) on MY i are used to identify the points in MXi, i.e., x(t)’s
E + 1 estimated nearest neighbors by y(t). Thus, the distances from x(t) to x(t)’s E + 1 real nearest
neighbors and the distances from x(t) to x(t)’s E + 1 estimated nearest neighbors by y(t) are shown in
Eq (2.6).

NNx(t) = min(E+1) {d(x(t), x(1)), d(x(t), x(2)), · · · , d(x(t), x(t − (E − 1)τ))}
=

{
NNx(t1),NNx(t2), · · · ,NNx(tE+1)

}
⇒< tx1 , tx2 , · · · , txE+1 >,

(2.5)

d j = d(x(t), x(tx j)), 1 ≤ j ≤ E + 1

d̂ j = d(x(t), x(ty j)), 1 ≤ j ≤ E + 1
(2.6)

The real pattern of the MXi’s tth point x(t) is:

Patternx(t) = signature(sigx(t)), (2.7)
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where

sigx(t) =

E+1∑
j=1

W js j,

W j =
ed j∑E+1

j=1 ed j
, 1 ≤ j ≤ E + 1,

s j =

(
X(t j − τ) − X(t j)

X(t j)
,

X(t j − 2τ) − X(t j − τ)
X(t j − τ)

, · · · ,
X(t j − (E − 1)τ) − X(t j − (E − 2)τ)

X(t j − (E − 2)τ)

)
, 1 ≤ j ≤ E+1,

where the function signature stands for symbolization. In particular, when sigy(t) is greater than 0,
Patterny(t) stands for ↗; when sigy(t) is less than 0, Patterny(t) stands for ↘; when sigy(t) is equal to
0, Patterny(t) stands for→. Furthermore, the estimated pattern of the MXi’s tth point x(t) by MY i’s tth

point y(t) is:
ˆPatternx(t) = signature( ˆsigx(t)), (2.8)

where

ˆsigx(t) =

E+1∑
j=1

Ŵ js j,

Ŵ j =
ed̂ j∑E+1

j=1 ed̂ j
, 1 ≤ j ≤ E + 1.

Similarly, the real pattern and the estimated pattern of each point in MXi and MY i can also be
obtained, i = 1, 2, ...,N − w + 1. All the situations of PC pattern are shown for E = 3 in Figure 2. The
left blue striped, right red striped, and purple boxes represent positive causalities, negative causalities
and dark causalities, respectively. We recorded the point with the same pattern of Patternx(t) and

ˆPatternx(t), i.e., the accurately estimated point. Each cell (the box in Figure 2) is filled with proportion
of each pattern in the total accurately predicted points. Thus, the value of each cell is in the range from
0 to 1. The causality type of X on Y is the largest number’s pattern in the ith fragment denoted as pi

X→Y ;
and the causality intensity is the proportion of the largest number’s pattern in all patterns denoted as
si

X→Y . By repeating this process, we can obtain both the causality type and the causality intensity from
X to Y and from Y to X for all fragments.

Step 4. Transforming causality types and causality intensities into causality states.
The causality type and the causality intensity are transformed into a particular state, i.e., coarse-

grained local features while retaining only some large-scale features. A four-letter string represents the
state of each fragment. The first and third letters represent the causality type from X to Y and from Y
to X, respectively, and the second and fourth letters represent the causality intensity from X to Y and
from Y to X. For example, the first and second letters can be obtained by the following formula,

Typei
X→Y =


P, pi

X→Y = Positive
N, pi

X→Y = Negative, 1 ≤ i ≤ N − w + 1,
D, pi

X→Y = Dark
(2.9)
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Intensityi
X→Y =



a, 0.8<si
X→Y ≤ 1

b, 0.6<si
X→Y ≤ 0.8

c, 0.4<si
X→Y ≤ 0.6, 1 ≤ i ≤ N − w + 1.

d, 0.2<si
X→Y ≤ 0.4

e, 0 ≤ si
X→Y ≤ 0.2

(2.10)

Similarly, Typei
Y→X and Intensityi

Y→X can be obtained by Eqs (2.9) and (2.10). Therefore, the state
of the ith fragment is defined. If Typei

X→Y = N, Intensityi
X→Y = b, Typei

Y→X = P, Intensityi
Y→X = d,

the state of ith fragment is NbPd. It means that the causality type from X to Y is negative, and the
intensity is between 0.6 and 0.8; the causality type from Y to X is positive, and the intensity is between
0.2 and 0.4. According to this definition, the number of possible states is 225, and the combination
rule is shown in Table 1.
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Figure 2. (color online) All the possible situations of PC patterns. The left blue striped
box indicates that the real pattern Patternx(t) and the estimated pattern ˆPatternx(t) have the
same pattern, i.e., the positive causality between x(t) and y(t). The right red striped box
means that x(t) and y(t) have the opposite patterns, i.e., negative causality. The purple box
represents the irregular pattern of x(t) and y(t), i.e., dark causality.
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Table 1. The representation of state.

The first letter
(the type of
gold’s influence on the dollar)

The second letter
(the strength of
gold’s influence on the dollar)

The third letter
(the type of
dollar’s influence on the gold)

The fourth letter
(the strength of
dollar’s influence on the gold)

a, (0.8, 1] a, (0.8, 1]
b, (0.6, 0.8] b, (0.6, 0.8]

P c, (0.4, 0.6] P c, (0.8, 0.6]
d, (0.2, 0.4] d, (0.8, 0.4]
e, [0, 0.2] e, [0, 0.2]
a, (0.8, 1] a, (0.8, 1]
b, (0.6, 0.8] b, (0.6, 0.8]

N c, (0.4, 0.6] N c, (0.8, 0.6]
d, (0.2, 0.4] d, (0.8, 0.4]
e, [0, 0.2] e, [0, 0.2]
a, (0.8, 1] a, (0.8, 1]
b, (0.6, 0.8] b, (0.6, 0.8]

D c, (0.4, 0.6] D c, (0.8, 0.6]
d, (0.2, 0.4] d, (0.8, 0.4]
e, [0, 0.2] e, [0, 0.2]

Step 5. Constructing the state-transition network.
We arranged states into a state chain according to the temporal order of appearance,

state1 → state2 → · · · → stateN−w+1, (2.11)

in order to visualize the state chain, we mapped Eq (2.11) to a network by numbering each state, i.e.,
the first state PaPa as node 1, the second state PaPb as node 2, ..., the last state DeDe as node 225.
Then, if two nodes appear adjacently, a directed edge is added between them. The network is called
the directed and weighted state-transition network in which the direction is the order of the nodes
appearing and the weight is the number of the edge between nodes.

2.3. Definitions of concepts

1) Degree: incoming degree or outgoing degree is defined as the number of incoming or outgoing
links for a focused node. Note that the incoming (or outgoing) degree for a focused state (node) is equal
to the number of occurrences of this state, except the state which appears in the first or last position in
the state chain.

2) Hub node: nodes with extremely large degrees in the network.
3) Edge: if two states appear adjacently (i before j), a directed edge is added from i to j. The

directed linkage has a clear physical meaning as the occurrence of the transition from i to j in the state
chain [27, 28].

4) Edge weight: the edge weight indicates the strength of the relationship between the two
connected nodes. Herein, the number of transfers between two nodes is defined as the weight of the
edges between them. Note that this concept is very important, because we can obtained the transfer
preferences between nodes based on this number. Moreover, according to the transition preferences
from the focused state to other states, we can predict the subsequent state.

5) Shuffled data: the sequence is obtained by randomly disrupting the positions of the data in the
original sequence.
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6) Motif: if a node’s degree for the original data is significantly larger than it in the shuffled data,
the node is called a motif [39, 40].

7) Node’s position sequence: the sequence of positions where the focused state (node) appears in
the state chain.

8) Hurst index (H): a long-range correlation is common in actual data, which can be evaluated
by estimating its Hurst index (scaling exponent). Different values of H indicate different evolution
behaviors for the sequence. When 0 < H < 0.5, the sequence shows anti-persistent evolution behavior,
i.e., the state of the next moment is the opposite state of the previous one with large possibility; when
H = 0.5, the characteristic of the sequence is a random walk, i.e., the two successive states of the
sequence have no correlation; when 0.5 < H < 1, a positive long-range correlation exists in the
sequence, i.e., the next moment tends to maintain the same state as the previous one. The methods for
estimating the Hurst index can be divided into the time-domain and frequency-domain methods. The
time-domain methods include the variance-time method [41], the absolute values of the aggregated
series method [41], the rescaled range analysis method (R/S ) [42, 43] and the detrended fluctuation
analysis method [44]; the frequency-domain methods include the periodic-diagram method [41], the
whittle estimation method [45] and the wavelet analysis method [46].

9) Cluster: the cluster in the network is a sub-network for which the internal edges are denser and
the external edges are sparse [47], i.e., nodes in the same cluster are more similar in specific attributes.

3. Results

3.1. Determination of an appropriate window size

In general, the window size w impacts results [48]. If w is too large, the rules of causality evolution
between gold and the dollar will be obscured; while if w is too small, it will be more vulnerable to
noise, and both the complexity and research cost will be higher. In addition, w also affects the number
of states, that is, the larger w is, the less the number will be. In order to ensure the stability as well as
diversity of the number of states, a balanced value for w is required.

The effect of the size w is examined from 100 to 1000 (the interval is 100) in that we obtain 10
state-transition networks. The numbers of nodes Nn and the numbers of edges Ne in state-transition
networks are shown in Figure 3(a). The results show that both Nn and Ne for the shuffled sequence are
more than that of the original sequence. In addition, both Nn and Ne for the original sequence decrease
sharply with the increase of w when w is less than 600. When w is around 600, both Nn and Ne tends
to be stable. On the contrary, both Nn and Ne for the shuffled sequence do not tend to be stable as that
of the original sequence when w is around 600, i.e., the network structures of the shuffled sequence are
not stable. Moreover, when w is 600 or 900, rn or re are the smallest (i.e., the radio is the most deviated
from 1), respectively (see Figure 3(b)). Herein, rn and re represent the ratio of number of nodes of
the original sequence to it of the shuffled sequence and the ratio of number of edges of the original
sequence to it of the shuffled sequence, respectively. Accordingly, the difference between the original
network and the shuffled network is the largest. Since the larger the w is, the more the information is
lost and the higher the complexity is. Therefore, we assume that the reasonable value for w is 600 (i.e.,
a segment of around 840 days). Without special statement, w is selected as 600 through this article.
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(a) (b)

Figure 3. (color online) The effects of the window size w on the structures of the state-
transition networks. (a) The effects of w on Nn as well as Ne in state-transition networks,
where Nn and Ne represent the number of nodes and the number of edges, respectively.
The solid rectangle and the solid triangle represent Nn for the original sequence and the
shuffled sequence, respectively. The hollow rectangle and the hollow triangle represent
Ne for the original sequence and the shuffled sequence, respectively. (b) The effects of w
on rn as well as re in the state-transition networks, where rn and re represent the ratio of
number of nodes of the original sequence to it of the shuffled sequences and the ratio of
number of edges of the original sequence to it of the shuffled sequences, respectively.

3.2. Identification of important causality states

Figure 4 shows the state-transition networks for the original data (a) and the shuffled data (b),
respectively. There are 23 nodes and 86 edges in (a) that are much smaller than 225 nodes and 225 ×
225 = 50,625 edges for the all-to-all network. With regard to causality types, 10 nodes correspond to
the states of negative causality from both directions (from gold to dollar and from dollar to gold), 4
nodes correspond to the states of dark causality from both directions, 9 nodes correspond to the state
of negative causality from one direction and the state of dark causality from the other direction, and
only one node 58 (i.e., State PdDc) corresponds to the state of positive causality from one direction
and state of dark causality from the other direction. With respect to the causality intensity, only it of
negative causality can be strong, i.e., larger than 0.6, whereas it of dark causality or positive causality
is relatively low.

The state-transition network is heterogenous in (a). Most nodes have small degrees, whereas several
hubs have large degrees. For example, both the incoming degree and outgoing degree are equal to 8
for Node 113 (i.e., State NcNc), and both the incoming degree and outgoing degree are 6 for Node 97
(i.e., State NbNb). Both Nodes 113 and 97 correspond to the states of negative causality from both
directions. The edge weights are extremely heterogenous because the total weights of the two hubs’
self-connecting edges are large, which ratio to the sum of the edge weights for the whole network
is 68%. The self-connecting edges represent that when the focused state (node) appears, the state of
the next moment remains the focused one. The state-transition network for the shuffled time series is
shown in (b). The network is less heterogenous for the shuffled data. There are 33 nodes and 227 edges
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in (b). Both the numbers of nodes and edges are relatively large and messy in this network, where only
Node 193 (i.e., State DcDc) appears more frequently. State DcDc corresponds to the dark causality
from both directions, which exists between two independently random sequences. In a word, the hubs
of state-transition networks for the original data (a) and the shuffled data (b) correspond to the states of
negative causality and dark causality from both directions, respectively.

������

Figure 4. (color online) Diagrams for state-transition networks. (a) The state-transition
network for the original bivariate time-series. (b) The state-transition network for the
shuffled bivariate time-series. For visibility, the size of a node is proportional to its degree,
and the thickness of an edge is proportional to its weight.

Figure 5 shows the comparison in the occurrence number of each state between the original data
and the shuffled data. The numbers of occurrences for the two hubs (i.e., the incoming or outgoing
degrees of Nodes 97 and 113) in the original data are apparently more than theirs in the shuffled data
(a). Therefore, Nodes 113 and 97 are motifs. In addition, the number of occurrences for Node 193 in
the shuffled data is visibly more than it in original data (a). Next, we examine whether the occurrence of
the motifs are accidental or not. By the R/S method, we estimate the Hurst index for the time sequence
composed of the positions where the nodes appear in turn in Figure 5(b)–(d). The Hurst indexes of
Nodes 97 and 113 in the original data are larger than 0.5 (H97,O = 0.58 and H113,O = 0.69),respectively,
and it of Node 193 in the shuffled data is close to 0.5 (H193,S = 0.51). The results are entirely in line
with intuitive expectations, i.e., the occurrences of Nodes 97 or 113 for the original data is long-range
related, while the occurrence of Node 193 for the shuffled data is random.
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Figure 5. (color online) The comparison in the occurrences for each state between the
original data and the shuffled data. The comparison in the number of occurrences for each
state in (a). The Hurst indexes of the position sequence for Node 97 in (b) and Node 113
in (c) for the original data, and for Node 193 for the shuffled data (d).

3.3. Identification of the transitions between clusters

The importance of a node is reflected not only in the occurrence number but also in the probability of
it transferring to other nodes. If the transition probability from one focused node to another is relatively
large, the node of the next moment can be predicted when the focused node appears. Furthermore, if
several nodes often transfer to each other, these nodes form a cluster.

In this article, a fast heuristic algorithm [49] is utilized to find the clusters. There are 4 clusters
(see Figure 6), each of which mainly contains the same causality types as well as causality intensities.
For simplicity, we let “weak” represents the causality intensity “d” or “e”, “medium” represents the
intensity “c”, and “strong” represents the intensity “a” or “b”. The largest cluster (Cluster I) is
composed of 13 nodes that are mainly the states of weak dark causalities or the states of weak
negative causalities. Although both the numbers of nodes and edges in Cluster I are the largest that
are more than half of the whole network, the sum of its edge weights is meagre (see Figure 7(a)). In
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the second largest cluster (Cluster II), four out of five nodes are the states of medium or strong
negative causalities. Both the numbers of nodes and edges in Cluster II account for a small
proportion, but the sum of its edge weights reaches 84% of the whole network (see Figure 7(a)). In
the third largest cluster (Cluster III), all of the three nodes correspond to the states of strong negative
causalities. In the smallest cluster (Cluster IV), both of the two nodes are the states of strong negative
causalities. In order to show the transition within each cluster more clearly, (b)–(e) show the
structures of the four clusters, respectively. It is visible that most edges within each cluster are
bi-directional, in other words, they can mutually transfer to each other within the cluster.

��� ���

��� ��� ���

��
�	�������
�	��������
�	�����

��
�	����

Figure 6. (color online) Clustering network diagram. (a) The original state-transition
network is composed of four clusters. (b)–(e) the structures of the four clusters,
respectively. Different colors represent different clusters. Note that Cluster I is mainly
composed of states of weak dark causality, II states of strong or medium negative
causality, III states of strong negative causality, and IV states of weak negative causality.

The connections across different clusters are different with the connections within each cluster.
The edges across different clusters are much less than edges within the same cluster. The edges
between clusters are very important, because they act as bridges in the transition across different
clusters. Figure 7(b) shows the transition frequencies between clusters. Cluster II can transfer to the
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other three clusters, and the other three can also transfer to Cluster II, whereas the other three can not
transfer to each other. Therefore, Cluster II acts as a bridge in the transition among clusters. It means
that even if there is a positive or dark causality (i.e., Cluster I, Cluster III or Cluster IV) between gold
and the dollar, it is temporary and will soon transfer to Cluster II. Thus, we suggest that the
relationship between gold and the dollar is the negative causality of being relatively stable for a long
time. In a word, we can more accurately predict the causality between gold and the dollar next
moment by these transition preferences of intra-cluster and inter-clusters.

������

Figure 7. (color online) The characteristic diagram of the clusters. (a) The ratio of the
statistics in each cluster to the whole network, including the number of nodes, the number
of outgoing edges, the number of incoming edges and the sum of edge weights. (b)
The transition diagram between the four clusters. Herein, the numbers marked in blue
represent the times of transfers.

4. Conclusions and discussion

In this article, a method which combines the PC method [34, 35] and the state-transition network
was developed to identify the characteristics of the causality evolution between gold and the dollar.
Based on the PC method, we can identify not only the causality intensity but also the causality type
in the segments of the bivariate time series, including the types of positive causality, negative causality
and the dark causality. Then, both the causality type and the causality intensity were transformed into a
particular state in each segment, i.e., a four-letter string. Finally, the state-transition network was built
to detect the characteristics in the causality evolution between them, where the node is the causality
state and the edge is the transition between states.

Two nodes (States NbNb and NCNC) were referred to motifs in the state-transition network.
Surprisingly, both motifs corresponds to the strong or medium negative causality. The sum of the
edge weights for these two motifs accounts for 68% of the total edge weights for the whole network,
in other words, the number of appearances for these two states also accounts for 68% for the whole
network. Thus, we suggest that the relationship between gold and the dollar is the negative causality
of relatively stable for a long time, which corresponds to the previous research results [1, 15].
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Several nodes form a cluster because they often transfer to each other. The transition preferences
between causality states are compared between intra-cluster and inter-cluster. With regard to the intra-
cluster, the transitions of nodes are not only frequent but also bidirectional. The nodes within the cluster
can transfer to each other, but it is rare to transfer from one cluster to another. It is the other reason why
the relationship between gold and the dollar is negative causality of being relatively stable for a long
time. With respect to the inter-cluster, although the transitions across different clusters are much less
than transitions within clusters, they play a key role in the connections (transitions) between different
clusters. We found that Cluster II was especially essential. It can transfer to the other three clusters,
and the other three can also transfer to Cluster II. However, the other three clusters can not transfer to
each other. Therefore, Cluster II play a bridge role in the connections between clusters. It means that
even if there is a positive or dark causality (i.e., Cluster I, Cluster III or Cluster IV) between gold and
the dollar, it is temporary and will soon transfer to Cluster II. In a word, these transition preferences
of intra-cluster and inter-clusters provide helpful information to evaluate the current causality between
gold and the dollar, and to predict the causality of the next moment.

Different clusters are different in both the causality type and causality intensity of the nodes (states).
Cluster I is mainly composed of states of weak dark causality, II states of strong or medium negative
causality, III states of strong negative causality, and IV states of weak negative causality. It means
that not only the causality type of nodes but also the causality intensity within each cluster are roughly
the same. From this perspective, we can also explain the long-term stability of the negative causality
between gold and the dollar.

As mentioned in [48], the window size w impacts results. By comparing the properties of the
network constructed under different w, we found that the network structure tends to be stable when the
w is around 600 (i.e., a segment of around 840 days). This discovery can provide a suitable time scale
for future study.

The following suggestions may be of assistance to investors. Firstly, the number of appearances for
two states accounts for 68% for the whole network. This indicates a negative correlation between gold
and the dollar. That is, gold prices rise as the dollar depreciates, when investors are more likely to make
more profits by investing in gold. Conversely, gold prices fall as the dollar appreciates, accordingly,
it is a good time for investors to be short gold. Secondly, the existence of many self-connected edges
in the network indicates that the relationship between them is difficult to change in short-term. Thus,
it is risky for long-term investment, but for adventurous investors it can yield high returns in a short-
term. Thirdly, investors should also consider the transition preferences of intra-cluster and inter-cluster
when making investment decisions to reduce investment risk. For example, if the current relationship
between gold and the dollar belongs to Cluster II, conservatives will likely believe the relationship will
remain in Cluster II at the next moment (the self-connected edge weight is 7200), while adventurers
will be more inclined to believe it will transfer to Cluster III (the transfer weight is 19). Finally, the
length of 600 research window (i.e., a segment of around 840 days) is more conducive to the discovery
of stable evolutionary rules that can assist investors in forming effective judgments.

Our research provides a new perspective to study the evolutional causality between two variables,
i.e., gold and the dollar. In future, it is worth studying the evolutional causality between multiple
variables, such as gold, the dollar, the price of crude oil, the financial crisis, and the political situation.
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